1
|
Dagher SA, Learned KO, Dagher R, Wang JR, Zhao X, Hosseini SM, Maniakas A, Cabanillas ME, Busaidy NL, Dadu R, Iyer P, Zafereo ME, Khalaf AM. [ 18F]-FDG Uptake as a Marker of Residual Anaplastic and Poorly Differentiated Thyroid Carcinoma following BRAF-Targeted Therapy. AJNR Am J Neuroradiol 2025:ajnr.A8588. [PMID: 39572200 DOI: 10.3174/ajnr.a8588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/10/2024] [Indexed: 05/24/2025]
Abstract
BACKGROUND AND PURPOSE Neoadjuvant BRAF-directed therapy and immunotherapy followed by surgery improves survival in patients with BRAF V600E-mutant anaplastic thyroid carcinoma (ATC), more so in those who have complete ATC pathologic response. This study assesses the ability of FDG-PET to noninvasively detect residual high-risk pathologies including ATC and poorly differentiated thyroid carcinoma (PDTC) in the preoperative setting. MATERIALS AND METHODS This retrospective, single-center study included consecutive BRAF V600E-mutant patients with ATC treated with at least 30 days of neoadjuvant BRAF-directed therapy and who underwent FDG-PET/CT within 30 days before surgery. The highest pathologic grade observed for every head and neck lesion resected was recorded. Each lesion on preoperative PET/CT was retrospectively characterized. The primary end point was to contrast the standardized uptake normalized by lean body mass (SULmax) for lesions with residual high-risk (ATC, PDTC) versus low-risk pathologies (papillary thyroid carcinoma, negative). An optimal SULmax threshold was then identified by using a receiver operating characteristic analysis, and the ability of this threshold to noninvasively and preoperatively risk-stratify patients by overall survival was then evaluated with a Kaplan-Meier plot. RESULTS Thirty patients (mean age 66.5 ± 9.0; 17 men) were included in this study, with 94 surgically sampled lesions. Of these lesions, 57 (60.6%) were low-risk (39 negative, 18 papillary thyroid carcinoma) and 37 (39.4%) were high-risk (29 ATC, 8 PDTC). FDG uptake was higher for high-risk compared with low-risk pathologies: median SULmax 5.01 (interquartile range [IQR] 2.81-10.95) versus 1.29 (IQR 1.06-3.1) (P < .001, Mann-Whitney U test). The sensitivity, specificity, and accuracy for detecting high-risk pathologies at the optimal threshold of SULmax ≥2.75 were 0.784 [95% CI, 0.628-0.886], 0.702 [95% CI, 0.573-0.805], and 0.734 [95% CI, 0.637-0.813], respectively. Patients with at least 1 high-risk lesion identified with the aforementioned cutoff had a worse prognosis compared with patients without high-risk lesions in the head and neck: median overall survival for the former group was 259 days and was not attained for the latter (P = .038, log-rank test). CONCLUSIONS Preoperative FDG-PET noninvasively identifies lesions with residual high-risk pathologies following neoadjuvant BRAF-directed targeted therapy and immunotherapy for BRAF-mutated ATC. FDG-PET avidity may serve as an early prognostic marker that correlates with residual high-risk pathology in BRAF-mutated ATC after neoadjuvant therapy.
Collapse
Affiliation(s)
- Samir A Dagher
- From the Department of Neuroradiology/Head and Neck Imaging (S.A.M., K.O.L., R.D., A.M.K), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kim O Learned
- From the Department of Neuroradiology/Head and Neck Imaging (S.A.M., K.O.L., R.D., A.M.K), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Richard Dagher
- From the Department of Neuroradiology/Head and Neck Imaging (S.A.M., K.O.L., R.D., A.M.K), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer Rui Wang
- Department of Head and Neck Surgery (J.R.W., X.Z., A.M., M.E.Z.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiao Zhao
- Department of Head and Neck Surgery (J.R.W., X.Z., A.M., M.E.Z.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - S Mohsen Hosseini
- Department of Pathology (S.M.H.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anastasios Maniakas
- Department of Head and Neck Surgery (J.R.W., X.Z., A.M., M.E.Z.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maria E Cabanillas
- Department of Endocrine Neoplasia and Hormonal Disorders (M.E.C., N.L.B., R.D., P.I.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naifa L Busaidy
- Department of Endocrine Neoplasia and Hormonal Disorders (M.E.C., N.L.B., R.D., P.I.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ramona Dadu
- Department of Endocrine Neoplasia and Hormonal Disorders (M.E.C., N.L.B., R.D., P.I.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Priyanka Iyer
- Department of Endocrine Neoplasia and Hormonal Disorders (M.E.C., N.L.B., R.D., P.I.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark E Zafereo
- Department of Head and Neck Surgery (J.R.W., X.Z., A.M., M.E.Z.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexander M Khalaf
- From the Department of Neuroradiology/Head and Neck Imaging (S.A.M., K.O.L., R.D., A.M.K), The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
2
|
Li Z, Song L, Yang Y, Zhao Y, Ma S. Mannose enhances anti-tumor effect of PLX4032 in anaplastic thyroid cancer. Endocr Relat Cancer 2025; 32:e240209. [PMID: 40063000 PMCID: PMC11964477 DOI: 10.1530/erc-24-0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 03/02/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025]
Abstract
Anaplastic thyroid cancer represents the most aggressive form of thyroid cancer and harbors BRAF mutations in over 40% of cases. Vemurafenib (PLX4032), a BRAF kinase inhibitor, shows promise in BRAFV600E-positive advanced thyroid cancer but may promote resistance in anaplastic cases. This study investigates whether mannose, known to selectively inhibit thyroid cancer, enhances PLX4032 efficacy. To evaluate whether mannose could enhance the response of anaplastic thyroid cancer cells to vemurafenib, we employed several in vitro assays, including MTT, colony formation, flow cytometry, migration and invasion assays. In addition, we performed in vivo assays using mouse models with subcutaneous xenografts. Our findings demonstrated that vemurafenib and mannose synergistically inhibit anaplastic thyroid cancer cell proliferation. The combined treatment significantly impeded anaplastic thyroid cancer cell migration and invasion while promoting apoptosis. In vivo studies corroborated these observations. The underlying mechanism by which mannose potentiates the antitumor effects of vemurafenib was explored using the Seahorse XFe96 Analyzer to measure glycolysis parameters and Western blotting to assess the expression of associated proteins. Mechanistically, vemurafenib reduced the expression of ZIP10, which in turn decreased the enzyme activity of phosphomannose isomerase. This suppression of ZIP10 enhanced mannose-mediated inhibition of glycolysis and thus its antitumor effect, as confirmed by rescue experiments with ZIP10 overexpression. The resulting decrease in glycolysis led to lower ATP levels, which are essential for the phosphorylation of ERK and AKT. Therefore, the combination of vemurafenib and mannose inhibited the levels of pERK and pAKT, thereby improving the effectiveness of PLX4032 in treating anaplastic thyroid cancer.
Collapse
Affiliation(s)
- Zhuolin Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Disease, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Department of Cariology & Endodontics, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Liumei Song
- Department of Endocrinology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Department of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yuanxing Yang
- Department of Ultrasound, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yang Zhao
- Department of Endocrinology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Sharui Ma
- Department of Endocrinology, Shaanxi Provincial People’s Hospital, Xi’an, China
| |
Collapse
|
3
|
Ciappuccini R, Nascimento C, Edet-Sanson A, Bardet S. Médecine nucléaire et cancers de la thyroïde en 2024 : iode 131, TEP et nouvelles approches théranostiques. Bull Cancer 2024; 111:10S64-10S72. [PMID: 39505438 DOI: 10.1016/s0007-4551(24)00409-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
NUCLEAR MEDICINE AND THYROID CANCERS IN 2024: IODINE 131, PET AND NEW THERANOSTIC APPROACHES: Nuclear medicine has long been a mainstay in the management of thyroid cancers. In patients with differentiated thyroid cancer (DTC), the most common histotype, radioiodine (RAI, 131I) has been for years a cornerstone for the treatment of RAI-avid metastases. Post-therapeutic 131I scintigraphy helps guide these treatments and contributes to the definition of refractory cancers. In these refractory patients, who represent fewer than 5% of CTDs, 18FDG PET plays a central diagnostic and prognostic role. From a therapeutic perspective, RAI uptake can be re-induced in some of these patients with the BRAF mutation by using redifferentiation protocols. In anaplastic thyroid cancer (A TC) that is rare, aggressive and undifferentiated, 18FDG PET remains the metabolic imaging of choice. In medullary thyroid cancer (MTC), PET imaging is mainly based on the use of 18F-DOPA, even if 18FDG also provides prognostic data and 68Ga-DOTATOC could allow a theranostic approach. Other radiopharmaceuticals offering new theranostic avenues in thyroid cancers are also discussed, such as prostate-specific membrane antigen (PSMA) and fibroblast activation protein (FAP). After decades of a "one-size fits all" approach in thyroid cancer management, molecular imaging is paving the way towards personalized medicine.
Collapse
Affiliation(s)
- Renaud Ciappuccini
- Service de médecine nucléaire et UCP thyroïde, Centre François-Badesse, 3, avenue du Général-Harris, 14000 Caen, France; Inserm 1086 ANTICIPE, BioTICLA, Université de Caen Normandie, 14000 Caen, France.
| | - Camila Nascimento
- Service de médecine nucléaire, IUCT-Oncopole, 1, avenue Irène-Joliot-Curie, 31000, Toulouse, France
| | - Agathe Edet-Sanson
- Service de médecine nucléaire, Centre Henri-Becquerel, 1, rue d'Amiens, 76038 Rouen, France
| | - Stéphane Bardet
- Service de médecine nucléaire et UCP thyroïde, Centre François-Badesse, 3, avenue du Général-Harris, 14000 Caen, France
| |
Collapse
|
4
|
Wen SS, Wu YJ, Wang JY, Ni ZX, Dong S, Xie XJ, Wang YT, Wang Y, Huang NS, Ji QH, Ma B, Qu N. BRAF V600E/p-ERK/p-DRP1(Ser616) Promotes Tumor Progression and Reprogramming of Glucose Metabolism in Papillary Thyroid Cancer. Thyroid 2024; 34:1246-1259. [PMID: 39162997 DOI: 10.1089/thy.2023.0700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Background: Papillary thyroid cancer (PTC) with the BRAFV600E mutation is associated with a poorer prognosis. BRAF inhibitors may demonstrate limited efficacy due to emerging drug resistance. The Warburg effect may have cancer therapeutic implications. It is not known if the BRAFV600E mutation is associated with altered glucose metabolism in PTC. Methods: This study examined the effect of BRAFV600E and dynamin-related protein 1 (DRP1) on various cellular processes in PTC cells, including cell proliferation, migration, invasion, mitochondrial fission, glucose metabolism, reactive oxygen species (ROS) generation, and apoptosis. We used RT-qPCR to assess the expression of key glycolytic enzymes in thyroid cancer tissues. Additionally, the regulatory interaction between BRAFV600E and DRP1 was investigated through Western blot and immunohistochemical staining. We further evaluated the impact of DRP1 in PTC and the inhibitory effects of dabrafenib and 2-deoxy-d-glucose (2-DG) in vitro and in vivo. Results: We found that the BRAFV600E mutation significantly augments aerobic glycolysis while suppressing oxidative phosphorylation in PTC. We identified the BRAFV600E/p-ERK/p-DRP1(Ser616) signaling pathway as a critical mediator in PTC progression. First, the BRAFV600E/p-ERK/p-DRP1(Ser616) signaling pathway enhances cell proliferation by upregulating hexokinase 2 expression and thereby increasing aerobic glycolysis. Second, it inhibits apoptosis by promoting mitochondrial fission and reducing ROS levels. Moreover, we demonstrated that the combination therapy of 2-DG and dabrafenib markedly impedes the progression of BRAFV600E-positive PTC. Conclusion: The BRAFV600E/p-ERK/p-DRP1(Ser616) signaling pathway plays a pivotal role in glucose metabolism reprogramming, contributing to the aggressiveness and progression of BRAFV600E-positive PTC. Our findings suggest that a combined therapeutic approach using 2-DG and dabrafenib has the potential to improve the outcome of PTC patients with BRAFV600E.
