1
|
Gao Y, Yin L, Duan X, Fu Z, Liu Q, Chen J, Xin L, Zhu X, Xiang H, Xu L, Ye J, Liu M. HER2-targeted PET/CT imaging provides potential biomarkers for differentiating HER2-zero, -low, and -positive breast cancer. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07220-3. [PMID: 40338302 DOI: 10.1007/s00259-025-07220-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/13/2025] [Indexed: 05/09/2025]
Abstract
PURPOSE Human epidermal growth factor receptor 2 (HER2)-targeted antibody-drug conjugates (ADCs) in breast cancer is progressing rapidly, asking for precise categorization of HER2 expression. Our aim was to explore the HER2-affibody uptake characteristics in breast cancer and to find potential biomarkers for differentiating HER2 status, in comparison with 18F-FDG PET/CT. METHODS In this prospective study conducted from May 2024 to Jan 2025, participants with newly diagnosed breast cancer underwent both 68Ga-HER2-affibody and 18F-FDG PET/CT examinations. The relationship between PET parameters (such as maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), tumor-to-background SUV ratio (TBR)) and HER2 expression statuses (HER2-zero, -low and -positive) was analyzed. RESULTS A total of 57 female participants (58 primary lesions) with newly diagnosed breast cancer were included. In the paired comparison of 68Ga-HER2-affibody and 18F-FDG PET/CT, HER2-TBR was higher than FDG-TBR in the HER2-low and HER2-positive group, respectively (P < 0.001). HER2-SUVmax and HER2-SUVmean exhibited differences across most comparisons, especially HER2-zero vs. -low (P < 0.05). HER2-SUVmean emerged as an independent predictor (P = 0.01; OR: 2.8) for differentiating HER2-low/positive and -zero, yielding an AUC of 0.91. Under detailed HER2 immunohistochemistry, HER2-SUVmax, -SUVmean and -TBR demonstrated intergroup differences (P < 0.05). CONCLUSION HER2-targeted PET/CT imaging demonstrated distinct advantages over 18F-FDG PET/CT imaging in characterizing the HER2 status of primary lesions. Parameters based on HER2-affibody differed significantly among different HER2 statuses, and might be potential imaging indicators for screening patients with HER2-low/positive who could benefit from HER2-targeted ADCs. CLINICALTRIALS GOV IDENTIFIER NCT06289517 (2024-03-04).
Collapse
Affiliation(s)
- Yuan Gao
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
- Thyroid and Breast Surgery, Peking University First Hospital, Beijing, China
| | - Lei Yin
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Xiaojiang Duan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Zijian Fu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Qian Liu
- Thyroid and Breast Surgery, Peking University First Hospital, Beijing, China
| | - Jinzhi Chen
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Ling Xin
- Thyroid and Breast Surgery, Peking University First Hospital, Beijing, China
| | - Xiaojuan Zhu
- Department of Pathology, Peking University First Hospital, Beijing, China
| | - Hongyu Xiang
- Thyroid and Breast Surgery, Peking University First Hospital, Beijing, China
| | - Ling Xu
- Thyroid and Breast Surgery, Peking University First Hospital, Beijing, China.
| | - Jingming Ye
- Thyroid and Breast Surgery, Peking University First Hospital, Beijing, China.
| | - Meng Liu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China.
| |
Collapse
|
2
|
Gao Y, Fu Z, Zhu X, Li H, Yin L, Wu C, Chen J, Chen Y, Liang L, Ye J, Xu L, Liu M. Metabolic characterization and radiomics-based composite model for breast cancer immune microenvironment types using 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07306-y. [PMID: 40325259 DOI: 10.1007/s00259-025-07306-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Abstract
PURPOSE The intricateness of tumor immune microenvironment types (TIMTs) complicates identifying responders to immune checkpoint inhibitors (ICIs). Our purpose was to explore the metabolic characteristics of TIMTs in breast cancer using 18F-fluorodeoxyglucose (FDG) PET/CT and to establish radiomics-based predictive models for TIMTs. METHODS Consecutive 207 breast cancer patients (211 primary lesions), who underwent 18F-FDG PET/CT examination from Sep 2022 to Aug 2024 in our hospital, were retrospectively reviewed. The programmed death-ligand 1 (PD-L1) and tumor-infiltrating lymphocytes (TILs) were evaluated for TIMTs: TMIT-I (PD-L1-, TILs-), TMIT-II (PD-L1+, TILs+), TMIT-III (PD-L1-, TILs+), and TMIT-IV (PD-L1+, TILs-). The relationship between metabolic parameters (such as maximum standardized uptake value (SUVmax) and tumor-to-liver SUV ratio (TLR)) and TIMTs was analyzed. Then composite predictive models based on radiomics were further developed. RESULTS TIMT-II represented the highest proportion in HER2+ (14/22, 64%) and triple-negative (17/27, 63%) breast cancer. Most metabolic parameters (such as SUVmax and TLR) exhibited significant differences in TIMT-II vs. -I or TIMT-II vs. -III (P < 0.05). TLR (P = 0.03; OR: 1.1) and Nottingham grade (P = 0.006; OR: 3.1) were independent impact factors of TIMT-II. We further developed a composite model that integrated radiomics, metabolic parameter, and clinicopathological data, which demonstrated promising predictive efficacy for TIMT-II (AUC testing set = 0.86). CONCLUSION Metabolic differences existed among different TIMTs, with TIMT-II exhibiting markedly elevated metabolic characteristics. The composite model based on radiomics demonstrated high predictive efficacy for TIMT-II and has the potential to screen ICIs responders.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
- Thyroid and Breast Surgery, Peking University First Hospital, Beijing, China
| | - Zijian Fu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Xiaojuan Zhu
- Department of Pathology, Peking University First Hospital, Beijing, China
| | - Hongfeng Li
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Lei Yin
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Caixia Wu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Jinzhi Chen
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Yulong Chen
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Li Liang
- Department of Pathology, Peking University First Hospital, Beijing, China
| | - Jingming Ye
- Thyroid and Breast Surgery, Peking University First Hospital, Beijing, China.
| | - Ling Xu
- Thyroid and Breast Surgery, Peking University First Hospital, Beijing, China.
| | - Meng Liu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China.
