1
|
Puuvuori E, Shen Y, Hulsart-Billström G, Mitran B, Zhang B, Cheung P, Wegrzyniak O, Ingvast S, Persson J, Ståhl S, Korsgren O, Löfblom J, Wermeling F, Eriksson O. Noninvasive PET Detection of CD69-Positive Immune Cells Before Signs of Clinical Disease in Inflammatory Arthritis. J Nucl Med 2024; 65:294-299. [PMID: 38050119 DOI: 10.2967/jnumed.123.266336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/10/2023] [Indexed: 12/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is the most common inflammatory joint disease, and early diagnosis is key for effective disease management. CD69 is one of the earliest cell surface markers seen at the surface of activated immune cells, and CD69 is upregulated in synovial tissue in patients with active RA. In this study, we evaluated the performance of a CD69-targeting PET agent, [68Ga]Ga-DOTA-ZCAM241, for early disease detection in a model of inflammatory arthritis. Methods: A model of inflammatory arthritis was induced by transferring splenocytes from KRN T-cell receptor transgenic B6 mice into T-cell-deficient I-Ag7 major histocompatibility complex class II-expressing recipient mice. The mice were examined longitudinally by [68Ga]Ga-DOTA-ZCAM241 PET/CT before and 3, 7, and 12 d after induction of arthritis. Disease progression was monitored by clinical parameters, including measuring body weight and scoring the swelling of the paws. The uptake of [68Ga]Ga-DOTA-ZCAM241 in the paws was analyzed and expressed as SUVmean Tissue biopsy samples were analyzed for CD69 expression by flow cytometry or immunostaining for a histologic correlate. A second group of mice was examined by a nonbinding, size-matched Affibody molecule as the control. Results: Clinical symptoms appeared 5-7 d after induction of arthritis. The uptake of [68Ga]Ga-DOTA-ZCAM241 in the joints was negligible at baseline but increased gradually after disease induction. An elevated PET signal was found on day 3, before the appearance of clinical symptoms. The uptake of [68Ga]Ga-DOTA-ZCAM241 correlated with the clinical score and disease severity. The presence of CD69-positive cells in the joints and lymph nodes was confirmed by flow cytometry and immunostaining. The uptake of the nonbinding tracer that was the negative control also increased gradually with disease progression, although to a lesser extent than with [68Ga]Ga-DOTA-ZCAM241 Conclusion: The uptake of [68Ga]Ga-DOTA-ZCAM241 in the inflamed joints preceded the clinical symptoms in the KRN T-cell transfer model of inflammatory arthritis, in accordance with immunostaining for CD69. [68Ga]Ga-DOTA-ZCAM241 is thus a promising PET imaging marker of activated immune cells in tissue during RA onset.
Collapse
Affiliation(s)
- Emmi Puuvuori
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Yunbing Shen
- Center for Molecular Medicine, Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Gry Hulsart-Billström
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Bogdan Mitran
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- Antaros Medical AB, Mölndal, Sweden
| | - Bo Zhang
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Pierre Cheung
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Olivia Wegrzyniak
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Sofie Ingvast
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; and
| | - Jonas Persson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- Department of Protein Science, Division of Protein Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Stefan Ståhl
- Department of Protein Science, Division of Protein Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; and
| | - John Löfblom
- Department of Protein Science, Division of Protein Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Fredrik Wermeling
- Center for Molecular Medicine, Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden;
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden;
- Antaros Medical AB, Mölndal, Sweden
| |
Collapse
|
2
|
Imaging Inflammation with Positron Emission Tomography. Biomedicines 2021; 9:biomedicines9020212. [PMID: 33669804 PMCID: PMC7922638 DOI: 10.3390/biomedicines9020212] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/28/2021] [Accepted: 02/12/2021] [Indexed: 12/19/2022] Open
Abstract
The impact of inflammation on the outcome of many medical conditions such as cardiovascular diseases, neurological disorders, infections, cancer, and autoimmune diseases has been widely acknowledged. However, in contrast to neurological, oncologic, and cardiovascular disorders, imaging plays a minor role in research and management of inflammation. Imaging can provide insights into individual and temporospatial biology and grade of inflammation which can be of diagnostic, therapeutic, and prognostic value. There is therefore an urgent need to evaluate and understand current approaches and potential applications for imaging of inflammation. This review discusses radiotracers for positron emission tomography (PET) that have been used to image inflammation in cardiovascular diseases and other inflammatory conditions with a special emphasis on radiotracers that have already been successfully applied in clinical settings.