Collapse
Affiliation(s)
- Shi-Shuai Wen
- Department of Thyroid Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yi-Jun Wu
- Department of Thyroid Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Jia-Yang Wang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, P.R. China
| | - Zhao-Xian Ni
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Shuai Dong
- Department of Thyroid Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Xiao-Jun Xie
- Department of Thyroid Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Yu-Ting Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Nai-Si Huang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Qing-Hai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Ben Ma
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Ning Qu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| |
Collapse
|
5
|
Uno D, Endo K, Yoshikawa T, Hirai N, Kobayashi E, Nakanishi Y, Kondo S, Yoshizaki T. Correlation between gene mutations and clinical characteristics in papillary thyroid cancer: a retrospective analysis of BRAF mutations and RET rearrangements. Thyroid Res 2024; 17:21. [PMID: 39278941 PMCID: PMC11404047 DOI: 10.1186/s13044-024-00209-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/17/2024] [Indexed: 09/18/2024] Open
Abstract
INTRODUCTION Activation of the MAPK pathway by genetic mutations (such as BRAF and RET) initiates and accelerates the growth of papillary thyroid carcinoma (PTC). However, the correlation between genetic mutations and clinical features remains to be established. Therefore, this study aimed to retrospectively analyze major genetic mutations, specifically BRAF mutations and RET rearrangements, and develop a treatment algorithm by comparing background and clinical characteristics. METHOD One hundred thirteen patients with primary PTC were included in this study. BRAF mutations were detected via Sanger sequencing and RET rearrangements were detected via fluorescence in situ hybridization (FISH) analysis, and reverse transcription polymerase chain reaction (RT-PCR). The patients were categorized into two groups based on the presence of BRAF mutations and RET rearrangements and their clinical characteristics (age, sex, TNM, stage, extratumoral extension, tumor size, unifocal/multifocal lesions, vascular invasion, differentiation, chronic thyroiditis, preoperative serum thyroglobulin level, and 18F-fluorodeoxyglucose (FDG) uptake) were compared subsequently. RESULT After excluding unanalyzable specimens, 80 PTC patients (22 males and 58 females, mean age: 57.2 years) were included in the study. RET rearrangements were positive in 8 cases (10%), and BRAF mutation was positive in 63 (78.6%). The RET rearrangement group was significantly associated with younger age (p = 0.024), multifocal lesion (p = 0.048), distant metastasis (p = 0.025) and decreased 18F-fluorodeoxyglucose uptake (p < 0.001). The BRAF mutation group was significantly associated with unifocal lesions (p = 0.02) and increased 18F-FDG uptake (p = 0.004). CONCLUSION In this study, an increase in M classification cases was found in the RET rearrangements group. However, genetic mutations were not associated with the clinical stage, and no factors that could be incorporated into the treatment algorithm were identified.
Collapse
Affiliation(s)
- Daisuke Uno
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Kazuhira Endo
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Tomomi Yoshikawa
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Nobuyuki Hirai
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Eiji Kobayashi
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yosuke Nakanishi
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Satoru Kondo
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Tomokazu Yoshizaki
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
6
|
Rebane-Klemm E, Reinsalu L, Puurand M, Shevchuk I, Bogovskaja J, Suurmaa K, Valvere V, Moreno-Sanchez R, Kaambre T. Colorectal polyps increase the glycolytic activity. Front Oncol 2023; 13:1171887. [PMID: 37342183 PMCID: PMC10277630 DOI: 10.3389/fonc.2023.1171887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/23/2023] [Indexed: 06/22/2023] Open
Abstract
In colorectal cancer (CRC) energy metabolism research, the precancerous stage of polyp has remained rather unexplored. By now, it has been shown that CRC has not fully obtained the glycolytic phenotype proposed by O. Warburg and rather depends on mitochondrial respiration. However, the pattern of metabolic adaptations during tumorigenesis is still unknown. Understanding the interplay between genetic and metabolic changes that initiate tumor development could provide biomarkers for diagnosing cancer early and targets for new cancer therapeutics. We used human CRC and polyp tissue material and performed high-resolution respirometry and qRT-PCR to detect changes on molecular and functional level with the goal of generally describing metabolic reprogramming during CRC development. Colon polyps were found to have a more glycolytic bioenergetic phenotype than tumors and normal tissues. This was supported by a greater GLUT1, HK, LDHA, and MCT expression. Despite the increased glycolytic activity, cells in polyps were still able to maintain a highly functional OXPHOS system. The mechanisms of OXPHOS regulation and the preferred substrates are currently unclear and would require further investigation. During polyp formation, intracellular energy transfer pathways become rearranged mainly by increasing the expression of mitochondrial adenylate kinase (AK) and creatine kinase (CK) isoforms. Decreased glycolysis and maintenance of OXPHOS activity, together with the downregulation of the CK system and the most common AK isoforms (AK1 and AK2), seem to play a relevant role in CRC development.
Collapse
Affiliation(s)
- Egle Rebane-Klemm
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Leenu Reinsalu
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Igor Shevchuk
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Jelena Bogovskaja
- Clinic of Diagnostics, North Estonia Medical Centre, Tallinn, Estonia
| | - Kulliki Suurmaa
- Department of Gastroenterology, West Tallinn Central Hospital, Tallinn, Estonia
| | - Vahur Valvere
- Oncology and Hematology Clinic, North Estonia Medical Centre, Tallinn, Estonia
| | - Rafael Moreno-Sanchez
- Laboratorio de Control Metabólico, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Barrio de los Árboles/Barrio de los Héroes, Tlalnepantla, Mexico
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| |
Collapse
|
7
|
Kim S, Lee JH, Park EJ, Lee HS, Baik SH, Jeon TJ, Lee KY, Ryu YH, Kang J. Prediction of Microsatellite Instability in Colorectal Cancer Using a Machine Learning Model Based on PET/CT Radiomics. Yonsei Med J 2023; 64:320-326. [PMID: 37114635 PMCID: PMC10151228 DOI: 10.3349/ymj.2022.0548] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
PURPOSE We investigated the feasibility of preoperative 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) radiomics with machine learning to predict microsatellite instability (MSI) status in colorectal cancer (CRC) patients. MATERIALS AND METHODS Altogether, 233 patients with CRC who underwent preoperative FDG PET/CT were enrolled and divided into training (n=139) and test (n=94) sets. A PET-based radiomics signature (rad_score) was established to predict the MSI status in patients with CRC. The predictive ability of the rad_score was evaluated using the area under the receiver operating characteristic curve (AUROC) in the test set. A logistic regression model was used to determine whether the rad_score was an independent predictor of MSI status in CRC. The predictive performance of rad_score was compared with conventional PET parameters. RESULTS The incidence of MSI-high was 15 (10.8%) and 10 (10.6%) in the training and test sets, respectively. The rad_score was constructed based on the two radiomic features and showed similar AUROC values for predicting MSI status in the training and test sets (0.815 and 0.867, respectively; p=0.490). Logistic regression analysis revealed that the rad_score was an independent predictor of MSI status in the training set. The rad_score performed better than metabolic tumor volume when assessed using the AUROC (0.867 vs. 0.794, p=0.015). CONCLUSION Our predictive model incorporating PET radiomic features successfully identified the MSI status of CRC, and it also showed better performance than the conventional PET image parameters.
Collapse
Affiliation(s)
- Soyoung Kim
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jae-Hoon Lee
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| | - Eun Jung Park
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Hyuk Baik
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Tae Joo Jeon
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kang Young Lee
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Hoon Ryu
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jeonghyun Kang
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
8
|
Lee H, Hwang KH. Significance of incidental focal fluorine-18 fluorodeoxyglucose uptake in colon/rectum, thyroid, and prostate: With a brief literature review. World J Clin Cases 2022; 10:12532-12542. [PMID: 36579086 PMCID: PMC9791515 DOI: 10.12998/wjcc.v10.i34.12532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/10/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (F-18 FDG PET/CT), a functional imaging method, is usually performed on the entire torso, and regions of unexpected suspicious focal hypermetabolism are not infrequently observed. Among the regions, colon, thyroid, and prostate were found to be the common organs in a recent umbrella review. Some studies reported that a high rate of malignancy was shown in incidentally identified focal hypermetabolic regions and suggested that further examinations should not be ignored.
AIM To investigate the malignancy rate of incidental focal FDG uptake, useful PET parameters and their cutoffs in discrimination between malignant and benign lesions.
METHODS Retrospectively, the final reports of 16510 F-18 FDG PET/CT scans performed at our hospital between January 2016 and March 2022 were reviewed to identify incidentally observed FDG uptake in the colon/rectum, thyroid, and prostate. The scans of patients with current or prior malignancies at each corresponding location, without the final reports of histopathology or colonoscopy (for colon and rectum) for the corresponding hypermetabolic regions, or with diffuse (not focal) hypermetabolism were excluded. Finally, 88 regions of focal colorectal hypermetabolism in 85 patients (48 men and 37 women with mean age 67.0 ± 13.4 years and 63.4 ± 15.8 years, respectively), 48 focal thyroid uptakes in 48 patients (12 men and 36 women with mean age 62.2 ± 13.1 years and 60.8 ± 12.4 years, respectively), and 39 focal prostate uptakes in 39 patients (mean age 71.8 ± 7.5 years) were eligible for this study. For those unexpected focal hypermetabolic regions, rates of malignancy were calculated, PET parameters, such as standardized uptake value (SUV), capable of distinguishing between malignant and benign lesions were investigated, and the cutoffs of those PET parameters were determined by plotting receiver operating characteristic curves.
RESULTS In the colon and rectum, 29.5% (26/88) were malignant and 33.0% (29/88) were premalignant lesions. Both SUVmax and SUVpeak differentiated malignant/premalignant from benign lesions, however, no parameters could distinguish malignant from premalignant lesions. Higher area under the curve was shown with SUVmax (0.752, 95%CI: 0.649-0.856, P < 0.001) and the cutoff was 7.6. In the thyroid, 60.4% (29/48) were malignant. The majority were well-differentiated thyroid cancers (89.7%, 26/29). The results of BRAF mutation tests were available for 20 of the 26 well-differentiated thyroid cancers and all 20 had the mutation. Solely SUVmax differentiated malignant from benign lesions and the cutoff was 6.9. In the prostate, 56.4% (22/39) were malignant. Only SUVmax differentiated malignant from benign lesions and the cutoff was 3.8. Overall, among the 175 focal hypermetabolic regions, 60.6% (106/175) were proven to be malignant and premalignant (in colon and rectum) lesions.