| |
Collapse
|
3
|
Masse M, Bailleux C, Creisson A, Humbert O. [Molecular imaging and radioligand in breast cancer]. Bull Cancer 2025:S0007-4551(25)00129-8. [PMID: 40300962 DOI: 10.1016/j.bulcan.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/29/2025] [Accepted: 02/16/2025] [Indexed: 05/01/2025]
Abstract
Molecular imaging plays a crucial role in the diagnosis, staging, and monitoring of breast cancer. The most commonly used tracer at present is 18F-FDG, a marker of cellular metabolism, making 18F-FDG PET/CT a major imaging modality in the management of breast neoplasms. However, this tracer has limitations, particularly for low-grade ductal or lobular neoplasms, which exhibit low avidity for 18F-FDG. The 68Ga-FAPI tracer, which targets activated fibroblasts and whose uptake is independent of tumor aggressiveness, is currently under investigation and could serve as an excellent alternative to 18F-FDG in certain cases. Additionally, new tracers targeting novel biological pathways of the tumor, including hormonal receptors or HER2, are being developed. These tracers enable whole-body assessment of specific biomarker expressions on cancer cells, offering a more precise understanding of the disease. This approach could help tailor treatments to the molecular characteristics of each tumor, enabling personalized strategies that improve therapeutic efficacy and patient quality of life. Finally, inspired by the model of 177Lu-PSMA used in prostate cancer, researchers are exploring the potential to couple these tracers with therapeutic agents to develop targeted radionuclide therapy for breast neoplasms.
Collapse
Affiliation(s)
- Mathilde Masse
- Service de médecine nucléaire, centre Antoine-Lacassagne, Nice, France; CNRS, Inserm, iBV, université Côte D'Azur, Nice, France.
| | | | - Anne Creisson
- Service d'oncologie, centre Antoine-Lacassagne, Nice, France
| | - Olivier Humbert
- Service de médecine nucléaire, centre Antoine-Lacassagne, Nice, France; CNRS, Inserm, iBV, université Côte D'Azur, Nice, France
| |
Collapse
|
4
|
Babacan GB, Öner Tamam M, Saraçoğlu S, Acar Tayyar MN, Şahin MC, Özçevik H, Kulduk G, Ekinci ÖB, Çelik E. Novel heterogeneity method for predicting survival in non-metastatic triple-negative breast cancer. Rev Esp Med Nucl Imagen Mol 2025:500112. [PMID: 39921170 DOI: 10.1016/j.remnie.2025.500112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 02/10/2025]
Abstract
OBJECTIVE This study aimed to investigate the relationship between semiquantitative positron emission tomography (PET) parameters and intratumoral heterogeneity (ITH) on 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) imaging and survival data of non-metastatic triple-negative breast cancer (TNBC) patients. METHODS Sixty-two consecutive female patients who underwent pretreatment 18F-FDG PET/CT with non-metastatic TNBC were enrolled. Heterogeneity index (HI) variables derived from the metabolic tumor volume (MTV) and standardized uptake value (SUV) parameters of primary lesions were evaluated. A novel modified method introducing a percentage-based (30-40-50%) MTV slope comparison was proposed. The association between conventional 18F-FDG PET/CT parameters, HI values, and survival results was analyzed retrospectively. RESULTS Tumors with higher HI values were associated with shorter survival times. For overall survival (OS), HI2 and HI3 were statistically significant (p=0.009, p=0.016). Regarding radiological progression-free survival (rPFS), HI1 and HI3 were statistically significant (p=0.01, p=0.025). A significant weak correlation between HI1 (p=0.005, ρ=0.34) and a strong correlation was found for HI2 (p<0.0001, ρ=0.89), HI3 and tumor size were not statistically significantly correlated (p=0.063, ρ=0.23). T stage was statistically significantly associated with rPFS and OS ((p=0.038, p=0.003). In contrast, no statistically significant difference was found for the N stage, anatomical, and clinical staging (p>0.05). CONCLUSION This study concluded that ITH predicts survival for non-metastatic TNBC patients. This conclusion was reached with the heterogeneity index variables obtained by different methods. However, our results revealed that HI2 depends on tumor size. Our modified method (HI3) predicts survival independently of tumor size.
Collapse
Affiliation(s)
- G B Babacan
- Department of Nuclear Medicine, Prof. Dr. Cemil Taşcıoğlu City Hospital, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul, Turkey; Clinic of Nuclear Medicine, Şırrnak State Hospital, Şırnak, Turkey.
| | - M Öner Tamam
- Department of Nuclear Medicine, Prof. Dr. Cemil Taşcıoğlu City Hospital, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - S Saraçoğlu
- Clinic of Nuclear Medicine, Van Training and Research Hospital, University of Health Sciences, Van, Turkey
| | - M N Acar Tayyar
- Department of Nuclear Medicine, Prof. Dr. Cemil Taşcıoğlu City Hospital, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - M C Şahin
- Department of Nuclear Medicine, Prof. Dr. Cemil Taşcıoğlu City Hospital, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - H Özçevik
- Department of Nuclear Medicine, Başakşehir Çam ve Sakura City Hospital, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - G Kulduk
- Department of Pathology, Prof. Dr. Cemil Taşcıoğlu City Hospital, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Ö B Ekinci
- Department of Medical Oncology, Prof. Dr. Cemil Taşcıoğlu City Hospital, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - E Çelik
- Department of Medical Oncology, Prof. Dr. Cemil Taşcıoğlu City Hospital, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
5
|
Zhou Z, Zhu T, Zheng W, Zou Z, Shan Q, Chen Q, Wang G, Wang Y. LAT1 transporter as a target for breast cancer diagnosis and therapy. Eur J Med Chem 2025; 283:117064. [PMID: 39631100 DOI: 10.1016/j.ejmech.2024.117064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
Breast cancer is the main cause of female malignant tumor death in China. Numerous cellular molecules are associated with the onset and progression of breast cancer. However, these molecules have proven ineffective for the diagnosis and treatment of the disease, indicating a need for the identification of new biomarkers. LAT1 (SLC7A5) plays a crucial role in mediating the uptake of amino acids into breast cancer cells, influencing proliferation, invasion, migration, drug resistance, and prognosis through the mTOR signaling pathway. Notably, LAT1 exhibits differential expression across various types of breast cancer, positioning it as a promising candidate for diagnostic and therapeutic applications. Recent advancements in LAT1-targeting strategies for breast cancer have been made, particularly with the rapid developments in small molecular inhibitors and nanotechnology. In this article, we review the structure and function of LAT1, its relationship with breast cancer, and LAT1-mediated diagnostic and treatment strategies. This article specifically focuses on the LAT1-targeting strategy in breast tumors, aiming to evaluate its potential role as a novel biomarker for diagnosis and treatment.