Collapse
|
3
|
Neveu MA, Beziere N, Daniels R, Bouzin C, Comment A, Schwenck J, Fuchs K, Kneilling M, Pichler BJ, Schmid AM. Lactate Production Precedes Inflammatory Cell Recruitment in Arthritic Ankles: an Imaging Study. Mol Imaging Biol 2020; 22:1324-1332. [PMID: 32514887 PMCID: PMC7497460 DOI: 10.1007/s11307-020-01510-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Inflammation is involved in many disease processes. However, accurate imaging tools permitting diagnosis and characterization of inflammation are still missing. As inflamed tissues exhibit a high rate of glycolysis, pyruvate metabolism may offer a unique approach to follow the inflammatory response and disease progression. Therefore, the aim of the study was to follow metabolic changes and recruitment of inflammatory cells after onset of inflammation in arthritic ankles using hyperpolarized 1-13C-pyruvate magnetic resonance spectroscopy (MRS) and 19F magnetic resonance imaging (MRI), respectively. PROCEDURE Experimental rheumatoid arthritis (RA) was induced by intraperitoneal injection of glucose-6-phosphate-isomerase-specific antibodies (GPI) containing serum. To monitor pyruvate metabolism, the transformation of hyperpolarized 1-13C-pyruvate into hyperpolarized 1-13C-lactate was followed using MRS. To track phagocytic immune cell homing, we intravenously injected a perfluorocarbon emulsion 48 h before imaging. The animals were scanned at days 1, 3, or 6 after GPI-serum injection to examine the different stages of arthritic inflammation. Finally, to confirm the pyruvate metabolic activity and the link to inflammatory cell recruitment, we conducted hematoxylin-eosin histopathology and monocarboxylase transporter (MCT-1) immune histochemistry (IHC) of inflamed ankles. RESULTS Hyperpolarized 1-13C-pyruvate MRS revealed a high rate of lactate production immediately at day 1 after GPI-serum transfer, which remained elevated during the progression of the disease, while 19F-MRI exhibited a gradual recruitment of phagocytic immune cells in arthritic ankles, which correlated well with the course of ankle swelling. Histopathology and IHC revealed that MCT-1 was expressed in regions with inflammatory cell recruitment, confirming the metabolic shift identified in arthritic ankles. CONCLUSIONS Our study demonstrated the presence of a very early metabolic shift in arthritic joints independent of phagocytic immune cell recruitment. Thus, hyperpolarized 1-13C-pyruvate represents a promising tracer to monitor acute arthritic joint inflammation, even with minor ankle swelling. Furthermore, translated to the clinics, these methods add a detailed characterization of disease status and could substantially support patient stratification and therapy monitoring.
Collapse
Affiliation(s)
- Marie-Aline Neveu
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 13, 72076, Tuebingen, Germany
| | - Nicolas Beziere
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 13, 72076, Tuebingen, Germany
| | - Rolf Daniels
- Department of Pharmaceutical Technology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Caroline Bouzin
- IREC Imaging Platform, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Arnaud Comment
- General Electric Healthcare, Pollards Wood, Nightingales Lane, Chalfont St Giles, UK
| | - Johannes Schwenck
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 13, 72076, Tuebingen, Germany
- Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard Karls University Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Kerstin Fuchs
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 13, 72076, Tuebingen, Germany
| | - Manfred Kneilling
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 13, 72076, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
- Department of Dermatology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 13, 72076, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Andreas M Schmid
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 13, 72076, Tuebingen, Germany.
| |
Collapse
|
4
|
Hancin EC, Borja AJ, Nikpanah M, Raynor WY, Haldar D, Werner TJ, Morris MA, Saboury B, Alavi A, Gholamrezanezhad A. PET/MR Imaging in Musculoskeletal Precision Imaging - Third wave after X-Ray and MR. PET Clin 2020; 15:521-534. [DOI: 10.1016/j.cpet.2020.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Abstract
This review discusses nuclear imaging of inflammation using molecular probes beyond fluoro-d-glucose, is structured by cellular targets, and focuses on those tracers that have been successfully applied clinically.