CONCLUSION Approximately 60% of the incidentally observed focal F-18 FDG uptake in the colon/rectum, thyroid, and prostate were found to be malignant. Of the several PET parameters, SUVmax was superior to others in distinguishing between malignant/premalignant and benign lesions. Based on these findings, incidental focal hypermetabolism should not be ignored and lead physicians to conduct further investigations with greater confidence.
Collapse
Affiliation(s)
- Haejun Lee
- Department of Nuclear Medicine, Gachon University College of Medicine, Gil Medical Center, Incheon 21565, South Korea
| | - Kyung-Hoon Hwang
- Department of Nuclear Medicine, Gachon University College of Medicine, Gil Medical Center, Incheon 21565, South Korea
| |
Collapse
|
9
|
Nagayama Y, Hamada K. Reprogramming of Cellular Metabolism and Its Therapeutic Applications in Thyroid Cancer. Metabolites 2022; 12:1214. [PMID: 36557253 PMCID: PMC9782759 DOI: 10.3390/metabo12121214] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022] Open
Abstract
Metabolism is a series of life-sustaining chemical reactions in organisms, providing energy required for cellular processes and building blocks for cellular constituents of proteins, lipids, carbohydrates and nucleic acids. Cancer cells frequently reprogram their metabolic behaviors to adapt their rapid proliferation and altered tumor microenvironments. Not only aerobic glycolysis (also termed the Warburg effect) but also altered mitochondrial metabolism, amino acid metabolism and lipid metabolism play important roles for cancer growth and aggressiveness. Thus, the mechanistic elucidation of these metabolic changes is invaluable for understanding the pathogenesis of cancers and developing novel metabolism-targeted therapies. In this review article, we first provide an overview of essential metabolic mechanisms, and then summarize the recent findings of metabolic reprogramming and the recent reports of metabolism-targeted therapies for thyroid cancer.
Collapse
Affiliation(s)
- Yuji Nagayama
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Koichiro Hamada
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Department of General Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| |
Collapse
|
10
|
Elzaki A, Elkhader BA, Elnour H, Elhaj M, Alzain A, Abdelrahim A, Gupta DG. Clinico-pathological correlation of incidental focal colorectal uptake on 18F-Labelled 2-fluoro-2-Deoxyglucose PET/CT: A prospective single centre experience. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.100469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
11
|
Lee H, Chung YS, Lee JH, Lee KY, Hwang KH. Characterization of focal hypermetabolic thyroid incidentaloma: An analysis with F-18 fluorodeoxyglucose positron emission tomography/computed tomography parameters. World J Clin Cases 2022; 10:155-165. [PMID: 35071515 PMCID: PMC8727242 DOI: 10.12998/wjcc.v10.i1.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/09/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Incidentally found thyroid tumor (thyroid incidentaloma, TI) on F-18 fluorodeoxyglucose (FDG) positron emission tomography-computed tomography (PET-CT) is reported in 2.5%-5% of patients being investigated for non-thyroid purposes. Up to 50% of these cases have been diagnosed to be malignant by cytological/histological results. Ultrasonography (US) and fine-needle aspiration cytology are recommended for thyroid nodules with high FDG uptake (hypermetabolism) that are 1 cm or greater in size. It is important to accurately determine whether a suspicious hypermetabolic TI is malignant or benign. AIM To distinguish malignant hypermetabolic TIs from benign disease by analyzing F-18 FDG PET-CT parameters and to identify a cut-off value. METHODS Totally, 12761 images of patients who underwent F-18 FDG PET-CT for non-thyroid purposes at our hospital between January 2016 and December 2020 were retrospectively reviewed, and 339 patients [185 men (mean age: 68 ± 11.2) and 154 women (mean age: 63 ± 15.0)] were found to have abnormal, either focal or diffuse, thyroid FDG uptake. After a thorough review of their medical records, US, and cytological/histological reports, 46 eligible patients with focal hypermetabolic TI were included in this study. The TIs were categorized as malignant and benign according to the cytological/histological reports, and four PET parameters [standardized uptake value (SUV)max, SUVpeak, SUVmean, and metabolic tumor volume (MTV)] were measured on FDG PET-CT. Total lesion glycolysis (TLG) was calculated by multiplying the SUVmean by MTV. Both parametric and non-parametric methods were used to compare the five parameters between malignant and benign lesions. Receiver operating characteristic (ROC) curve analysis was performed to identify a cut-off value. RESULTS Each of the 46 patients [12 men (26.1%; mean age: 62 ± 13.1 years) and 34 women (73.9%; mean age: 60 ± 12.0 years)] with focal hypermetabolic TIs had one focal hypermetabolic TI. Among them, 26 (56.5%) were malignant and 20 (43.5%) were benign. SUVmax, SUVpeak, SUVmean, and TLG were all higher in malignant lesions than benign ones, but the difference was statistically significant (P = 0.012) only for SUVmax. There was a positive linear correlation (r = 0.339) between SUVmax and the diagnosis of malignancy. ROC curve analysis for SUVmax revealed an area under the curve of 0.702 (P < 0.05, 95% confidence interval: 0.550-0.855) and SUVmax cut-off of 8.5 with a sensitivity of 0.615 and a specificity of 0.789. CONCLUSION More than half of focal hypermetabolic TIs on F-18 FDG PET-CT were revealed as malignant lesions, and SUVmax was the best parameter for discriminating between malignant and benign disease. Unexpected focal hypermetabolic TIs with the SUVmax above the cut-off value of 8.5 may have a greater than 70% chance of malignancy; therefore, further active assessment is required.
Collapse
Affiliation(s)
- Haejun Lee
- Department of Nuclear Medicine, Gachon University College of Medicine, Gil Medical Center, Incheon 21565, South Korea
| | - Yoo Seung Chung
- Department of Endocrine Surgery, Gachon University College of Medicine, Gil Medical Center, Incheon 21565, South Korea
| | - Joon-Hyop Lee
- Department of Endocrine Surgery, Gachon University College of Medicine, Gil Medical Center, Incheon 21565, South Korea
| | - Ki-Young Lee
- Department of Endocrinology and Metabolism, Gachon University College of Medicine, Gil Medical Center, Incheon 21565, South Korea
| | - Kyung-Hoon Hwang
- Department of Nuclear Medicine, Gachon University College of Medicine, Gil Medical Center, Incheon 21565, South Korea
| |
Collapse
|
12
|
PET imaging in thyroid cancer. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00170-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
13
|
Karri RK, Hicks RJ. Combining radionuclide therapy with radiotherapy. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
14
|
Jin Y, Liu B, Younis MH, Huang G, Liu J, Cai W, Wei W. Next-Generation Molecular Imaging of Thyroid Cancer. Cancers (Basel) 2021; 13:3188. [PMID: 34202358 PMCID: PMC8268517 DOI: 10.3390/cancers13133188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
An essential aspect of thyroid cancer (TC) management is personalized and precision medicine. Functional imaging of TC with radioiodine and [18F]FDG has been frequently used in disease evaluation for several decades now. Recently, advances in molecular imaging have led to the development of novel tracers based on aptamer, peptide, antibody, nanobody, antibody fragment, and nanoparticle platforms. The emerging targets-including HER2, CD54, SHP2, CD33, and more-are promising targets for clinical translation soon. The significance of these tracers may be realized by outlining the way they support the management of TC. The provided examples focus on where preclinical investigations can be translated. Furthermore, advances in the molecular imaging of TC may inspire the development of novel therapeutic or theranostic tracers. In this review, we summarize TC-targeting probes which include transporter-based and immuno-based imaging moieties. We summarize the most recent evidence in this field and outline how these emerging strategies may potentially optimize clinical practice.
Collapse
Affiliation(s)
- Yuchen Jin
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd., Shanghai 200127, China; (Y.J.); (G.H.); (J.L.)
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Beibei Liu
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People’s Hospital Affiliatede to Shanghai Jiao Tong University, Shanghai 200233, China;
| | - Muhsin H. Younis
- Departments of Radiology and Medical Physics, University of Wisconsin–Madison, Madison, WI 53705-2275, USA;
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd., Shanghai 200127, China; (Y.J.); (G.H.); (J.L.)
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd., Shanghai 200127, China; (Y.J.); (G.H.); (J.L.)
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin–Madison, Madison, WI 53705-2275, USA;
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| | - Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd., Shanghai 200127, China; (Y.J.); (G.H.); (J.L.)
| |
Collapse
|
15
|
Subtype-dependent difference of glucose transporter 1 and hexokinase II expression in craniopharyngioma: an immunohistochemical study. Sci Rep 2021; 11:126. [PMID: 33420213 PMCID: PMC7794328 DOI: 10.1038/s41598-020-80259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/17/2020] [Indexed: 11/08/2022] Open
Abstract
Papillary craniopharyngiomas are characterized by the BRAF V600E mutation. Enhancement of glucose metabolism may be involved in the downstream of the BRAF V600E mutation in many types of tumors. Glucose metabolism was investigated in craniopharyngioma using immunohistochemical analysis. The study included 29 cases of craniopharyngioma (18 adamantinomatous type [ACP], 11 papillary type [PCP]). Immunohistochemical analysis was performed with anti-glucose transporter-1 (GLUT-1), anti-hexokinase-II (HK-II), anti-BRAF V600E, and anti-beta-catenin antibodies. Expressions of GLUT-1 and HK-II were evaluated using a semiquantitative 4-tiered scale as 0, 1+, 2+, 3+, and divided into negative (0 or 1+) or positive (2+ or 3+) group. GLUT-1 expression level was significantly higher in PCPs than ACPs (0, 1+, 2+, 3+ = 2, 12, 4, 0 cases in ACP, respectively, 0, 1+, 2+, 3+ = 0, 2, 5, 4 in PCP, p = 0.001), and most PCPs were classified into positive group (positive rate, 22.2% [4/18] in ACP, 81.8% [9/11] in PCP; p = 0.003). HK-II expression was also conspicuous in PCPs (0, 1+, 2+, 3+ = 7, 9, 2, 0 cases in ACP, 0, 3, 3, 5 in PCP; p = 0.001), and most of them divided into positive group (positive rate, 11.1% [2/18] in ACP, 72.7% [8/11] in PCP; p = 0.001). Expression patterns of BRAF V600E and beta-catenin reflected the clinicopathological subtypes. Both GLUT-1 and HK-II expressions were prominent in PCP. Glucose metabolism might be more enhanced in PCP than ACP. PCP may use the glucose metabolic system downstream of the BRAF V600E mutant protein.