Collapse
Affiliation(s)
- Zheyang Zhou
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guang Xi Zhuang Yao Medicine Center of Engineering and Technology, Wuhe Rode, Nanning, 530200, China
| | - Tao Zhu
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guang Xi Zhuang Yao Medicine Center of Engineering and Technology, Wuhe Rode, Nanning, 530200, China
| | - Wenlong Zheng
- Guang Xi Zhuang Yao Medicine Center of Engineering and Technology, Wuhe Rode, Nanning, 530200, China; Pharmaceutical College, Guangxi University of Chinese Medicine, China
| | - Zhixiang Zou
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guang Xi Zhuang Yao Medicine Center of Engineering and Technology, Wuhe Rode, Nanning, 530200, China
| | - Qingfei Shan
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guang Xi Zhuang Yao Medicine Center of Engineering and Technology, Wuhe Rode, Nanning, 530200, China
| | - Qing Chen
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guang Xi Zhuang Yao Medicine Center of Engineering and Technology, Wuhe Rode, Nanning, 530200, China
| | - Gang Wang
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guang Xi Zhuang Yao Medicine Center of Engineering and Technology, Wuhe Rode, Nanning, 530200, China
| | - Yang Wang
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guang Xi Zhuang Yao Medicine Center of Engineering and Technology, Wuhe Rode, Nanning, 530200, China.
| |
Collapse
|
6
|
Gao Y, Yin L, Ma L, Wu C, Zhu X, Liu H, Liang L, Chen J, Chen Y, Ye J, Xu L, Liu M. Comparative analysis of metabolic characteristics and prognostic stratification of HER2-low and HER2-zero breast cancer using 18F-FDG PET/CT imaging. Cancer Imaging 2024; 24:166. [PMID: 39695831 DOI: 10.1186/s40644-024-00812-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Recent advancements in novel anti-human epidermal growth factor receptor 2 (HER2) antibody-drug conjugates (ADCs) have highlighted the emerging HER2-low breast cancer subtype with promising therapeutic efficacy. This study aimed to comparatively analyze the metabolic characteristics and prognostic stratification of HER2-low and HER2-zero breast cancer using baseline fluorine-18 fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) imaging. METHODS Consecutive patients with newly diagnosed breast cancer who underwent 18F-FDG PET/CT prior to therapy in our hospital were retrospectively reviewed. The relationship between metabolic parameters (maximum standardized uptake value (SUVmax), tumor-to-liver SUV ratio (TLR), total lesion glycolysis (TLG), and metabolic tumor volume (MTV)) in primary lesions and HER2 expression was analyzed. The survival analyses were performed to identify the prognostic factors for disease-free survival (DFS) in patients with HER2-negative (HER2-low versus -zero). RESULTS In total, 258 patients (mean age: 54 ± 12 years) were included. In hormone receptor (HR)-positive subgroup, SUVmax and TLR were significantly higher in HER2-low than in HER2-zero (P = 0.045 and 0.03, respectively). But in HR-negative subgroup, there was no significant metabolic difference between HER2-low and HER2-zero (All P > 0.05). The four metabolic parameters were significant predictors of DFS in HER2-negative patients (All P < 0.01), but there was no significant difference in DFS between HER2-low and -zero, regardless of tumor metabolism. Moreover, in HER2-zero patients, the DFS of patients with high metabolism was significantly shorter than that of patients with low metabolism (PSUVmax = 0.002, PMTV = 0.03, PTLG= 0.005, PTLR < 0.001, respectively), but without a similar finding in HER2-low patients. CONCLUSION Our study demonstrated the HR-positive HER2-low breast cancer exhibited a particularity in glucose metabolic profile. Additionally, HER2-zero patients with elevated metabolism were associated with inferior prognosis and warranted careful attention in clinical evaluations.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Nuclear Medicine, Peking University First Hospital, No.8, Xishiku Street, West District, Beijing, 100034, China
- Thyroid and Breast Surgery, Peking University First Hospital, Beijing, China
| | - Lei Yin
- Department of Nuclear Medicine, Peking University First Hospital, No.8, Xishiku Street, West District, Beijing, 100034, China
| | - Linlin Ma
- Department of Nuclear Medicine, Peking University First Hospital, No.8, Xishiku Street, West District, Beijing, 100034, China
| | - Caixia Wu
- Department of Nuclear Medicine, Peking University First Hospital, No.8, Xishiku Street, West District, Beijing, 100034, China
| | - Xiaojuan Zhu
- Department of Pathology, Peking University First Hospital, Beijing, China
| | - Hongjin Liu
- Thyroid and Breast Surgery, Peking University First Hospital, Beijing, China
| | - Li Liang
- Department of Pathology, Peking University First Hospital, Beijing, China
| | - Jinzhi Chen
- Department of Nuclear Medicine, Peking University First Hospital, No.8, Xishiku Street, West District, Beijing, 100034, China
| | - Yulong Chen
- Department of Nuclear Medicine, Peking University First Hospital, No.8, Xishiku Street, West District, Beijing, 100034, China
| | - Jingming Ye
- Thyroid and Breast Surgery, Peking University First Hospital, Beijing, China
| | - Ling Xu
- Thyroid and Breast Surgery, Peking University First Hospital, Beijing, China
| | - Meng Liu
- Department of Nuclear Medicine, Peking University First Hospital, No.8, Xishiku Street, West District, Beijing, 100034, China.