Collapse
Affiliation(s)
- Malte Kircher
- Department of Nuclear Medicine, University Hospital Augsburg, Stenglinstr. 2, Würzburg 86156, Germany
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Augsburg, Stenglinstr. 2, Würzburg 86156, Germany.
| |
Collapse
|
6
|
Evaluation of the therapeutic potential of the selective p38 MAPK inhibitor Skepinone-L and the dual p38/JNK 3 inhibitor LN 950 in experimental K/BxN serum transfer arthritis. Inflammopharmacology 2019; 27:1217-1227. [PMID: 31037574 DOI: 10.1007/s10787-019-00593-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/03/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mitogen-activated protein kinase (MAPK) signaling plays an important role in inflammatory diseases such as rheumatoid arthritis (RA).The aim of our study was to elucidate the therapeutic potential of the highly selective p38 MAPK inhibitor Skepinone-L and the dual inhibitor LN 950 (p38 MAPK and JNK 3) in the K/BxN serum transfer model of RA. Additionally, we aimed to monitor MAPK treatment non-invasively in vivo using the hypoxia tracer [18F]fluoromisonidazole ([18F]FMISO) and positron emission tomography (PET). METHODS To induce experimental arthritis, we injected glucose-6-phosphate isomerase autoantibody-containing serum in BALB/c mice. MAPK inhibitor or Sham treatment was administered per os once daily. On days 3 and 6 after arthritis induction, we conducted PET imaging with [18F]FMISO. At the end of the experiment, ankles were harvested for histopathological analysis. RESULTS Skepinone-L and LN 950 were applicable to suppress the severity of experimental arthritis confirmed by reduced ankle swelling and histopathological analysis. Skepinone-L (3.18 ± 0.19 mm) and LN 950 (3.40 ± 0.13 mm) treatment yielded a significantly reduced ankle thickness compared to Sham-treated mice (3.62 ± 0.11 mm) on day 5 after autoantibody transfer, a time-point characterized by severe arthritis. Hypoxia imaging with [18F]FMISO revealed non-conclusive results and might not be an appropriate tool to monitor MAPK therapy in experimental RA. CONCLUSION Both the selective p38 MAPK inhibitor Skepinone-L and the dual (p38 MAPK and JNK 3) inhibitor LN 950 exhibited significant therapeutic effects during experimental arthritis. Thus, our study contributes to the ongoing discussion on the use of p38 MAPK as a potential target in RA.
Collapse
|
7
|
Beziere N, Fuchs K, Maurer A, Reischl G, Brück J, Ghoreschi K, Fehrenbacher B, Berrio DC, Schenke-Layland K, Kohlhofer U, Quintanilla-Martinez L, Gawaz M, Kneilling M, Pichler B. Imaging fibrosis in inflammatory diseases: targeting the exposed extracellular matrix. Theranostics 2019; 9:2868-2881. [PMID: 31244929 PMCID: PMC6568181 DOI: 10.7150/thno.28892] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/10/2018] [Indexed: 01/09/2023] Open
Abstract
In a variety of diseases, from benign to life-threatening ones, inflammation plays a major role. Monitoring the intensity and extent of a multifaceted inflammatory process has become a cornerstone in diagnostics and therapy monitoring. However, the current tools lack the ability to provide insight into one of its most crucial aspects, namely, the alteration of the extracellular matrix (ECM). Using a radiolabeled platelet glycoprotein VI-based ECM-targeting fusion protein (GPVI-Fc), we investigated how binding of GPVI-Fc on fibrous tissue could uncover the progression of several inflammatory disease models at different stages (rheumatoid arthritis, cutaneous delayed-type hypersensitivity, lung inflammation and experimental autoimmune encephalomyelitis). Methods: The fusion protein GPVI-Fc was covalently linked to 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) and subsequently labeled with 64Cu. We analyzed noninvasively in vivo64Cu-GPVI-Fc accumulation in murine cutaneous delayed-type hypersensitivity, anti-glucose-6-phosphate isomerase serum-induced rheumatoid arthritis, lipopolysaccharide-induced lung inflammation and an experimental autoimmune encephalomyelitis model. Static and dynamic Positron Emission Tomography (PET) of the radiotracer distribution was performed in vivo, with ex vivo autoradiography confirmation, yielding quantitative accumulation and a distribution map of 64Cu-GPVI-Fc. Ex vivo tissue histological staining was performed on harvested samples to highlight the fusion protein binding to collagen I, II and III, fibronectin and fibrinogen as well as the morphology of excised tissue. Results:64Cu-GPVI-Fc showed a several-fold increased uptake in inflamed tissue compared to control tissue, particularly in the RA model, with a peak 24 h after radiotracer injection of up to half the injected dose. Blocking and isotype control experiments indicated a target-driven accumulation of the radiotracer in the case of chronic inflammation. Histological analysis confirmed a prolonged accumulation at the inflammation site, with a pronounced colocalization with the different components of the ECM (collagen III and fibronectin notably). Binding of the fusion protein appeared to be specific to the ECM but unspecific to particular components. Conclusion: Imaging of 64Cu-GPVI-Fc accumulation in the ECM matrix appears to be a promising candidate for monitoring chronic inflammation. By binding to exposed fibrous tissue (collagen, fibronectin, etc.) after extravasation, a new insight is provided into the fibrotic events resulting from a prolonged inflammatory state.