Collapse
|
16
|
Lu CC, Yen RF, Peng KY, Huang JY, Wu KD, Chueh JS, Lin WY. NP-59 Adrenal Scintigraphy as an Imaging Biomarker to Predict KCNJ5 Mutation in Primary Aldosteronism Patients. Front Endocrinol (Lausanne) 2021; 12:644927. [PMID: 33995277 PMCID: PMC8113947 DOI: 10.3389/fendo.2021.644927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/06/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Somatic KCNJ5 mutation occurs in half of unilateral primary aldosteronism (PA) and is associated with more severe phenotype. Mutation status can only be identified by tissue sample from adrenalectomy. NP-59 adrenal scintigraphy is a noninvasive functional study for disease activity assessment. This study aimed to evaluate the predictive value of NP-59 adrenal scintigraphy in somatic KCNJ5 mutation among PA patients who received adrenalectomy. METHODS Sixty-two PA patients who had NP-59 adrenal scintigraphy before adrenalectomy with available KCNJ5 mutation status were included. Two semiquantitative parameters, adrenal to liver ratio (ALR) and lesion to contralateral ratio of bilateral adrenal glands (CON) derived from NP-59 adrenal scintigraphy, of mutated and wild-type patients were compared. Cutoff values calculated by receiver-operating characteristic (ROC) analysis were used as a predictor of KCNJ5 mutation. RESULTS Twenty patients had KCNJ5 mutation and 42 patients were wild type. Patients harboring KCNJ5 mutation had both higher ALR and CON (p = 0.0031 and 0.0833, respectively) than wild-type patients. With ALR and CON cutoff of 2.10 and 1.95, the sensitivity and specificity to predict KCNJ5 mutation were 85%, 57% and 45%, 93%, respectively. Among 20 patients with KCNJ5 mutation, 16 showed G151R point mutation (KCNJ5- G151R) and 4 showed L168R point mutation (KCNJ5-L168R), which former one had significantly lower ALR (p=0.0471). CONCLUSION PA patients harboring somatic KCNJ5 mutation had significantly higher NP-59 uptake regarding to ALR and CON than those without mutation. APAs with KCNJ5-L168R point mutation showed significantly higher ALR than those with KCNJ5-G151R point mutation.
Collapse
Affiliation(s)
- Ching-Chu Lu
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ruoh-Fang Yen
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kang-Yung Peng
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jei-Yie Huang
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Kwan-Dun Wu
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jeff S. Chueh
- Glickman Urological and Kidney Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, United States
| | - Wan-Yu Lin
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- *Correspondence: Wan-Yu Lin,
| |
Collapse
|
17
|
Fu H, Sa R, Cheng L, Jin Y, Qiu X, Liu M, Chen L. Updated Review of Nuclear Molecular Imaging of Thyroid Cancers. Endocr Pract 2020; 27:494-502. [PMID: 33934754 DOI: 10.1016/j.eprac.2020.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVES We initiate this comprehensive review to update the advances in this field by objectively elucidating the efficacies of promising radiopharmaceuticals. METHODS We performed a comprehensive PUBMED search using the combined terms of "thyroid cancer" and "radiopharmaceuticals" or "nuclear medicine", yielding 3273 and 11026 articles prior to December 31, 2020, respectively. RESULTS Based on the mechanism of molecular metabolism, the evaluation of differentiated thyroid cancer and dedifferentiated thyroid cancer is largely centered around radioiodine and fluorine 18 (18F)-fludeoxyglucose, respectively. Further, 18F-L-dihydroxyphenylalanine and gallium 68 DOTATATE are the preferred tracers for medullary thyroid cancer. In dedifferentiated medullary thyroid cancer and anaplastic thyroid cancer, 18F-fludeoxyglucose is superior. CONCLUSIONS The future lies in advances in molecular biology, novel radiopharmaceuticals and imaging devices, paving ways to the development of personalized medication for thyroid cancer patients.
Collapse
Affiliation(s)
- Hao Fu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China; Department of Nuclear Medicine & Minnan PET Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, People's Republic of China
| | - Ri Sa
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China; Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Lin Cheng
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Yuchen Jin
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Xian Qiu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Min Liu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China; Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Libo Chen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China.
| |
Collapse
|
18
|
Cai-Xia W, Rong-Fu W. Clinical application and research advancement of positron emission tomography/computed tomography in colorectal cancer. Shijie Huaren Xiaohua Zazhi 2020; 28:925-932. [DOI: 10.11569/wcjd.v28.i18.925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is one of the most common malignant tumors of the digestive system. Early diagnosis and accurate staging and restaging of tumors are the preconditions for standardized treatment of colorectal cancer, which is conducive to the selection of treatment options and the evaluation of prognosis, as well as the improvement of patients' quality of life. With the popularization of fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT), its value in the diagnosis, staging and restaging, treatment decision-making, and efficacy and prognosis assessment of colorectal cancer is becoming increasingly important. This review briefly introduces the application and advancement of PET/CT in the diagnosis and treatment of colorectal cancer, in the hope that clinicians can have a more comprehensive understanding of the significance of PET/CT in the diagnosis and treatment of colorectal cancer.
Collapse
Affiliation(s)
- Wu Cai-Xia
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Wang Rong-Fu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China,Department of Nuclear Medicine, Peking University International Hospital, Beijing 102206, China
| |
Collapse
|
19
|
Heydarzadeh S, Moshtaghie AA, Daneshpoor M, Hedayati M. Regulators of glucose uptake in thyroid cancer cell lines. Cell Commun Signal 2020; 18:83. [PMID: 32493394 PMCID: PMC7268348 DOI: 10.1186/s12964-020-00586-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/27/2020] [Indexed: 01/03/2023] Open
Abstract
Abstract Thyroid cancer is the most common sort of endocrine-related cancer with more prevalent in women and elderly individuals which has quickly widespread expansion in worldwide over the recent decades. Common features of malignant thyroid cells are to have accelerated metabolism and increased glucose uptake to optimize their energy supply which provides a fundamental advantage for growth. In tumor cells the retaining of required energy charge for cell survival is imperative, indeed glucose transporters are enable of promoting of this task. According to this relation it has been reported the upregulation of glucose transporters in various types of cancers. Human studies indicated that poor survival can be occurred following the high levels of GLUT1 expression in tumors. GLUT-1 and GLUT3 are the glucose transporters which seems to be mainly engaged with the oncogenesis of thyroid cancer and their expression in malignant tissues is much more than in the normal one. They are promising targets for the advancement of anticancer strategies. The lack of oncosuppressors have dominant effect on the membrane expression of GLUT1 and glucose uptake. Overexpression of hypoxia inducible factors have been additionally connected with distant metastasis in thyroid cancers which mediates transcriptional regulation of glycolytic genes including GLUT1 and GLUT3. Though the physiological role of the thyroid gland is well illustrated, but the metabolic regulations in thyroid cancer remain evasive. In this study we discuss proliferation pathways of the key regulators and signaling molecules such as PI3K-Akt, HIF-1, MicroRNA, PTEN, AMPK, BRAF, c-Myc, TSH, Iodide and p53 which includes in the regulation of GLUTs in thyroid cancer cells. Incidence of deregulations in cellular energetics and metabolism are the most serious signs of cancers. In conclusion, understanding the mechanisms of glucose transportation in normal and pathologic thyroid tissues is critically important and could provide significant insights in science of diagnosis and treatment of thyroid disease. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Shabnam Heydarzadeh
- Department of Biochemistry, School of Biological Sciences, Falavarjan Branch Islamic Azad University, Isfahan, Iran
| | - Ali Asghar Moshtaghie
- Department of Biochemistry, School of Biological Sciences, Falavarjan Branch Islamic Azad University, Isfahan, Iran
| | - Maryam Daneshpoor
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Park YJ, Shin MH, Moon SH. Radiogenomics Based on PET Imaging. Nucl Med Mol Imaging 2020; 54:128-138. [PMID: 32582396 DOI: 10.1007/s13139-020-00642-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/02/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
Radiogenomics or imaging genomics is a novel omics strategy of associating imaging data with genetic information, which has the potential to advance personalized medicine. Imaging features extracted from PET or PET/CT enable assessment of in vivo functional and physiological activity and provide comprehensive tumor information non-invasively. However, PET features are considered secondary to features on conventional imaging, and there has not yet been a review of the radiogenomic approach using PET features. This review article summarizes the current state of PET-based radiogenomic research for cancer, which discusses some of its limitations and directions for future study.
Collapse
Affiliation(s)
- Yong-Jin Park
- Department of Nuclear Medicine and Molecular Imaging, Samsung Medical Center, Seoul, Republic of Korea
| | - Mu Heon Shin
- Department of Nuclear Medicine and Molecular Imaging, Samsung Medical Center, Seoul, Republic of Korea
| | - Seung Hwan Moon
- Department of Nuclear Medicine and Molecular Imaging, Samsung Medical Center, Seoul, Republic of Korea
| |
Collapse
|
21
|
Ruhlmann M, Ruhlmann V. PET in Head and Neck Cancer. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Suh HY, Choi H, Paeng JC, Cheon GJ, Chung JK, Kang KW. Comprehensive gene expression analysis for exploring the association between glucose metabolism and differentiation of thyroid cancer. BMC Cancer 2019; 19:1260. [PMID: 31888560 PMCID: PMC6937781 DOI: 10.1186/s12885-019-6482-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/18/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The principle of loss of iodine uptake and increased glucose metabolism according to dedifferentiation of thyroid cancer is clinically assessed by imaging. Though these biological properties are widely applied to appropriate iodine therapy, the understanding of the genomic background of this principle is still lacking. We investigated the association between glucose metabolism and differentiation in advanced thyroid cancer as well as papillary thyroid cancer (PTC). METHODS We used RNA sequencing of 505 patients with PTC obtained from the Cancer Genome Archives and microarray data of poorly-differentiated and anaplastic thyroid cancer (PDTC/ATC). The signatures of GLUT and glycolysis were estimated to assess glucose metabolic profiles. The glucose metabolic profiles were associated with tumor differentiation score (TDS) and BRAFV600E mutation status. In addition, survival analysis of glucose metabolic profiles was performed for predicting recurrence-free survival. RESULTS In PTC, the glycolysis signature was positively correlated with TDS, while the GLUT signature was inversely correlated with TDS. These correlations were significantly stronger in the BRAFV600E negative group than the positive group. Meanwhile, both GLUT and glycolysis signatures were negatively correlated with TDS in advanced thyroid cancer. The high glycolysis signature was significantly associated with poor prognosis in PTC in spite of high TDS. The glucose metabolic profiles are intricately associated with tumor differentiation in PTC and PDTC/ATC. CONCLUSIONS As glycolysis was an independent prognostic marker, we suggest that the glucose metabolism features of thyroid cancer could be another biological progression marker different from differentiation and provide clinical implications for risk stratification. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Hoon Young Suh
- Department of Nuclear Medicine, Seoul National University Hospital, 28 Yongon-Dong, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Hongyoon Choi
- Department of Nuclear Medicine, Seoul National University Hospital, 28 Yongon-Dong, Jongno-Gu, Seoul, 03080, Republic of Korea.