| |
Collapse
|
7
|
Edmonds CE, O'Brien SR, McDonald ES, Mankoff DA, Pantel AR. PET Imaging of Breast Cancer: Current Applications and Future Directions. JOURNAL OF BREAST IMAGING 2024; 6:586-600. [PMID: 39401324 DOI: 10.1093/jbi/wbae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Indexed: 11/07/2024]
Abstract
As molecular imaging use expands for patients with breast cancer, it is important for breast radiologists to have a basic understanding of molecular imaging, including PET. Although breast radiologists may not directly interpret such studies, basic knowledge of molecular imaging will enable the radiologist to better direct diagnostic workup of patients as well as discuss diagnostic imaging with the patient and other treating physicians. Several new tracers are now available to complement imaging glucose metabolism with FDG. Because it provides a noninvasive assessment of disease status across the whole body, PET offers specific advantages over tissue-based assays. Paired with targeted therapy, molecular imaging has the potential to guide personalized treatment of breast cancer, including guiding dosing during drug trials as well as predicting and assessing clinical response. This review discusses the current established applications of FDG, which remains the most widely used PET radiotracer for malignancy, including breast cancer, and highlights potential areas for expanded use based on recent research. It also summarizes research to date on the U.S. Food and Drug Administration (FDA)-approved PET tracer 16α-18F-fluoro-17β-estradiol (FES), which targets ER, including the current guidelines from the Society of Nuclear Medicine and Molecular Imaging on the appropriate use of FES-PET/CT for breast cancer as well as areas of active investigation for other potential applications. Finally, the review highlights several of the most promising novel PET tracers that are poised for clinical translation in the near future.
Collapse
Affiliation(s)
- Christine E Edmonds
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Sophia R O'Brien
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth S McDonald
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - David A Mankoff
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Austin R Pantel
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Bischoff H, Espié M, Petit T. Unveiling Neoadjuvant Therapy: Insights and Outlooks for HER2-Positive Early Breast Cancer. Curr Treat Options Oncol 2024; 25:1225-1237. [PMID: 39153019 PMCID: PMC11416367 DOI: 10.1007/s11864-024-01252-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 08/19/2024]
Abstract
OPINION STATEMENT This perspective underscores the evolution and significance of neoadjuvant therapy in breast cancer, tracing its history and efficacy in improving outcomes. It delves into the correlation between achieving complete response and long-term survival, emphasizing the predictive value of treatment response estimation. Neoadjuvant chemotherapy in HER2-positive early breast cancer, particularly with taxanes and anti-HER2 therapies, emerges as a cornerstone, offering enhanced breast conservation rates and prognostic insights. The focus on individualized care, tailored to treatment response, underscores the need for adaptive strategies. Additionally, the article discusses the ongoing debate surrounding anthracyclines' role and the benefits of dual HER2 blockade. Ultimately, advocating for a personalized approach, guided by treatment response assessment, ensures optimal outcomes in HER2-positive breast cancer management.
Collapse
Affiliation(s)
| | - Marc Espié
- Medical Oncology Department, Hôpital Saint Louis, Paris, France
| | - Thierry Petit
- Medical Oncology Department, ICANS, Strasbourg, France
| |
Collapse
|
9
|
Zhang H, Liu M, Shi X, Ma J, Ren C, Huang Z, Wang Y, Jing H, Huo L. Feasibility of a deep-inspiration breath-hold [ 18F]AlF-NOTA-LM3 PET/CT imaging on upper-abdominal lesions in NET patients: in comparison with respiratory-gated PET/CT. EJNMMI Phys 2024; 11:75. [PMID: 39207609 PMCID: PMC11362407 DOI: 10.1186/s40658-024-00677-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
PURPOSES To explore the clinical feasibility and efficacy of a deep inspiration breath-hold (BH) PET/CT using [18F]AlF-NOTA-LM3 on upper abdominal lesions in patients with neuroendocrine tumors (NETs). METHODS Twenty-three patients underwent a free-breath (FB) whole-body PET/CT, including a 10 min/bed scan for the upper abdomen with a vital signal monitoring for respiratory gating (RG) followed by a 20-second BH PET/CT covering the same axial range. For the upper abdomen bed, the following PET series was reconstructed: a 2-min FB PET; RG PET (6 bins); a 20-second and 15-second BH PET (BH_15 and BH_20). Semi-quantitative analysis was performed to compare liver SUVmean, lesion SUVmax, MTV, its percentage difference and target-to-background ratio (TBR) between both BH PET and RG PET images. Subgroup analysis considered lesion location, MTV and SUVmax. A 5-point Likert scale was used to perform visual analysis and any missed or additional lesions were identified compared with RG PET. RESULTS Quantitative analysis on overall lesions (n = 78) revealed higher SUVmax and TBR, and smaller MTV for both BH PET compared to FB and RG PET, with lesion location-specific variations. Neither significant difference was observed in all metrics between RG and FB PET in larger lesions, nor in MTV in lower-uptake lesions. However, both BH PET significantly enhanced these measurements. In the visual analysis, both BH PET showed noninferior performance to RG PET, and were evaluated clinically acceptable. Additional and missed lesions were observed in FB and both BH PET compared with RG PET, but didn't alter the clinical management. The BH_15 PET showed comparable performance to BH_20 PET in any comparison. CONCLUSION The BH PET/CT using [18F]AlF-NOTA-LM3 is effective in detecting upper abdominal lesions, offering more accurate quantitative measurements. Using a novel PET/CT scanner, a 15-second BH PET can provide comparable and superior performance to RG PET, indicating potential feasibility in clinical routines.