Collapse
Affiliation(s)
- Nicolas Beziere
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Kerstin Fuchs
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Gerald Reischl
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Jürgen Brück
- Department of Dermatology, University Medical Center, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, University Medical Center, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Birgit Fehrenbacher
- Department of Dermatology, University Medical Center, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Daniel Carvajal Berrio
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Katja Schenke-Layland
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
- The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
- Department of Medicine/ Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, 675 Charles E. Young Drive South, MRL 3645, Los Angeles, CA, USA
| | - Ursula Kohlhofer
- Institute of Pathology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology and Cardiovascular Medicine, University Hospital Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Manfred Kneilling
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Department of Dermatology, University Medical Center, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Bernd Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
8
|
Alaarg A, Pérez-Medina C, Metselaar JM, Nahrendorf M, Fayad ZA, Storm G, Mulder WJM. Applying nanomedicine in maladaptive inflammation and angiogenesis. Adv Drug Deliv Rev 2017; 119:143-158. [PMID: 28506745 PMCID: PMC5682240 DOI: 10.1016/j.addr.2017.05.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/12/2017] [Accepted: 05/09/2017] [Indexed: 12/11/2022]
Abstract
Inflammation and angiogenesis drive the development and progression of multiple devastating diseases such as atherosclerosis, cancer, rheumatoid arthritis, and inflammatory bowel disease. Though these diseases have very different phenotypic consequences, they possess several common pathophysiological features in which monocyte recruitment, macrophage polarization, and enhanced vascular permeability play critical roles. Thus, developing rational targeting strategies tailored to the different stages of the journey of monocytes, from bone marrow to local lesions, and their extravasation from the vasculature in diseased tissues will advance nanomedicine. The integration of in vivo imaging uniquely allows studying nanoparticle kinetics, accumulation, clearance, and biological activity, at levels ranging from subcellular to an entire organism, and will shed light on the fate of intravenously administered nanomedicines. We anticipate that convergence of nanomedicines, biomedical engineering, and life sciences will help to advance clinically relevant therapeutics and diagnostic agents for patients with chronic inflammatory diseases.
Collapse
Affiliation(s)
- Amr Alaarg
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Carlos Pérez-Medina
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Josbert M Metselaar
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands; Institute for Experimental Molecular Imaging, University Clinic, Helmholtz Institute for Biomedical Engineering, Aachen, Germany
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Gert Storm
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Willem J M Mulder
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Rodemann HP, Datta NR, Bodis S. Molecular radiation biology/oncology and its impact on preclinical and clinical research in radiotherapy. Radiother Oncol 2017; 124:339-343. [PMID: 28888706 DOI: 10.1016/j.radonc.2017.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 08/22/2017] [Indexed: 11/20/2022]
Affiliation(s)
- H Peter Rodemann
- Division of Radiation Biology & Molecular Environmental Research, Dept. of Radiation Oncology, University of Tübingen, German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany.
| | - Niloy Ranjan Datta
- Center of Radiation Oncology KSA-KSB, Kantonsspital Aarau and University of Zurich, Switzerland
| | - Stephan Bodis
- Center of Radiation Oncology KSA-KSB, Kantonsspital Aarau and University of Zurich, Switzerland
| |
Collapse
|
10
|
Schwenck J, Maier FC, Kneilling M, Wiehr S, Fuchs K. Non-invasive In Vivo Fluorescence Optical Imaging of Inflammatory MMP Activity Using an Activatable Fluorescent Imaging Agent. J Vis Exp 2017. [PMID: 28518078 DOI: 10.3791/55180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This paper describes a non-invasive method for imaging matrix metalloproteinases (MMP)-activity by an activatable fluorescent probe, via in vivo fluorescence optical imaging (OI), in two different mouse models of inflammation: a rheumatoid arthritis (RA) and a contact hypersensitivity reaction (CHR) model. Light with a wavelength in the near infrared (NIR) window (650 - 950 nm) allows a deeper tissue penetration and minimal signal absorption compared to wavelengths below 650 nm. The major advantages using fluorescence OI is that it is cheap, fast and easy to implement in different animal models. Activatable fluorescent probes are optically silent in their inactivated states, but become highly fluorescent when activated by a protease. Activated MMPs lead to tissue destruction and play an important role for disease progression in delayed-type hypersensitivity reactions (DTHRs) such as RA and CHR. Furthermore, MMPs are the key proteases for cartilage and bone degradation and are induced by macrophages, fibroblasts and chondrocytes in response to pro-inflammatory cytokines. Here we use a probe that is activated by the key MMPs like MMP-2, -3, -9 and -13 and describe an imaging protocol for near infrared fluorescence OI of MMP activity in RA and control mice 6 days after disease induction as well as in mice with acute (1x challenge) and chronic (5x challenge) CHR on the right ear compared to healthy ears.