| | - Jin Chul Paeng
- Department of Nuclear Medicine, Seoul National University Hospital, 28 Yongon-Dong, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University Hospital, 28 Yongon-Dong, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - June-Key Chung
- Department of Nuclear Medicine, Seoul National University Hospital, 28 Yongon-Dong, Jongno-Gu, Seoul, 03080, Republic of Korea
- Department of Nuclear Medicine, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Keon Wook Kang
- Department of Nuclear Medicine, Seoul National University Hospital, 28 Yongon-Dong, Jongno-Gu, Seoul, 03080, Republic of Korea
| |
Collapse
|
23
|
Bauriaud-Mallet M, Vija-Racaru L, Brillouet S, Mallinger A, de Medina P, Rives A, Payre B, Poirot M, Courbon F, Silvente-Poirot S. The cholesterol-derived metabolite dendrogenin A functionally reprograms breast adenocarcinoma and undifferentiated thyroid cancer cells. J Steroid Biochem Mol Biol 2019; 192:105390. [PMID: 31170473 DOI: 10.1016/j.jsbmb.2019.105390] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/29/2019] [Accepted: 06/02/2019] [Indexed: 01/05/2023]
Abstract
Dendrogenin A (DDA) is a tumor suppressor mammalian cholesterol-derived metabolite and a new class of ligand of the Liver X receptor (LXR), which displays tumor cell differentiation. In human MCF7 breast adenocarcinoma cells, DDA-induced cell differentiation was associated with an increased accumulation of neutral lipids and proteins found in milk indicating that DDA re-activates some functions of lactating cells. Active iodide transport occurs in the normal lactating mammary cells through the sodium/iodide symporter (NIS) and iodide (I) is secreted into milk to be used by the nursing newborn for thyroid hormones biosynthesis. In the present study, we assessed whether DDA may induce other characteristic of lactating cells such as NIS expression and iodine uptake in MCF7 breast cancer cells and extended this study to the papillary B-CPAP and undifferentiated anaplastic 8505c thyroid cancer cells. Moreover, we evaluated DDA impact on the expression of thyroid specific proteins involved in thyroid hormone biogenesis. We report here that DDA induces NIS expression in MCF7 cells and significantly increases the uptake of 131-I by acting through the LXR. In addition, DDA induces phenotypic, molecular and functional characteristics of redifferentiation in the two human thyroid carcinoma cell lines and the uptake of 131-I in the undifferentiated 8505c cells was associated with a strong expression of all the specific proteins involved in thyroid hormone biosynthesis, TSH receptor, thyroperoxidase and thyroglobulin. 131-I incorporation in the 8505c cells was stimulated by DDA as well as by the synthetic LXR ligand, GW3965. Together these data show that the re-differentiation of breast and thyroid cancer cells by DDA, is associated with the recovery of functional NIS expression and involves an LXR-dependent mechanism. These results open new avenues of research for the diagnosis of thyroid cancers as well as the development of new therapeutic approaches for radioiodine refractory thyroid cancers.
Collapse
Affiliation(s)
- Mathilde Bauriaud-Mallet
- Team "Cholesterol Metabolism and Therapeutic Innovations," Cancer Research Center of Toulouse (CRCT), UMR 1037, Université de Toulouse, CNRS, Inserm, UPS, 31037, Toulouse, France; Université Toulouse, Toulouse, France; Institut Claudius Regaud, Nuclear Medicine Department, Institut Universitaire de Toulouse-Oncopole, Toulouse, 31100, France
| | - Lavinia Vija-Racaru
- Team "Cholesterol Metabolism and Therapeutic Innovations," Cancer Research Center of Toulouse (CRCT), UMR 1037, Université de Toulouse, CNRS, Inserm, UPS, 31037, Toulouse, France; Université Toulouse, Toulouse, France; Institut Claudius Regaud, Nuclear Medicine Department, Institut Universitaire de Toulouse-Oncopole, Toulouse, 31100, France
| | - Séverine Brillouet
- Team "Cholesterol Metabolism and Therapeutic Innovations," Cancer Research Center of Toulouse (CRCT), UMR 1037, Université de Toulouse, CNRS, Inserm, UPS, 31037, Toulouse, France; Université Toulouse, Toulouse, France; Institut Claudius Regaud, Nuclear Medicine Department, Institut Universitaire de Toulouse-Oncopole, Toulouse, 31100, France
| | - Arnaud Mallinger
- Team "Cholesterol Metabolism and Therapeutic Innovations," Cancer Research Center of Toulouse (CRCT), UMR 1037, Université de Toulouse, CNRS, Inserm, UPS, 31037, Toulouse, France; Université Toulouse, Toulouse, France
| | | | | | - Bruno Payre
- Centre de Microscopie Electronique Appliquée à la Biologie, Faculté de Médecine de Rangueil, Université de Toulouse, Toulouse, France
| | - Marc Poirot
- Team "Cholesterol Metabolism and Therapeutic Innovations," Cancer Research Center of Toulouse (CRCT), UMR 1037, Université de Toulouse, CNRS, Inserm, UPS, 31037, Toulouse, France; Université Toulouse, Toulouse, France.
| | - Fréderic Courbon
- Team "Cholesterol Metabolism and Therapeutic Innovations," Cancer Research Center of Toulouse (CRCT), UMR 1037, Université de Toulouse, CNRS, Inserm, UPS, 31037, Toulouse, France; Université Toulouse, Toulouse, France; Institut Claudius Regaud, Nuclear Medicine Department, Institut Universitaire de Toulouse-Oncopole, Toulouse, 31100, France
| | - Sandrine Silvente-Poirot
- Team "Cholesterol Metabolism and Therapeutic Innovations," Cancer Research Center of Toulouse (CRCT), UMR 1037, Université de Toulouse, CNRS, Inserm, UPS, 31037, Toulouse, France; Université Toulouse, Toulouse, France.
| |
Collapse
|
24
|
Wen SS, Zhang TT, Xue DX, Wu WL, Wang YL, Wang Y, Ji QH, Zhu YX, Qu N, Shi RL. Metabolic reprogramming and its clinical application in thyroid cancer. Oncol Lett 2019; 18:1579-1584. [PMID: 31423225 PMCID: PMC6607326 DOI: 10.3892/ol.2019.10485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/22/2019] [Indexed: 12/21/2022] Open
Abstract
Warburg found that tumor cells exhibit high-level glycolysis, even under aerobic condition, which is known as the ‘Warburg effect’. As systemic changes in the entire metabolic network are gradually revealed, it is recognized that metabolic reprogramming has gone far beyond the imagination of Warburg. Metabolic reprogramming involves an active change in cancer cells to adapt to their biological characteristics. Thyroid cancer is a common endocrine malignant tumor whose metabolic characteristics have been studied in recent years. Some drugs targeting tumor metabolism are under clinical trial. This article reviews the metabolic changes and mechanisms in thyroid cancer, aiming to find metabolic-related molecules that could be potential markers to predict prognosis and metabolic pathways, or could serve as therapeutic targets. Our review indicates that knowledge in metabolic alteration has potential contributions in the diagnosis, treatment and prognostic evaluation of thyroid cancer, but further studies are needed for verification as well.
Collapse
Affiliation(s)
- Shi-Shuai Wen
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Ting-Ting Zhang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Di-Xin Xue
- Department of General Surgery, Τhe Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang 325200, P.R. China
| | - Wei-Li Wu
- Department of General Surgery, Τhe Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang 325200, P.R. China
| | - Yu-Long Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Qing-Hai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Yong-Xue Zhu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Ning Qu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Rong-Liang Shi
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| |
Collapse
|
25
|
Strickaert A, Corbet C, Spinette SA, Craciun L, Dom G, Andry G, Larsimont D, Wattiez R, Dumont JE, Feron O, Maenhaut C. Reprogramming of Energy Metabolism: Increased Expression and Roles of Pyruvate Carboxylase in Papillary Thyroid Cancer. Thyroid 2019; 29:845-857. [PMID: 30990120 DOI: 10.1089/thy.2018.0435] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background: Energy metabolism is described to be deregulated in cancer, and the Warburg effect is considered to be a major hallmark. Recently, cellular heterogeneity in tumors and the tumor microenvironment has been recognized to play an important role in several metabolic pathways in cancer. However, its contribution to papillary thyroid cancer (PTC) development and metabolism is still poorly understood. Methods: A proteomic analysis of five PTC was performed, and the cellular distribution of several upregulated metabolic proteins was investigated in the cancerous and stromal cells of these tumors. Results: Tandem mass spectrometry analysis revealed the upregulation of many metabolism-related proteins, among them pyruvate carboxylase (PC). PC knockdown in thyroid cell lines alters their proliferative and motility capacities, and measurements of oxygen consumption rates show that this enzyme is involved in the replenishment of the tricarboxylic acid cycle. Immunostainings of several upregulated metabolic proteins show that thyroid cancer cells have an increased mitochondrial oxidative metabolism compared to stromal cells. Conclusions: PTC has a very active tricarboxylic acid cycle, continuously replenished by a PC-mediated anaplerosis. This is specifically observed in the tumor cells.
Collapse
Affiliation(s)
- Aurélie Strickaert
- 1 Institute of Interdisciplinary Research (IRIBHM); Université libre de Bruxelles, Brussels, Belgium
| | - Cyril Corbet
- 2 Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Selim-Alex Spinette
- 3 Department of Pathology, Jules Bordet Institute; Université libre de Bruxelles, Brussels, Belgium
| | - Ligia Craciun
- 3 Department of Pathology, Jules Bordet Institute; Université libre de Bruxelles, Brussels, Belgium
| | - Geneviève Dom
- 1 Institute of Interdisciplinary Research (IRIBHM); Université libre de Bruxelles, Brussels, Belgium
| | - Guy Andry
- 4 Department of Thoracic Surgery, Jules Bordet Institute; Université libre de Bruxelles, Brussels, Belgium
| | - Denis Larsimont
- 3 Department of Pathology, Jules Bordet Institute; Université libre de Bruxelles, Brussels, Belgium
| | - Ruddy Wattiez
- 5 Proteomics and Microbiology Laboratory, Research Institute for Biosciences, Université de Mons, Mons, Belgium
| | - Jacques E Dumont
- 1 Institute of Interdisciplinary Research (IRIBHM); Université libre de Bruxelles, Brussels, Belgium
| | - Olivier Feron
- 2 Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Carine Maenhaut
- 1 Institute of Interdisciplinary Research (IRIBHM); Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
26
|
Crosstalk between Metabolic Alterations and Altered Redox Balance in PTC-Derived Cell Lines. Metabolites 2019; 9:metabo9020023. [PMID: 30717187 PMCID: PMC6409540 DOI: 10.3390/metabo9020023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 02/02/2023] Open
Abstract
Background: Thyroid cancer is the most common endocrine malignancy, with papillary thyroid carcinoma (PTC) being the most common (85⁻90%) among all the different types of thyroid carcinomas. Cancer cells show metabolic alterations and, due to their rapid proliferation, an accumulation of reactive oxygen species, playing a fundamental role in cancer development and progression. Currently, the crosstalk among thyrocytes metabolism, redox balance and oncogenic mutations remain poorly characterized. The aim of this study was to investigate the interplay among metabolic alterations, redox homeostasis and oncogenic mutations in PTC-derived cells. Methods: Metabolic and redox profile, glutamate-cysteine ligase, glutaminase-1 and metabolic transporters were evaluated in PTC-derived cell lines with distinguished genetic background (TPC-1, K1 and B-CPAP), as well as in an immortalized thyroid cell line (Nthy-ori3-1) selected as control. Results: PTC-derived cells, particularly B-CPAP cells, harboring BRAF, TP53 and human telomerase reverse transcriptase (hTERT) mutation, displayed an increase of metabolites and transporters involved in energetic pathways. Furthermore, all PTC-derived cells showed altered redox homeostasis, as reported by the decreased antioxidant ratios, as well as the increased levels of intracellular oxidant species. Conclusion: Our findings confirmed the pivotal role of the metabolism and redox state regulation in the PTC biology. Particularly, the most perturbed metabolic phenotypes were found in B-CPAP cells, which are characterized by the most aggressive genetic background.