Collapse
Affiliation(s)
- Haiqiong Zhang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Meixi Liu
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ximin Shi
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jiangyu Ma
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Chao Ren
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhenghai Huang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ying Wang
- Central Research Institute, United Imaging Healthcare, Shanghai, 201815, China
| | - Hongli Jing
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Li Huo
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
10
|
van Olmen JP, Schrijver AM, Stokkel MPM, Loo CE, Gunster JLB, Vrancken Peeters MJTFD, van Duijnhoven FH, van der Ploeg IMC. Clinical implications of non-breast cancer related findings on FDG-PET/CT scan prior to neoadjuvant chemotherapy in patients with breast cancer. Breast Cancer Res Treat 2024; 206:585-594. [PMID: 38864980 PMCID: PMC11208275 DOI: 10.1007/s10549-024-07331-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/02/2024] [Indexed: 06/13/2024]
Abstract
PURPOSE Breast cancer (BC) patients undergoing FDG-PET/CT scans for neoadjuvant chemotherapy (NAC) may have additional non-BC related findings. The aim of this study is to describe the clinical implications of these findings. METHODS We included BC patients who underwent an FDG-PET/CT scan in our institute between 2011-2020 prior to NAC. We focused on patients with an additional non-BC related finding (i.e. BC metastases were excluded) for which diagnostic work-up was performed. Information about the diagnostic work-up and the clinical consequences was retrospectively gathered. A revision of all FDG-PET/CT scans was conducted by an independent physician to assess the suspicion level of the additional findings. RESULTS Of the 1337 patients who underwent FDG-PET/CT, 202 patients (15%) had an non-BC related additional finding for which diagnostic work-up was conducted, resulting in 318 examinations during the first year. The non-BC related findings were mostly detected in the endocrine region (26%), gastro-intestinal region (16%), or the lungs (15%). Seventeen patients (17/202: 8%, 17/1337: 1.3%) had a second primary malignancy. Only 8 patients (8/202: 4%, 8/1337: 0.6%) had a finding that was considered more prognosis-determining than their BC disease. When revising all FDG-PET/CT scans, 57 (202/57: 28%) of the patients had an additional finding categorized as low suspicious, suggesting no indication for diagnostic work-up. CONCLUSION FDG-PET/CT scans used for dissemination imaging in BC patients detect a high number of non-BC related additional findings, often clinically irrelevant and causing a large amount of unnecessary work-up. However, in 8% of the patients undergoing diagnostic work-up for an additional finding, a second primary malignancy was detected, warranting diagnostic attention in selected patients.
Collapse
Affiliation(s)
- Josefien P van Olmen
- Department of Surgical Oncology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Plesmanlaan 121, NL-1066 CX, Amsterdam, The Netherlands
| | - A Marjolein Schrijver
- Department of Surgical Oncology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Plesmanlaan 121, NL-1066 CX, Amsterdam, The Netherlands
| | - Marcel P M Stokkel
- Department of Nuclear Medicine, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Claudette E Loo
- Department of Radiology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Jetske L B Gunster
- Department of Radiation Oncology, Netherlands Cancer Institute-Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marie-Jeanne T F D Vrancken Peeters
- Department of Surgical Oncology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Plesmanlaan 121, NL-1066 CX, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, Amsterdam, The Netherlands
| | - Frederieke H van Duijnhoven
- Department of Surgical Oncology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Plesmanlaan 121, NL-1066 CX, Amsterdam, The Netherlands
| | - Iris M C van der Ploeg
- Department of Surgical Oncology, Netherlands Cancer Institute - Antoni van Leeuwenhoek, Plesmanlaan 121, NL-1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Lasnon C, Morel A, Aide N, Silva AD, Emile G. Baseline and early 18F-FDG PET/CT evaluations as predictors of progression-free survival in metastatic breast cancer patients treated with targeted anti-CDK therapy. Cancer Imaging 2024; 24:90. [PMID: 38982546 PMCID: PMC11232230 DOI: 10.1186/s40644-024-00727-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 06/20/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Exploring the value of baseline and early 18F-FDG PET/CT evaluations in prediction PFS in ER+/HER2- metastatic breast cancer patients treated with a cyclin-dependent kinase inhibitor in combination with an endocrine therapy. METHODS Sixty-six consecutive breast cancer patients who underwent a pre-therapeutic 18F-FDG PET/CT and a second PET/CT within the first 6 months of treatment were retrospectively included. Metabolic tumour volume (MTV) and total lesion glycolysis (TLG) and Dmax, which represents tumour dissemination and is defined as the distance between the two most distant lesions, were computed. The variation in these parameters between baseline and early evaluation PET as well as therapeutic evaluation using PERCIST were assessed as prognosticators of PFS at 18 months. RESULTS The median follow-up was equal to 22.5 months. Thirty progressions occurred (45.4%). The average time to event was 17.8 ± 10.4 months. At baseline, Dmax was the only predictive metabolic parameter. Patients with a baseline Dmax ≤ 18.10 cm had a significantly better 18 m-PFS survival than the others: 69.2% (7.7%) versus 36.7% (8.8%), p = 0.017. There was no association between PERCIST evaluation and 18 m-PFS status (p = 0.149) and there was no difference in 18 m-PFS status between patients classified as complete, partial metabolic responders or having stable metabolic disease. CONCLUSION Disease spread at baseline PET, as assessed by Dmax, is predictive of an event occurring within 18 months. In the absence of early metabolic progression, which occurs in 15% of patients, treatment should be continued regardless of the quality of the initial response to treatment.
Collapse
Affiliation(s)
- Charline Lasnon
- Nuclear Medicine Department, François Baclesse Comprehensive Cancer Center, UNICANCER, 3 Avenue du General Harris, BP 45026, Caen Cedex 5, 14076, France.
- UNICAEN, INSERM 1086 ANTICIPE, Normandy University, Caen, France.