Collapse
Affiliation(s)
- Johannes Schwenck
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen; Department of Nuclear Medicine, Eberhard Karls University of Tübingen
| | - Florian C Maier
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen
| | - Manfred Kneilling
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen; Department of Dermatology, Eberhard Karls University of Tübingen
| | - Stefan Wiehr
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen
| | - Kerstin Fuchs
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen;
| |
Collapse
|
11
|
Abstract
There is emerging evidence suggesting that PET/MR imaging will have a role in many aspects of musculoskeletal imaging. The synergistic potential of hybrid PET/MR imaging in terms of acquiring anatomic, molecular, and functional data simultaneously seems advantageous in the diagnostic workup, treatment planning and monitoring, and follow-up of patients with musculoskeletal malignancies, and may also prove helpful in assessment of musculoskeletal infectious and inflammatory disorders. The application of more sophisticated MR imaging sequences and PET radiotracers other than FDG in the diagnostic workup and follow-up of patients with musculoskeletal disorders should be explored.
Collapse
|
12
|
Fuchs K, Kuehn A, Mahling M, Guenthoer P, Hector A, Schwenck J, Hartl D, Laufer S, Kohlhofer U, Quintanilla-Martinez L, Reischl G, Röcken M, Pichler BJ, Kneilling M. In Vivo Hypoxia PET Imaging Quantifies the Severity of Arthritic Joint Inflammation in Line with Overexpression of Hypoxia-Inducible Factor and Enhanced Reactive Oxygen Species Generation. J Nucl Med 2017; 58:853-860. [PMID: 28183987 DOI: 10.2967/jnumed.116.185934] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/11/2017] [Indexed: 12/30/2022] Open
Abstract
Hypoxia is essential for the development of autoimmune diseases such as rheumatoid arthritis (RA) and is associated with the expression of reactive oxygen species (ROS), because of the enhanced infiltration of immune cells. The aim of this study was to demonstrate the feasibility of measuring hypoxia noninvasively in vivo in arthritic ankles with PET/MRI using the hypoxia tracers 18F-fluoromisonidazole (18F-FMISO) and 18F-fluoroazomycinarabinoside (18F-FAZA). Additionally, we quantified the temporal dynamics of hypoxia and ROS stress using L-012, an ROS-sensitive chemiluminescence optical imaging probe, and analyzed the expression of hypoxia-inducible factors (HIFs). Methods: Mice underwent noninvasive in vivo PET/MRI to measure hypoxia or optical imaging to analyze ROS expression. Additionally, we performed ex vivo pimonidazole-/HIF-1α immunohistochemistry and HIF-1α/2α Western blot/messenger RNA analysis of inflamed and healthy ankles to confirm our in vivo results. Results: Mice diseased from experimental RA exhibited a 3-fold enhancement in hypoxia tracer uptake, even in the early disease stages, and a 45-fold elevation in ROS expression in inflamed ankles compared with the ankles of healthy controls. We further found strong correlations of our noninvasive in vivo hypoxia PET data with pimonidazole and expression of HIF-1α in arthritic ankles. The strongest hypoxia tracer uptake was observed as soon as day 3, whereas the most pronounced ROS stress was evident on day 6 after the onset of experimental RA, indicating that tissue hypoxia can precede ROS stress in RA. Conclusion: Collectively, for the first time to our knowledge, we have demonstrated that the noninvasive measurement of hypoxia in inflammation using 18F-FAZA and 18F-FMISO PET imaging represents a promising new tool for uncovering and monitoring rheumatic inflammation in vivo. Further, because hypoxic inflamed tissues are associated with the overexpression of HIFs, specific inhibition of HIFs might represent a new powerful treatment strategy.