Collapse
|
27
|
Lee JW, Lee SM. Radiomics in Oncological PET/CT: Clinical Applications. Nucl Med Mol Imaging 2018; 52:170-189. [PMID: 29942396 PMCID: PMC5995782 DOI: 10.1007/s13139-017-0500-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/22/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022] Open
Abstract
18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) is widely used for staging, evaluating treatment response, and predicting prognosis in malignant diseases. FDG uptake and volumetric PET parameters such as metabolic tumor volume have been used and are still used as conventional PET parameters to assess biological characteristics of tumors. However, in recent years, additional features derived from PET images by computational processing have been found to reflect intratumoral heterogeneity, which is related to biological tumor features, and to provide additional predictive and prognostic information, which leads to the concept of radiomics. In this review, we focus on recent clinical studies of malignant diseases that investigated intratumoral heterogeneity on PET/CT, and we discuss its clinical role in various cancers.
Collapse
Affiliation(s)
- Jeong Won Lee
- Department of Nuclear Medicine, International St. Mary’s Hospital, Catholic Kwandong University College of Medicine, 25, Simgok-ro 100 Gil 25, Seo-gu, Incheon, 22711 South Korea
- Institute for Integrative Medicine, International St. Mary’s Hospital, Catholic Kwandong University College of Medicine, Incheon, South Korea
| | - Sang Mi Lee
- Department of Nuclear Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
| |
Collapse
|
28
|
Jansen RW, van Amstel P, Martens RM, Kooi IE, Wesseling P, de Langen AJ, Menke-Van der Houven van Oordt CW, Jansen BHE, Moll AC, Dorsman JC, Castelijns JA, de Graaf P, de Jong MC. Non-invasive tumor genotyping using radiogenomic biomarkers, a systematic review and oncology-wide pathway analysis. Oncotarget 2018; 9:20134-20155. [PMID: 29732009 PMCID: PMC5929452 DOI: 10.18632/oncotarget.24893] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
With targeted treatments playing an increasing role in oncology, the need arises for fast non-invasive genotyping in clinical practice. Radiogenomics is a rapidly evolving field of research aimed at identifying imaging biomarkers useful for non-invasive genotyping. Radiogenomic genotyping has the advantage that it can capture tumor heterogeneity, can be performed repeatedly for treatment monitoring, and can be performed in malignancies for which biopsy is not available. In this systematic review of 187 included articles, we compiled a database of radiogenomic associations and unraveled networks of imaging groups and gene pathways oncology-wide. Results indicated that ill-defined tumor margins and tumor heterogeneity can potentially be used as imaging biomarkers for 1p/19q codeletion in glioma, relevant for prognosis and disease profiling. In non-small cell lung cancer, FDG-PET uptake and CT-ground-glass-opacity features were associated with treatment-informing traits including EGFR-mutations and ALK-rearrangements. Oncology-wide gene pathway analysis revealed an association between contrast enhancement (imaging) and the targetable VEGF-signalling pathway. Although the need of independent validation remains a concern, radiogenomic biomarkers showed potential for prognosis prediction and targeted treatment selection. Quantitative imaging enhanced the potential of multiparametric radiogenomic models. A wealth of data has been compiled for guiding future research towards robust non-invasive genomic profiling.
Collapse
Affiliation(s)
- Robin W Jansen
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul van Amstel
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Roland M Martens
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Irsan E Kooi
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Pieter Wesseling
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Princess Máxima Center for Pediatric Oncology and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Adrianus J de Langen
- Department of Respiratory Diseases, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Bernard H E Jansen
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Annette C Moll
- Department of Ophthalmology, VU University Medical Center, Amsterdam, The Netherlands
| | - Josephine C Dorsman
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Jonas A Castelijns
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Pim de Graaf
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Marcus C de Jong
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Berdelou A, Lamartina L, Klain M, Leboulleux S, Schlumberger M. Treatment of refractory thyroid cancer. Endocr Relat Cancer 2018; 25:R209-R223. [PMID: 29371330 DOI: 10.1530/erc-17-0542] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/25/2018] [Indexed: 12/22/2022]
Abstract
Distant metastases from thyroid cancer of follicular origin are uncommon. Treatment includes levothyroxine administration, focal treatment modalities with surgery, external radiation therapy and thermal ablation, and radioiodine in patients with uptake of 131I in their metastases. Two-thirds of distant metastases become refractory to radioiodine at some point, and when there is a significant tumor burden and documented progression on imaging, a treatment with a kinase inhibitor may provide benefits.
Collapse
Affiliation(s)
- Amandine Berdelou
- Department of Nuclear Medicine and Endocrine Oncology, TUTHYREF (Tumeurs de la Thyroïde Réfractaires) Network, Gustave Roussy and University Paris-Saclay, Villejuif, France
| | - Livia Lamartina
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Michele Klain
- Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Naples, Italy
| | - Sophie Leboulleux
- Department of Nuclear Medicine and Endocrine Oncology, TUTHYREF (Tumeurs de la Thyroïde Réfractaires) Network, Gustave Roussy and University Paris-Saclay, Villejuif, France
| | - Martin Schlumberger
- Department of Nuclear Medicine and Endocrine Oncology, TUTHYREF (Tumeurs de la Thyroïde Réfractaires) Network, Gustave Roussy and University Paris-Saclay, Villejuif, France
| |
Collapse
|
30
|
Binse I, Bockisch A, Rosenbaum-Krumme S, Ruhlmann M. Initial [18F]FDG PET/CT in high-risk DTC patients. Nuklearmedizin 2018; 55:99-103. [DOI: 10.3413/nukmed-0766-15-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/18/2016] [Indexed: 01/03/2023]
Abstract
SummaryIn a previous paper, we published the impact of initial [18F]FDG PET/CT (FDG-PET/CT) in high-risk patients with differentiated thyroid cancer (DTC) and described the changes in therapy management. The aim of the present study was to evaluate the prognostic impact of the initial FDG-PET/CT on a patient’s follow-up over three years and the rate of complete remission. Patients, methods: This study included 109 DTC patients who underwent radioiodine treatment (RIT), including posttherapeutic whole-body scintigraphy with FDG-PET/CT and a follow-up over three years. The follow-up included high-resolution sonography of the neck and determination of serum Tg as well as Tg antibodies every six months. The results of initial FDG-PET/CT and whole-body scintigraphy were compared with the status after three years of follow-up. Results: 24/109 patients (22%) presented FDG-positive lesions, 22/109 patients (20%) only iodine-positive lesions, and 63/109 patients (58%) neither FDG-positive nor iodine-positive lesions. After three years, 83/109 patients (76%) revealed full remission, 15/109 patients (14%) tumour persistence and 11/109 patients (10%) a progressive disease. The negative predictive value (NPV) was calculated for patients without FDG-positive lesions (NPV 85%) and patients without any lesions (NPV 91%) regarding full remission in the follow-up. Conclusion: FDG-PET/CT has a high NPV (85% to 91%) in DTC patients regarding recurrence-free follow-up after three years. The change in patient management in patients with iodine-negative lesions can lead to a higher rate of full remissions in the follow-up after additional surgery. Therefore, FDG-PET/ CT should be performed in all high-risk DTC patients in the context of the first RIT to improve patient management and risk stratification.
Collapse
|
31
|
Kim HM, Lee YK, Koo JS. Expression of glutamine metabolism-related proteins in thyroid cancer. Oncotarget 2018; 7:53628-53641. [PMID: 27447554 PMCID: PMC5288210 DOI: 10.18632/oncotarget.10682] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/09/2016] [Indexed: 01/09/2023] Open
Abstract
PURPOSE This study aimed to investigate the expression of glutamine metabolism-related protein in tumor and stromal compartments among the histologic subtypes of thyroid cancer. RESULTS GLS1 and GDH expression in tumor and stromal compartments were the highest in AC than in other subtypes. Tumoral ASCT2 expression was higher in MC but lower in FC (p < 0.001). In PTC, tumoral GLS1 and tumoral GDH expression was higher in the conventional type than in the follicular variant (p = 0.043 and 0.001, respectively), and in PTC with BRAF V600E mutation than in PTC without BRAF V600E mutation (p<0.001). Stromal GDH positivity was the independent factor associated with short overall survival (hazard ratio: 21.48, 95% confidence interval: 2.178-211.8, p = 0.009). METHODS We performed tissue microarrays with 557 thyroid cancer cases (papillary thyroid carcinoma [PTC]: 344, follicular carcinoma [FC]: 112, medullary carcinoma [MC]: 70, poorly differentiated carcinoma [PDC]: 23, and anaplastic carcinoma [AC]: 8) and 152 follicular adenoma (FA) cases. We performed immunohistochemical staining of glutaminolysis-related proteins (glutaminase 1 [GLS1], glutamate dehydrogenase [GDH], and amino acid transporter-2 [ASCT-2]). CONCLUSION Glutamine metabolism-related protein expression differed among the histologic subtypes of thyroid cancer.
Collapse
Affiliation(s)
- Hye Min Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yu Kyung Lee
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
32
|
Oliveira ÉAD, Lima DSD, Cardozo LE, Souza GFD, de Souza N, Alves-Fernandes DK, Faião-Flores F, Quincoces JAP, Barros SBDM, Nakaya HI, Monteiro G, Maria-Engler SS. Toxicogenomic and bioinformatics platforms to identify key molecular mechanisms of a curcumin-analogue DM-1 toxicity in melanoma cells. Pharmacol Res 2017; 125:178-187. [PMID: 28882690 DOI: 10.1016/j.phrs.2017.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/31/2017] [Accepted: 08/30/2017] [Indexed: 12/17/2022]
Abstract
Melanoma is a highly invasive and metastatic cancer with high mortality rates and chemoresistance. Around 50% of melanomas are driven by activating mutations in BRAF that has led to the development of potent anti-BRAF inhibitors. However resistance to anti-BRAF therapy usually develops within a few months and consequently there is a need to identify alternative therapies that will bypass BRAF inhibitor resistance. The curcumin analogue DM-1 (sodium 4-[5-(4-hydroxy-3-methoxy-phenyl)-3-oxo-penta-1,4-dienyl]-2-methoxy-phenolate) has substantial anti-tumor activity in melanoma, but its mechanism of action remains unclear. Here we use a synthetic lethal genetic screen in Saccharomyces cerevisiae to identify 211 genes implicated in sensitivity to DM-1 toxicity. From these 211 genes, 74 had close human orthologues implicated in oxidative phosphorylation, insulin signaling and iron and RNA metabolism. Further analysis identified 7 target genes (ADK, ATP6V0B, PEMT, TOP1, ZFP36, ZFP36L1, ZFP36L2) with differential expression during melanoma progression implicated in regulation of tumor progression, cell differentiation, and epithelial-mesenchymal transition. Of these TOP1 and ADK were regulated by DM-1 in treatment-naïve and vemurafenib-resistant melanoma cells respectively. These data reveal that the anticancer effect of curcumin analogues is likely to be mediated via multiple targets and identify several genes that represent candidates for combinatorial targeting in melanoma.