| | - Adeline Morel
- Medical Oncology Department, François Baclesse Comprehensive Cancer Center, UNICANCER, Caen, France
| | - Nicolas Aide
- UNICAEN, INSERM 1086 ANTICIPE, Normandy University, Caen, France
| | - Angélique Da Silva
- Medical Oncology Department, François Baclesse Comprehensive Cancer Center, UNICANCER, Caen, France
| | - George Emile
- Medical Oncology Department, François Baclesse Comprehensive Cancer Center, UNICANCER, Caen, France
| |
Collapse
|
12
|
Watanabe M, Fendler WP, Grafe H, Hirmas N, Hamacher R, Lanzafame H, Pabst KM, Hautzel H, Aigner C, Kasper S, von Tresckow B, Stuschke M, Kümmel S, Lugnier C, Hadaschik B, Grünwald V, Zarrad F, Siveke JT, Herrmann K, Weber M. Prognostic Implications of 68Ga-FAPI-46 PET/CT-Derived Parameters on Overall Survival in Various Types of Solid Tumors. J Nucl Med 2024; 65:1027-1034. [PMID: 38782454 DOI: 10.2967/jnumed.123.266981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Tumoral fibroblast activation protein expression is associated with proliferation and angiogenesis and can be visualized by PET/CT. We examined the prognostic value of [68Ga]Ga-fibroblast activation protein inhibitor (FAPI) (68Ga-FAPI)-46 PET/CT for different tumor entities in patients enrolled in 2 prospective imaging studies (NCT05160051, n = 30; NCT04571086, n = 115). Methods: Within 4 wk, 145 patients underwent 68Ga-FAPI-46 and [18F]FDG (18F-FDG) PET/CT. The association between overall survival (OS) and sex, age, tumor entity, total lesion number, highest SUVmax, and the presence of each nodal, visceral, and bone metastasis was tested using univariate Cox regression analysis. Multivariate analyses were performed for prognostic factors with P values of less than 0.05. Results: In the univariate analysis, shorter OS was associated with total lesion number and the presence of nodal, visceral, and bone metastases on 68Ga-FAPI-46 PET/CT (hazard ratio [HR], 1.06, 2.18, 1.69, and 2.05; P < 0.01, < 0.01, = 0.04, and = 0.02, respectively) and 18F-FDG PET/CT (HR, 1.05, 2.31, 1.76, and 2.30; P < 0.01, < 0.01, = 0.03, and < 0.01, respectively) and with SUVmax on 68Ga-FAPI-46 PET/CT (HR, 1.03; P = 0.03). In the multivariate analysis, total lesion number on 68Ga-FAPI-46 PET/CT was an independent risk factor for shorter OS (HR, 1.05; P = 0.02). In patients with pancreatic cancer, shorter OS was associated with total lesion number on 68Ga-FAPI-46 PET/CT (HR, 1.09; P < 0.01) and bone metastases on 18F-FDG PET/CT (HR, 31.39; P < 0.01) in the univariate analysis and with total lesion number on 68Ga-FAPI-46 PET/CT (HR, 1.07; P = 0.04) in the multivariate analyses. In breast cancer, total lesion number on 68Ga-FAPI-46 PET/CT (HR, 1.07; P = 0.02), as well as bone metastases on 18F-FDG PET/CT (HR, 9.64; P = 0.04), was associated with shorter OS in the univariate analysis. The multivariate analysis did not reveal significant prognostic factors. In thoracic cancer (lung cancer and pleural mesothelioma), the univariate and multivariate analyses did not reveal significant prognostic factors. Conclusion: Disease extent on 68Ga-FAPI-46 PET/CT is a predictor of short OS and may aid in future risk stratification by playing a supplemental role alongside 18F-FDG PET/CT.
Collapse
Affiliation(s)
- Masao Watanabe
- Department of Nuclear Medicine, University Clinic Essen, Essen, Germany;
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University Clinic Essen, Essen, Germany
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Hong Grafe
- Department of Nuclear Medicine, University Clinic Essen, Essen, Germany
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Nader Hirmas
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Rainer Hamacher
- Department of Medical Oncology, West German Cancer Center, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Helena Lanzafame
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Kim M Pabst
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Hubertus Hautzel
- Department of Nuclear Medicine, University Clinic Essen, Essen, Germany
| | - Clemens Aigner
- Department of Thoracic Surgery and Thoracic Endoscopy, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Stefan Kasper
- Department of Medical Oncology, West German Cancer Center, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Bastian von Tresckow
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center and German Cancer Consortium (DKTK partner site Essen), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Stuschke
- Department of Radiation Therapy, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Sherko Kümmel
- Department of Gynecology and Gynecologic Oncology, Evang. Kliniken Essen-Mitte, Essen, Germany, and Department of Gynecology with Breast Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Celine Lugnier
- Department of Hematology and Oncology with Palliative Care, Ruhr University Bochum, Bochum, Germany
| | - Boris Hadaschik
- Department of Urology, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Viktor Grünwald
- Department of Medical Oncology, West German Cancer Center, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
- Department of Urology, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Fadi Zarrad
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Jens T Siveke
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany; and
- Division of Solid Tumor Translational Oncology, German Cancer Center Consortium (DKTK partner site Essen), and German Cancer Research Center, Heidelberg, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Clinic Essen, Essen, Germany
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Manuel Weber
- Department of Nuclear Medicine, University Clinic Essen, Essen, Germany
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| |
Collapse
|
13
|
Llombart-Cussac A, Prat A, Pérez-García JM, Mateos J, Pascual T, Escrivà-de-Romani S, Stradella A, Ruiz-Borrego M, de Las Heras BB, Keyaerts M, Galvan P, Brasó-Maristany F, García-Mosquera JJ, Guiot T, Gion M, Sampayo-Cordero M, Di Cosimo S, Pérez-Escuredo J, de Frutos MA, Cortés J, Gebhart G. Clinicopathological and molecular predictors of [ 18F]FDG-PET disease detection in HER2-positive early breast cancer: RESPONSE, a substudy of the randomized PHERGain trial. Eur J Nucl Med Mol Imaging 2024; 51:2733-2743. [PMID: 38587643 PMCID: PMC11224085 DOI: 10.1007/s00259-024-06683-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/10/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND The PHERGain study (NCT03161353) is assessing early metabolic responses to neoadjuvant treatment with trastuzumab-pertuzumab and chemotherapy de-escalation using a [18Fluorine]fluorodeoxyglucose-positron emission tomography ([18F]FDG-PET) and a pathological complete response-adapted strategy in HER2-positive (HER2+) early breast cancer (EBC). Herein, we present RESPONSE, a PHERGain substudy, where clinicopathological and molecular predictors of [18F]FDG-PET disease detection were evaluated. METHODS A total of 500 patients with HER2 + EBC screened in the PHERGain trial with a tumor size > 1.5 cm by magnetic resonance imaging (MRI) were included in the RESPONSE substudy. PET[-] criteria entailed the absence of ≥ 1 breast lesion with maximum standardized uptake value (SUVmax) ≥ 1.5 × SUVmean liver + 2 standard deviation. Among 75 PET[-] patients screened, 21 with SUVmax levels < 2.5 were randomly selected and matched with 21 PET[+] patients with SUVmax levels ≥ 2.5 based on patient characteristics associated with [18F]FDG-PET status. The association between baseline SUVmax and [18F]FDG-PET status ([-] or [+]) with clinicopathological characteristics was assessed. In addition, evaluation of stromal tumor-infiltrating lymphocytes (sTILs) and gene expression analysis using PAM50 and Vantage 3D™ Cancer Metabolism Panel were specifically compared in a matched cohort of excluded and enrolled patients based on the [18F]FDG-PET eligibility criteria. RESULTS Median SUVmax at baseline was 7.2 (range, 1-39.3). Among all analyzed patients, a higher SUVmax was associated with a higher tumor stage, larger tumor size, lymph node involvement, hormone receptor-negative status, higher HER2 protein expression, increased Ki67 proliferation index, and higher histological grade (p < 0.05). [18F]FDG-PET [-] criteria patients had smaller tumor size (p = 0.014) along with the absence of lymph node involvement and lower histological grade than [18F]FDG-PET [+] patients (p < 0.01). Although no difference in the levels of sTILs was found among 42 matched [18F]FDG-PET [-]/[+] criteria patients (p = 0.73), [18F]FDG-PET [-] criteria patients showed a decreased risk of recurrence (ROR) and a lower proportion of PAM50 HER2-enriched subtype than [18F]FDG-PET[+] patients (p < 0.05). Differences in the expression of genes involved in cancer metabolism were observed between [18F]FDG-PET [-] and [18F]FDG-PET[+] criteria patients. CONCLUSIONS These results highlight the clinical, biological, and metabolic heterogeneity of HER2+ breast cancer, which may facilitate the selection of HER2+ EBC patients likely to benefit from [18F]FDG-PET imaging as a tool to guide therapy. TRIAL REGISTRATION Clinicaltrials.gov; NCT03161353; registration date: May 15, 2017.