Collapse
Affiliation(s)
- Kerstin Fuchs
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Anna Kuehn
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Moritz Mahling
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Philipp Guenthoer
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Andreas Hector
- Children's Hospital of the Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Johannes Schwenck
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany.,Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard Karls University, Tuebingen, Tuebingen, Germany
| | - Dominik Hartl
- Children's Hospital of the Eberhard Karls University Tuebingen, Tuebingen, Germany.,Immunology, Inflammation and Infectious Diseases Discovery and Translational Area, Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Stefan Laufer
- Department of Pharmacy & Biochemistry, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Ursula Kohlhofer
- Institute of Pathology and Neuropathology, Eberhard Karls University Tuebingen and Comprehensive Cancer Center, University Hospital Tuebingen, Tuebingen, Germany; and
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University Tuebingen and Comprehensive Cancer Center, University Hospital Tuebingen, Tuebingen, Germany; and
| | - Gerald Reischl
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Martin Röcken
- Department of Dermatology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Bernd J Pichler
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Manfred Kneilling
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany .,Department of Dermatology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
13
|
Terry SYA, Koenders MI, Franssen GM, Nayak TK, Freimoser-Grundschober A, Klein C, Oyen WJ, Boerman OC, Laverman P. Monitoring Therapy Response of Experimental Arthritis with Radiolabeled Tracers Targeting Fibroblasts, Macrophages, or Integrin αvβ3. J Nucl Med 2015; 57:467-72. [PMID: 26635344 DOI: 10.2967/jnumed.115.162628] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Rheumatoid arthritis is an autoimmune disease resulting in chronic synovial inflammation. Molecular imaging could be used to monitor therapy response, thus enabling tailored therapy regimens and enhancing therapeutic outcome. Here, we hypothesized that response to etanercept could be monitored by radionuclide imaging in arthritic mice. We tested 3 different targets, namely fibroblast activation protein (FAP), macrophages, and integrin αvβ3. METHODS Male DBA/1J mice with collagen-induced arthritis were treated with etanercept. SPECT/CT scans were acquired at 1, 24, and 48 h after injection of (111)In-RGD2 (integrin αvβ3), (111)In-anti-F4/80-A3-1 (antimurine macrophage antibody), or (111)In-28H1 (anti-FAP antibody), respectively, with nonspecific controls included. Mice were dissected after the last scan, and scans were analyzed quantitatively and were correlated with macroscopic scoring. RESULTS Experimental arthritis was imaged with (111)In-28H1 (anti-FAP), (111)In-anti-F4/80-A3-1, and (111)In-RGD2. Tracer uptake in joints correlated with arthritis score. Treatment decreased joint uptake of tracers from 23 ± 15, 8 ± 4, and 2 ± 1 percentage injected dose per gram (%ID/g) to 11 ± 11 (P < 0.001), 4 ± 4 (P < 0.001), and 1 ± 0.2 %ID/g (P < 0.01) for (111)In-28H1, (111)In-anti-F4/80-A3-1, and (111)In-RGD2, respectively. Arthritis-to-blood ratios (in mice with arthritis score 2 per joint) were higher for (111)In-28H1 (5.5 ± 1; excluding values > 25), (111)In-anti-F4/80-A3-1 (10.4 ± 4), and (111)In-RGD2 (7.2 ± 1) than for control (111)In-DP47GS (0.7 ± 0.5; P = 0.002), (111)In-rat IgG2b (0.5 ± 0.2; P = 0.002), or coinjection of excess RGD2 (3.5), indicating specific uptake of all tracers in arthritic joints. CONCLUSION (111)In-28H1, (111)In-anti-F4/80-A3-1, and (111)In-RGD2 can be used to specifically monitor the response to therapy in experimental arthritis at the molecular level. Further studies, however, still need to be performed.
Collapse
Affiliation(s)
- Samantha Y A Terry
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands Department of Imaging Chemistry and Biology, King's College London, London, United Kingdom
| | - Marije I Koenders
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerben M Franssen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tapan K Nayak
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland; and
| | | | | | - Wim J Oyen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Otto C Boerman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter Laverman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Schwenck J, Griessinger CM, Fuchs K, Bukala D, Bauer N, Eichner M, Röcken M, Pichler BJ, Kneilling M. In vivo optical imaging of matrix metalloproteinase activity detects acute and chronic contact hypersensitivity reactions and enables monitoring of the antiinflammatory effects of N-acetylcysteine. Mol Imaging 2015; 13. [PMID: 25430819 DOI: 10.2310/7290.2014.00044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The aim of this study was to determine whether the severity of contact hypersensitivity reactions (CHSRs) can be observed by noninvasive in vivo optical imaging of matrix metalloproteinase (MMP) activity and whether this is an appropriate tool for monitoring an antiinflammatory effect. Acute and chronic CHSRs were elicited by application of a 1% trinitrochlorobenzene (TNCB) solution for up to five times on the right ear of TNCB-sensitized mice. N-Acetylcysteine (NAC)-treated and sham-treated mice were monitored by measuring ear swelling and optical imaging of MMP activity. In addition, we performed hematoxylin-eosin staining and CD31 immunohistochemistry for histopathologic analysis of the antiinflammatory effects of NAC. The ear thickness and the MMP activity increased in line with the increasing severity of the CHSR. MMP activity was enhanced 2.5- to 2.7-fold during acute CHSR and 3.1- to 4.1-fold during chronic CHSR. NAC suppressed ear swelling and MMP signal intensity in mice with acute and chronic CHSR. During chronic CHSR, the vessel density was significantly reduced in ear sections derived from NAC-treated compared to sham-treated mice. In vivo optical imaging of MMP activity measures acute and chronic CHSR and is useful to monitor antiinflammatory effects.