Collapse
Affiliation(s)
- Érica Aparecida de Oliveira
- Skin Biology Group, Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Sao Paulo, Brazil
| | - Diogenes Saulo de Lima
- Computational Systems Biology Laboratory, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Sao Paulo, Brazil
| | - Lucas Esteves Cardozo
- Computational Systems Biology Laboratory, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Sao Paulo, Brazil
| | | | - Nayane de Souza
- Skin Biology Group, Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Sao Paulo, Brazil
| | - Debora Kristina Alves-Fernandes
- Skin Biology Group, Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Sao Paulo, Brazil
| | - Fernanda Faião-Flores
- Skin Biology Group, Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Sao Paulo, Brazil
| | | | - Silvia Berlanga de Moraes Barros
- Skin Biology Group, Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Sao Paulo, Brazil
| | - Helder I Nakaya
- Computational Systems Biology Laboratory, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Sao Paulo, Brazil
| | - Gisele Monteiro
- Biochemical Pharmaceutical Technology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Sao Paulo, Brazil
| | - Silvya Stuchi Maria-Engler
- Skin Biology Group, Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Sao Paulo, Brazil.
| |
Collapse
|
33
|
Nahm JH, Kim HM, Koo JS. Glycolysis-related protein expression in thyroid cancer. Tumour Biol 2017; 39:1010428317695922. [PMID: 28347233 DOI: 10.1177/1010428317695922] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We aimed to demonstrate the differences in the expression of glucose metabolism-related proteins according to the thyroid cancer subtypes and investigate the implications of these differences. A total of 566 thyroid cancer patients, including 342 cases of papillary thyroid carcinoma, 112 cases of follicular carcinoma, 70 cases of medullary carcinoma, 23 cases of poorly differentiated carcinoma, 19 cases of anaplastic carcinoma, and 152 cases of follicular adenoma, were enrolled in the study. Immunohistochemical staining for glucose transporter 1, hexokinase II, carbonic anhydrase IX, and monocarbonylate transporter 4 was performed, and the relationship between immunoreactivity and clinicopathologic parameters was analyzed. Glucose transporter 1 and tumoral monocarbonylate transporter 4 expression levels were shown to be the highest in anaplastic carcinoma, and medullary carcinoma showed the highest carbonic anhydrase IX and lowest hexokinase II levels compared with other subtypes. Stromal expression of monocarbonylate transporter 4 was observed in papillary thyroid carcinoma and anaplastic carcinoma samples. Conventional papillary thyroid carcinoma tumors expressed higher levels of glucose transporter 1, and tumoral and stromal monocarbonylate transporter 4, than the follicular variant, which showed a higher expression of carbonic anhydrase IX. Papillary thyroid carcinoma samples with BRAF V600E mutation were shown to have higher glucose transporter 1, hexokinase II, carbonic anhydrase IX, and tumoral monocarbonylate transporter 4 expression levels. Univariate analysis showed that papillary thyroid carcinoma cases with glucose transporter 1 positivity had shorter overall survival, patients with medullary carcinoma and hexokinase II positivity were shown to have a shorter disease-free survival and overall survival, and tumoral monocarbonylate transporter 4 positivity was associated with shorter overall survival compared with papillary thyroid carcinoma patients with negativity for each marker. Disease-free survival and overall survival of patients with poorly differentiated carcinoma were shown to be significantly decreased when glucose transporter 1 and tumoral monocarbonylate transporter 4 are expressed. We demonstrated that the expression levels of glycolysis-related proteins differ between thyroid cancer subtypes and are correlated with poorer prognosis, depending on the subtype.
Collapse
Affiliation(s)
- Ji Hae Nahm
- Severance Hospital and Department of Pathology, College of Medicine, Yonsei University, Seoul, South Korea
| | - Hye Min Kim
- Severance Hospital and Department of Pathology, College of Medicine, Yonsei University, Seoul, South Korea
| | - Ja Seung Koo
- Severance Hospital and Department of Pathology, College of Medicine, Yonsei University, Seoul, South Korea
| |
Collapse
|
34
|
Hutton JE, Wang X, Zimmerman LJ, Slebos RJC, Trenary IA, Young JD, Li M, Liebler DC. Oncogenic KRAS and BRAF Drive Metabolic Reprogramming in Colorectal Cancer. Mol Cell Proteomics 2016; 15:2924-38. [PMID: 27340238 DOI: 10.1074/mcp.m116.058925] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Indexed: 12/13/2022] Open
Abstract
Metabolic reprogramming, in which altered utilization of glucose and glutamine supports rapid growth, is a hallmark of most cancers. Mutations in the oncogenes KRAS and BRAF drive metabolic reprogramming through enhanced glucose uptake, but the broader impact of these mutations on pathways of carbon metabolism is unknown. Global shotgun proteomic analysis of isogenic DLD-1 and RKO colon cancer cell lines expressing mutant and wild type KRAS or BRAF, respectively, failed to identify significant differences (at least 2-fold) in metabolic protein abundance. However, a multiplexed parallel reaction monitoring (PRM) strategy targeting 73 metabolic proteins identified significant protein abundance increases of 1.25-twofold in glycolysis, the nonoxidative pentose phosphate pathway, glutamine metabolism, and the phosphoserine biosynthetic pathway in cells with KRAS G13D mutations or BRAF V600E mutations. These alterations corresponded to mutant KRAS and BRAF-dependent increases in glucose uptake and lactate production. Metabolic reprogramming and glucose conversion to lactate in RKO cells were proportional to levels of BRAF V600E protein. In DLD-1 cells, these effects were independent of the ratio of KRAS G13D to KRAS wild type protein. A study of 8 KRAS wild type and 8 KRAS mutant human colon tumors confirmed the association of increased expression of glycolytic and glutamine metabolic proteins with KRAS mutant status. Metabolic reprogramming is driven largely by modest (<2-fold) alterations in protein expression, which are not readily detected by the global profiling methods most commonly employed in proteomic studies. The results indicate the superiority of more precise, multiplexed, pathway-targeted analyses to study functional proteome systems. Data are available through MassIVE Accession MSV000079486 at ftp://MSV000079486@massive.ucsd.edu.
Collapse
Affiliation(s)
| | | | - Lisa J Zimmerman
- From the ‡Department of Biochemistry, ¶Jim Ayers Institute for Precancer Detection and Diagnosis
| | - Robbert J C Slebos
- From the ‡Department of Biochemistry, ¶Jim Ayers Institute for Precancer Detection and Diagnosis
| | | | - Jamey D Young
- ‖Chemical & Biomolecular Engineering, **Molecular Physiology & Biophysics
| | - Ming Li
- ‡‡Department of Biostatistics, Vanderbilt University, Nashville, Tennessee 37232
| | - Daniel C Liebler
- From the ‡Department of Biochemistry, ¶Jim Ayers Institute for Precancer Detection and Diagnosis,
| |
Collapse
|
35
|
Sun WY, Kim HM, Jung WH, Koo JS. Expression of serine/glycine metabolism-related proteins is different according to the thyroid cancer subtype. J Transl Med 2016; 14:168. [PMID: 27277113 PMCID: PMC4898323 DOI: 10.1186/s12967-016-0915-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the expression and clinical implications of proteins related to serine/glycine metabolism in different subtypes of thyroid cancer. METHODS Tissue microarray (TMA) was constructed with tissues from 557 thyroid cancers, consisting of 244 papillary thyroid carcinomas (PTC), 112 follicular carcinomas (FC), 70 medullary carcinomas (MC), 23 poorly differentiated carcinomas (PDC), and 8 anaplastic carcinomas (AC). Immunohistochemical staining of the serine/glycine metabolism-related molecules phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase, (PSAT), phosphoserine phosphatase (PSPH), serine hydromethyl transferase (SHMT), and glycine decarboxylase (GLDC) was performed with the TMA blocks and the results were analyzed together with clinicopathologic parameters. RESULTS The expression of serine/glycine metabolism-related proteins differed among thyroid cancer subtypes. The expression rate of PHGDH (p < 0.001), PSAT1 (p = 0.001), PSPH (p = 0.008), and tumoral SHMT1 (p < 0.001) was higher in PDC and PTC (78.3, 21.7, 21.7, 30.4 and 63.4, 18.6, 12.8, 31.4 %, respectively), and lowest in MC (15.7, 1.4, 0.0, 10.0 %). Stromal SHMT1 expression was highest in AC (62.5 %) and absent in all FC (p < 0.001). In PTC, positivity for PSPH (p = 0.041), tumoral SHMT1 (p = 0.018), and stromal SHMT1 (p < 0.001) expression was higher in the conventional type compared to follicular type (14.1 versus 2.5 %, 33.6 versus 15.0 %, 42.1 versus 10.0 %, respectively). BRAF V600E mutation was associated with a higher rate of PHGDH (p < 0.001), PSAT1 (p = 0.001), PSPH (p < 0.001), tumoral SHMT1 (p = 0.001), stromal SHMT1 (p < 0.001), and GLDC (p < 0.001) expression compared to non-mutant cases (73.5 versus 40.6 %, 23.1 versus 8.5 %, 17.6 versus 1.9 %, 37.0 versus 18.9 %, 45.8 versus 21.7 %, 21.8 versus 6.6 %, respectively). In univariate analysis, stromal SHMT1 expression was associated with shorter disease-free survival (p = 0.015) in follicular variant PTC, and GLDC positivity was associated with shorter overall survival (OS) in sclerotic stromal type (p = 0.002). In FC, minimally invasive type, PSPH positivity correlated with shorter OS (p = 0.045) and in MC, PHGDH positivity correlated with shorter OS (p = 0.034). CONCLUSION The expression of serine/glycine metabolism-related proteins differs among different thyroid cancer types, with a higher rate of expression in PDC and PTC, and lower rate of expression in MC. In PTC, the rate of expression is lower in the follicular variant and higher in cases with BRAF V600E mutation.