Collapse
Affiliation(s)
- Antonio Llombart-Cussac
- Hospital Arnau de Vilanova, FISABIO, Valencia, Spain.
- Universidad Católica de Valencia, Valencia, Spain.
- Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain.
| | - Aleix Prat
- Hospital Clínic i Provincial de Barcelona, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors Lab., Barcelona, Spain
| | - José Manuel Pérez-García
- Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain
- International Breast Cancer Center, Pangea Oncology, QuironSalud Group, Barcelona, Spain
| | | | - Tomás Pascual
- Hospital Clínic i Provincial de Barcelona, Barcelona, Spain
| | | | | | | | | | | | - Patricia Galvan
- Translational Genomics and Targeted Therapies in Solid Tumors Lab., Barcelona, Spain
| | - Fara Brasó-Maristany
- Translational Genomics and Targeted Therapies in Solid Tumors Lab., Barcelona, Spain
| | - Juan José García-Mosquera
- Dr. Rosell Oncology Institute (IOR), Dexeus University Hospital, Pangaea Oncology, Quironsalud Group, Barcelona, Spain
| | - Thomas Guiot
- Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Institute Jules Bordet, Brussels, Belgium
| | | | | | | | | | - Manuel Atienza de Frutos
- Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Medicine, Madrid, Spain
| | - Javier Cortés
- Universidad Católica de Valencia, Valencia, Spain
- International Breast Cancer Center, Pangea Oncology, QuironSalud Group, Barcelona, Spain
- Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Medicine, Madrid, Spain
| | - Geraldine Gebhart
- Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Institute Jules Bordet, Brussels, Belgium
| |
Collapse
|
14
|
Zhang YQ, Zhang W, Kong XT, Hai WX, Guo R, Zhang M, Zhang SL, Li B. The therapeutic effect of a novel GAPDH inhibitor in mouse model of breast cancer and efficacy monitoring by molecular imaging. Cancer Cell Int 2024; 24:188. [PMID: 38811918 PMCID: PMC11138053 DOI: 10.1186/s12935-024-03361-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Breast cancer is a serious threat to women's health with high morbidity and mortality. The development of more effective therapies for the treatment of breast cancer is strongly warranted. Growing evidence suggests that targeting glucose metabolism may be a promising cancer treatment strategy. We previously identified a new glyceraldehyde-3-phosphate dehydrogenase (GAPDH) inhibitor, DC-5163, which shows great potential in inhibiting tumor growth. Here, we evaluated the anticancer potential of DC-5163 in breast cancer cells. METHODS The effects of DC-5163 on breast cancer cells were investigated in vitro and in vivo. Seahorse, glucose uptake, lactate production, and cellular ATP content assays were performed to examine the impact of DC-5163 on cellular glycolysis. Cell viability, colony-forming ability, cell cycle, and apoptosis were assessed by CCK8 assay, colony formation assay, flow cytometry, and immunoblotting respectively. The anticancer activity of DC-5163 in vivo was evaluated in a mouse breast cancer xenograft model. RESULTS DC-5163 suppressed aerobic glycolysis and reduced energy supply of breast cancer cells, thereby inhibiting breast cancer cell growth, inducing cell cycle arrest in the G0/G1 phase, and increasing apoptosis. The therapeutic efficacy was assessed using a breast cancer xenograft mouse model. DC-5163 treatment markedly suppressed tumor growth in vivo without inducing evident systemic toxicity. Micro-PET/CT scans revealed a notable reduction in tumor 18F-FDG and 18F-FLT uptake in the DC-5163 treatment group compared to the DMSO control group. CONCLUSIONS Our results suggest that DC-5163 is a promising GAPDH inhibitor for suppressing breast cancer growth without obvious side effects. 18F-FDG and 18F-FLT PET/CT can noninvasively assess the levels of glycolysis and proliferation in tumors following treatment with DC-5163.
Collapse
Affiliation(s)
- Yun-Qi Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030000, China
| | - Wei Zhang
- Drug Discovery and Design Canter, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xiang-Tai Kong
- Drug Discovery and Design Canter, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Wang-Xi Hai
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030000, China
| | - Rui Guo
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030000, China
| | - Min Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030000, China
| | - Su-Lin Zhang
- Drug Discovery and Design Canter, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China.