Collapse
|
15
|
Monitoring the early biologic response of esophageal carcinoma after irradiation with 18F-FLT: an in-vitro and in-vivo study. Nucl Med Commun 2015; 35:1212-9. [PMID: 25192190 DOI: 10.1097/mnm.0000000000000201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of our study was to explore the value of 3'-deoxy-3'-[F]fluorothymidine (F-FLT) and F-FLT PET in monitoring the early biologic response of esophageal carcinoma after irradiation in vitro and in vivo. METHODS After 2, 4, and 8 h of irradiation at different doses (0, 5, 10, and 15 Gy) of esophageal carcinoma cells in vitro, the uptake ratio of F-FLT, the relative cell survival rate, and ATP levels were measured. The tumor uptake ratio of F-FLT [tumor-to-nontumor (T/NT)] was measured through PET scans before and on the first, seventh, and 15th day after irradiation. The expression of proliferating cell nuclear antigen and Ki-67 was determined in both untreated and treated tumors. RESULTS Compared with the control group, the uptake ratio changes of F-FLT after 2 h of irradiation with 5 Gy showed no statistical significance (3.65±0.17 vs. 4.00±0.17%, P>0.05), whereas the uptake ratios of the other groups decreased notably (F=33.93, P<0.01). The differences in the relative survival rates were not statistically significant (F=4.02, P>0.05). Linear regression analysis indicated a significant correlation between F-FLT and ATP levels (r=0.89, P<0.01). On F-FLT PET scan images of the xenografts, the baseline uptake ratio (T/NT) was 2.24±0.06. It decreased to 1.99±0.09, 1.85±0.04, and 1.15±0.10 at 1, 7, and 15 days after irradiation with 10 Gy. Tumor uptake of F-FLT was closely correlated with proliferating cell nuclear antigen and Ki-67 expressions (r=0.83, P<0.001, and r=0.88, P<0.001). CONCLUSION The uptake changes of F-FLT in esophageal carcinoma cells and tumor xenografts may reflect the early biological response of esophageal carcinoma after irradiation. Thus, F-FLT PET may be potentially used to monitor the early response of esophageal carcinoma after radiotherapy.
Collapse
|
16
|
Khairnar A, Marchand F, Vidal A, Etienne M, Miladi I, Auzeloux P, Cachin F, Eschalier A, Chezal JM, Ardid D, Miot-Noirault E. 99mTc-NTP 15-5 Imaging for Cartilage Involvement in Experimental Rheumatoid Arthritis: Comparison with Routinely Used Molecular Imaging Methods and Sensitivity to Chronic Nonsteroidal Antiinflammatory Drug Treatment. J Nucl Med 2015; 56:798-804. [PMID: 25840975 DOI: 10.2967/jnumed.114.151415] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/10/2015] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED This study determined, using the intraarticular complete Freund adjuvant arthritis mice model, whether the radiotracer (99m)Tc-N-(triethylammonium)-3-propyl-[15]ane-N5 ((99m)Tc-NTP 15-5) targeting proteoglycans has a pathophysiologic validity for in vivo imaging of rheumatoid arthritis (RA) and its response to chronic nonsteroidal antiinflammatory drugs. METHODS We investigated the time course of cartilage remodeling by (99m)Tc-NTP 15-5 scintigraphy, bone damages by (99m)Tc-hydroxymethylene diphosphonate imaging, inflammation by (18)F-FDG PET, and joint proteoglycan content and pain behavior in animals, without and with meloxicam treatment. Paw circumference, thermal pain behavior, and histology as well as proteoglycan content of the whole joint were determined. RESULTS (99m)Tc-NTP 15-5 showed specific tracer accumulation within RA joints, with a significant increase in scintigraphic ratio observed in RA versus shams from day 3 to day 28. (18)F-FDG evidenced uptake in RA joints from day 15 to day 29. Animals treated with meloxicam (5 mg/kg) exhibited a dose-dependent decrease in both (99m)Tc-NTP 15-5 and (18)F-FDG uptake ratios versus saline-treated animals. (99m)Tc-hydroxymethylene diphosphonate bone scans were only positive at day 14 in RA versus shams, with a significant effect of meloxicam. An increase in proteoglycans of RA joint and thermal pain behavior were observed and were dose-dependently reduced by meloxicam. CONCLUSION These experimental results bring data in favor of the (99m)Tc-NTP 15-5 radiotracer for assessing, in vivo, cartilage remodeling in RA that could be used to monitor therapy.