Collapse
Affiliation(s)
- Woo Young Sun
- Department of Surgery, Daejeon St. Mary's Hospital, The Catholic University of Korea College of Medicine, Daejeon, South Korea
| | - Hye Min Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Woo-Hee Jung
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Ja Seung Koo
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea.
| |
Collapse
|
36
|
Lovinfosse P, Koopmansch B, Lambert F, Jodogne S, Kustermans G, Hatt M, Visvikis D, Seidel L, Polus M, Albert A, Delvenne P, Hustinx R. (18)F-FDG PET/CT imaging in rectal cancer: relationship with the RAS mutational status. Br J Radiol 2016; 89:20160212. [PMID: 27146067 DOI: 10.1259/bjr.20160212] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Treating metastatic colorectal cancer with anti-EGFR monoclonal antibodies is recommended only for patients whose tumour does not harbour mutations of KRAS or NRAS. The aim of this study was to investigate the biology of rectal cancers and specifically to evaluate the relationship between fluorine-18 fludeoxyglucose ((18)F-FDG) positron emission tomography (PET) intensity and heterogeneity parameters and their mutational status. METHODS 151 patients with newly diagnosed rectal cancer were included in this retrospective study. All patients underwent a baseline (18)F-FDG PET/CT within a median time interval of 27 days of tumour tissue sampling, which was performed before any treatment. Standardized uptake values (SUVs), volume-based parameters and texture analysis were studied. We retrospectively performed KRAS genotyping on codons 12, 13, 61, 117 and 146, NRAS genotyping on codons 12, 13 and 61 and BRAF on codon 600. Associations between PET/CT parameters and the mutational status were assessed using univariate and multivariate analysis. RESULTS 83 (55%) patients had an RAS mutation: 74 KRAS and 9 NRAS, while 68 patients had no mutation (wild-type tumours). No patient had BRAF mutation. First-order features based on intensity histogram analysis were significantly associated with RAS mutations: maximum SUV (SUVmax) (p-value = 0.002), mean SUV (p-value = 0.006), skewness (p-value = 0.049), SUV standard deviation (p-value = 0.001) and SUV coefficient of variation (SUVcov) (p-value = 0.001). Both SUVcov and SUVmax showed an area under the curve of 0.65 with sensitivity of 56% and 69%, respectively, and specificity of 64% and 52%, respectively. None of the volume-based (metabolic tumour volume and total lesion glycolysis), nor local or regional textural features were associated with the presence of RAS mutations. CONCLUSION Although rectal cancers with KRAS or NRAS mutations display a significantly higher glucose metabolism than wild-type cancers, the accuracy of the currently proposed quantitative metrics extracted from (18)F-FDG PET/CT is not sufficiently high for playing a meaningful clinical role. ADVANCES IN KNOWLEDGE RAS-mutated rectal cancers have a significantly higher glucose metabolism. However, the accuracy of (18)F-FDG PET/CT quantitative metrics is not as such as the technique could play a clinical role.
Collapse
Affiliation(s)
- Pierre Lovinfosse
- 1 Nuclear Medicine and Oncological Imaging Division, Medical Physics Department, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Benjamin Koopmansch
- 2 Center for Human Genetic, Molecular Haemato-Oncology Unit, UniLab Lg, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Frederic Lambert
- 2 Center for Human Genetic, Molecular Haemato-Oncology Unit, UniLab Lg, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Sébastien Jodogne
- 3 Department of Medical Physics, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Gaelle Kustermans
- 4 Department of Pathology, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Mathieu Hatt
- 5 LaTIM, INSERM UMR 1101, IBSAM, University of Brest, France
| | | | - Laurence Seidel
- 6 Department of Biostatistics and Medico-economic Information, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Marc Polus
- 7 Department of Gastro-enterology, Centre Hospitalier Universitaire de Liège, Belgium
| | - Adelin Albert
- 6 Department of Biostatistics and Medico-economic Information, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Philippe Delvenne
- 4 Department of Pathology, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Roland Hustinx
- 1 Nuclear Medicine and Oncological Imaging Division, Medical Physics Department, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| |
Collapse
|
37
|
Piccardo A, Puntoni M, Treglia G, Foppiani L, Bertagna F, Paparo F, Massollo M, Dib B, Paone G, Arlandini A, Catrambone U, Casazza S, Pastorino A, Cabria M, Giovanella L. Thyroid nodules with indeterminate cytology: prospective comparison between 18F-FDG-PET/CT, multiparametric neck ultrasonography, 99mTc-MIBI scintigraphy and histology. Eur J Endocrinol 2016; 174:693-703. [PMID: 26966173 DOI: 10.1530/eje-15-1199] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/19/2016] [Indexed: 01/03/2023]
Abstract
PURPOSE To evaluate the role of (18)F-flurodeoxiglucose positron emission tomography/computed tomography ((18)F-FDG-PET/CT) in predicting malignancy of thyroid nodules with indeterminate cytology. PATIENTS AND METHODS We analysed 87 patients who have been scheduled to undergo surgery for thyroid nodule with indeterminate cytology. All patients underwent (18)F-FDG-PET/CT, multiparametric neck ultrasonography (MPUS), and (99m)Tc-methoxyisobutylisonitrile scintigraphy ((99m)Tc-MIBI-scan). Histopathology was the standard of reference. We compared the sensitivity (SE), specificity (SP), accuracy (AC), positive (PPV) and negative predictive (NPV) values of (18)F-FDG-PET/CT with those of (99m)Tc-MIBI-scan and MPUS in detecting cancer. Univariate and multivariate analyses evaluated the association between each diagnostic tool and histopathology. RESULTS On histopathology, 69 out of 87 nodules were found to be benign and 18 to be malignant. The SE, SP, AC, PPV and NPV of (18)F-FDG-PET/CT were 94, 58, 66, 37 and 98% respectively. The SE, AC and NPV of (18)F-FDG-PET/CT were significantly higher than those of MPUS and (99m)Tc-MIBI-scan. The association of both positive (18)F-FDG-PET/CT and MPUS (FDG+/MPUS+) showed significantly lower SE (61% vs 94%) and NPV (88% vs 98%) than (18)F-FDG-PET/CT alone, but significantly higher SP (77% vs 58%). On univariate analysis, (18)F-FDG-PET/CT and the combination of FDG+/MPUS+ and of FDG+/MIBI- were all significantly associated with histopathology. On multivariate analysis, only FDG+/MIBI- was significantly associated with histopathology. CONCLUSION The AC of (18)F-FDG-PET /CT in detecting thyroid malignancy is higher than that of (99m)Tc-MIBI-scan and MPUS. A negative (18)F-FDG-PET/CT correctly predicts benign findings on histopathology. The association of FDG+/MPS+ is significantly more specific than (18)F-FDG-PET/CT alone in identifying differentiated thyroid cancer. A positive (18)F-FDG-PET/CT is significantly associated with malignancy when qualitative (99m)Tc-MIBI-scan is rated as negative.
Collapse
Affiliation(s)
- A Piccardo
- Nuclear Medicine UnitOffice of the Scientific Director, Galliera Hospital, Genoa, Italy
| | - M Puntoni
- Clinical Trial UnitOffice of the Scientific Director, Galliera Hospital, Genoa, Italy
| | - G Treglia
- Department of Nuclear Medicine and PET/CT CentreOncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - L Foppiani
- Internal MedicineGalliera Hospital, Genoa, Italy
| | - F Bertagna
- Department of Nuclear MedicineUniversity of Brescia and Spedali Civili di Brescia, Brescia, Italy
| | - F Paparo
- Department of RadiologyGalliera Hospital, Genoa, Italy
| | - M Massollo
- Nuclear Medicine UnitOffice of the Scientific Director, Galliera Hospital, Genoa, Italy
| | - B Dib
- Nuclear Medicine UnitOffice of the Scientific Director, Galliera Hospital, Genoa, Italy
| | - G Paone
- Department of Nuclear Medicine and PET/CT CentreOncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - A Arlandini
- Department of SurgeryThyroid Centre, Galliera Hospital, Genoa, Italy
| | - U Catrambone
- Department of SurgeryThyroid Centre, Galliera Hospital, Genoa, Italy
| | - S Casazza
- Department of PathologyGalliera Hospital, Genoa, Italy
| | - A Pastorino
- Department of PathologyGalliera Hospital, Genoa, Italy
| | - M Cabria
- Nuclear Medicine UnitOffice of the Scientific Director, Galliera Hospital, Genoa, Italy
| | - L Giovanella
- Department of Nuclear Medicine and PET/CT CentreOncology Institute of Southern Switzerland, Bellinzona, Switzerland
| |
Collapse
|
38
|
Abstract
The incidence of thyroid cancer has been increasing. After total thyroidectomy of well-differentiated thyroid tumors with intermediate- or high-risk features on pathology, radioiodine remains one of the mainstays of therapy for both thyroid remnant ablation as well as for treatment of metastatic disease. SPECT/CT, a relatively new modality, has been shown to play a pivotal role predominantly in the post-therapy setting by changing the risk stratification of patients with thyroid cancer. In the case of radioiodine treatment failure, FDG-PET/CT may provide prognostic information based on extent and intensity of metabolically active metastatic sites as well as serve as an important imaging test for response assessment in patients treated with chemotherapy, targeted therapies, or radiotherapy, thereby affecting patient management in multiple ways. The role of newer redifferentiation drugs has been evaluated with the use of I-124 PET/CT.
Collapse
Affiliation(s)
- Ravinder K Grewal
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY.
| | - Alan Ho
- Head and Neck Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Heiko Schöder
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
39
|
Lee SH, Han S, Lee HS, Chae SY, Lee JJ, Song DE, Ryu JS. Association Between (18)F-FDG Avidity and the BRAF Mutation in Papillary Thyroid Carcinoma. Nucl Med Mol Imaging 2015; 50:38-45. [PMID: 26941858 DOI: 10.1007/s13139-015-0367-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 12/22/2022] Open
Abstract
PURPOSE The BRAF mutation, a potential prognostic factor in papillary thyroid carcinoma (PTC), is associated with a high expression of the glucose transporter gene. We investigated which clinicopathologic factors, including BRAF mutation status, influence (18)F-fluoro-2-deoxyglucose ((18)F-FDG) avidity. METHODS We retrospectively reviewed 55 patients who underwent BRAF analysis from biopsy-confirmed PTC and (18)F-FDG positron emission tomography/computed tomography within 6 months before undergoing thyroid surgery from September 2008 to August 2014. Tumors were considered to be (18)F-FDG avid if the uptake was greater than that of the liver. (18)F-FDG uptake of PTCs was also analyzed semiquantitatively using SUVmax. The association between (18)F-FDG avidity and clinicopathologic variables (age, tumor size, perithyroidal extension, cervical lymph node status, and BRAF mutation status) was investigated. RESULTS Twenty-nine (52.7 %) of 55 patients had (18)F-FDG-avid PTCs. PTCs with the BRAF mutation showed higher (18)F-FDG avidity (24/38, 63.2 %) than those without (5/17, 29.4 %). The BRAF mutation (p = 0.025) and tumor size (p = 0.003) were significantly associated with (18)F-FDG avidity in univariate analysis, and the BRAF mutation status remained significant after adjusting for tumor size in multivariate analysis (p = 0.015). In the subgroup of tumor size ≥ 1 cm, the BRAF mutation was the only factor significantly associated with (18)F-FDG avidity (p = 0.021). The mean SUVmax of PTCs with the BRAF mutation was significantly higher than that of those without (4.89 ± 6.12 vs. 1.96 ± 1.10, p = 0.039). CONCLUSIONS The BRAF mutation must be one of the most important factors influencing (18)F-FDG avidity in PTCs, especially in those with a tumor size ≥ 1 cm.
Collapse
Affiliation(s)
- Suk Hyun Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736 Korea
| | - Sangwon Han
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736 Korea
| | - Hyo Sang Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736 Korea
| | - Sun Young Chae
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736 Korea
| | - Jong Jin Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736 Korea
| | - Dong Eun Song
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin-Sook Ryu
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736 Korea
| |
Collapse
|