Collapse
Affiliation(s)
- Amit Khairnar
- Clermont Université, Université d'Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, Clermont-Ferrand, France INSERM, U 990, Clermont-Ferrand, France Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France INSERM U1107 NEURO-DOL, Clermont-Ferrand, France; and
| | - Fabien Marchand
- Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France INSERM U1107 NEURO-DOL, Clermont-Ferrand, France; and
| | - Aurélien Vidal
- Clermont Université, Université d'Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, Clermont-Ferrand, France INSERM, U 990, Clermont-Ferrand, France
| | - Monique Etienne
- Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France INSERM U1107 NEURO-DOL, Clermont-Ferrand, France; and
| | - Imen Miladi
- Clermont Université, Université d'Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, Clermont-Ferrand, France INSERM, U 990, Clermont-Ferrand, France
| | - Philippe Auzeloux
- Clermont Université, Université d'Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, Clermont-Ferrand, France INSERM, U 990, Clermont-Ferrand, France
| | - Florent Cachin
- Clermont Université, Université d'Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, Clermont-Ferrand, France INSERM, U 990, Clermont-Ferrand, France CLCC Jean Perrin, Clermont-Ferrand, France
| | - Alain Eschalier
- Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France INSERM U1107 NEURO-DOL, Clermont-Ferrand, France; and
| | - Jean-Michel Chezal
- Clermont Université, Université d'Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, Clermont-Ferrand, France INSERM, U 990, Clermont-Ferrand, France
| | - Denis Ardid
- Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France INSERM U1107 NEURO-DOL, Clermont-Ferrand, France; and
| | - Elisabeth Miot-Noirault
- Clermont Université, Université d'Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, Clermont-Ferrand, France INSERM, U 990, Clermont-Ferrand, France
| |
Collapse
|
17
|
Irmler IM, Gebhardt P, Hoffmann B, Opfermann T, Figge MT, Saluz HP, Kamradt T. 18 F-Fluoride positron emission tomography/computed tomography for noninvasive in vivo quantification of pathophysiological bone metabolism in experimental murine arthritis. Arthritis Res Ther 2014; 16:R155. [PMID: 25053370 PMCID: PMC4220085 DOI: 10.1186/ar4670] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/09/2014] [Indexed: 02/01/2023] Open
Abstract
Introduction Evaluation of disease severity in experimental models of rheumatoid arthritis is inevitably associated with assessment of structural bone damage. A noninvasive imaging technology allowing objective quantification of pathophysiological alterations of bone structure in rodents could substantially extend the methods used to date in preclinical arthritis research for staging of autoimmune disease severity or efficacy of therapeutical intervention. Sodium 18 F-fluoride (18 F-NaF) is a bone-seeking tracer well-suited for molecular imaging. Therefore, we systematically examined the use of 18 F-NaF positron emission tomography/computed tomography (PET/CT) in mice with glucose-6-phosphate isomerase (G6PI)–induced arthritis for quantification of pathological bone metabolism. Methods F-fluoride was injected into mice before disease onset and at various time points of progressing experimental arthritis. Radioisotope accumulation in joints in the fore- and hindpaws was analyzed by PET measurements. For validation of bone metabolism quantified by 18 F-fluoride PET, bone surface parameters of high-resolution μCT measurements were used. Results Before clinical arthritis onset, no distinct accumulation of 18 F-fluoride was detectable in the fore- and hindlimbs of mice immunized with G6PI. In the course of experimental autoimmune disease, 18 F-fluoride bone uptake was increased at sites of enhanced bone metabolism caused by pathophysiological processes of autoimmune disease. Moreover, 18 F-fluoride signaling at different stages of G6PI-induced arthritis was significantly correlated with the degree of bone destruction. CT enabled identification of exact localization of 18 F-fluoride signaling in bone and soft tissue. Conclusions The results of this study suggest that small-animal PET/CT using 18 F-fluoride as a tracer is a feasible method for quantitative assessment of pathophysiological bone metabolism in experimental arthritis. Furthermore, the possibility to perform repeated noninvasive measurements in vivo allows longitudinal study of therapeutical intervention monitoring.
Collapse
|