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
15
|
Hossain A, Chowdhury SI. Breast Cancer Subtype Prediction Model Employing Artificial Neural Network and 18F-Fluorodeoxyglucose Positron Emission Tomography/ Computed Tomography. J Med Phys 2024; 49:181-188. [PMID: 39131430 PMCID: PMC11309150 DOI: 10.4103/jmp.jmp_181_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/17/2024] [Accepted: 04/14/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction Although positron emission tomography/computed tomography (PET/CT) is a common tool for measuring breast cancer (BC), subtypes are not automatically classified by it. Therefore, the purpose of this research is to use an artificial neural network (ANN) to evaluate the clinical subtypes of BC based on the value of the tumor marker. Materials and Methods In our nuclear medical facility, 122 BC patients (training and testing) had 18F-fluoro-D-glucose (18F-FDG) PET/CT to identify the various subtypes of the disease. 18F-FDG-18 injections were administered to the patients before the scanning process. We carried out the scan according to protocol. Based on the tumor marker value, the ANN's output layer uses the Softmax function with cross-entropy loss to detect different subtypes of BC. Results With an accuracy of 95.77%, the result illustrates the ANN model for K-fold cross-validation. The mean values of specificity and sensitivity were 0.955 and 0.958, respectively. The area under the curve on average was 0.985. Conclusion Subtypes of BC may be categorized using the suggested approach. The PET/CT may be updated to diagnose BC subtypes using the appropriate tumor maker value when the suggested model is clinically implemented.
Collapse
Affiliation(s)
- Alamgir Hossain
- Department of Physics, University of Rajshahi, Rajshahi-6205, Rajshahi, Bangladesh
| | - Shariful Islam Chowdhury
- Institute of Nuclear Medicine and Allied Sciences, Bangladesh Atomic Energy Commission, Rajshahi, Bangladesh
| |
Collapse
|
16
|
Muzi M, Peterson LM, Specht JM, Hippe DS, Novakova-Jiresova A, Lee JH, Kurland BF, Mankoff DA, Obuchowski N, Linden HM, Kinahan PE. Repeatability of 18F-FDG uptake in metastatic bone lesions of breast cancer patients and implications for accrual to clinical trials. EJNMMI Res 2024; 14:32. [PMID: 38536511 PMCID: PMC10973316 DOI: 10.1186/s13550-024-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/06/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Standard measures of response such as Response Evaluation Criteria in Solid Tumors are ineffective for bone lesions, often making breast cancer patients that have bone-dominant metastases ineligible for clinical trials with potentially helpful therapies. In this study we prospectively evaluated the test-retest uptake variability of 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) in a cohort of breast cancer patients with bone-dominant metastases to determine response criteria. The thresholds for 95% specificity of change versus no-change were then applied to a second cohort of breast cancer patients with bone-dominant metastases. METHODS For this study, nine patients with 38 bone lesions were imaged with 18F-FDG in the same calibrated scanner twice within 14 days. Tumor uptake was quantified by the most commonly used PET parameter, the maximum tumor voxel normalized by dose and body weight (SUVmax) and also by the mean of a 1-cc maximal uptake volume normalized by dose and lean-body-mass (SULpeak). The asymmetric repeatability coefficients with confidence intervals for SUVmax and SULpeak were used to determine the limits of 18F-FDG uptake variability. A second cohort of 28 breast cancer patients with bone-dominant metastases that had 146 metastatic bone lesions was imaged with 18F-FDG before and after standard-of-care therapy for response assessment. RESULTS The mean relative difference of SUVmax and SULpeak in 38 bone tumors of the first cohort were 4.3% and 6.7%. The upper and lower asymmetric limits of the repeatability coefficient were 19.4% and - 16.3% for SUVmax, and 21.2% and - 17.5% for SULpeak. 18F-FDG repeatability coefficient confidence intervals resulted in the following patient stratification using SULpeak for the second patient cohort: 11-progressive disease, 5-stable disease, 7-partial response, and 1-complete response with three inevaluable patients. The asymmetric repeatability coefficients response criteria for SULpeak changed the status of 3 patients compared to the standard Positron Emission Tomography Response Criteria in Solid Tumors of ± 30% SULpeak. CONCLUSION In evaluating bone tumor response for breast cancer patients with bone-dominant metastases using 18F-FDG SUVmax, the repeatability coefficients from test-retest studies show that reductions of more than 17% and increases of more than 20% are unlikely to be due to measurement variability. Serial 18F-FDG imaging in clinical trials investigating bone lesions in these patients, such as the ECOG-ACRIN EA1183 trial, benefit from confidence limits that allow interpretation of response.
Collapse
Affiliation(s)
- Mark Muzi
- Department of Radiology, University of Washington Medical Center, 1959 NE Pacific Street, UW Box 356465, Seattle, Washington, 98195, USA.
| | - Lanell M Peterson
- Department of Radiology, University of Washington Medical Center, 1959 NE Pacific Street, UW Box 356465, Seattle, Washington, 98195, USA
| | - Jennifer M Specht
- Department of Radiology, University of Washington Medical Center, 1959 NE Pacific Street, UW Box 356465, Seattle, Washington, 98195, USA
| | - Daniel S Hippe
- Department of Radiology, University of Washington Medical Center, 1959 NE Pacific Street, UW Box 356465, Seattle, Washington, 98195, USA
| | | | - Jean H Lee
- Department of Radiology, University of Washington Medical Center, 1959 NE Pacific Street, UW Box 356465, Seattle, Washington, 98195, USA
| | - Brenda F Kurland
- Department of Radiology, University of Washington Medical Center, 1959 NE Pacific Street, UW Box 356465, Seattle, Washington, 98195, USA
| | | | | | - Hannah M Linden
- Department of Radiology, University of Washington Medical Center, 1959 NE Pacific Street, UW Box 356465, Seattle, Washington, 98195, USA
| | - Paul E Kinahan
- Department of Radiology, University of Washington Medical Center, 1959 NE Pacific Street, UW Box 356465, Seattle, Washington, 98195, USA
| |
Collapse
|
17
|
Pedersen MA, Dias AH, Hjorthaug K, Gormsen LC, Fledelius J, Johnsson AL, Borgquist S, Tramm T, Munk OL, Vendelbo MH. Increased lesion detectability in patients with locally advanced breast cancer-A pilot study using dynamic whole-body [ 18F]FDG PET/CT. EJNMMI Res 2024; 14:31. [PMID: 38528239 DOI: 10.1186/s13550-024-01096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/14/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Accurate diagnosis of axillary lymph node (ALN) metastases is essential for prognosis and treatment planning in breast cancer. Evaluation of ALN is done by ultrasound, which is limited by inter-operator variability, and by sentinel lymph node biopsy and/or ALN dissection, none of which are without risks and/or long-term complications. It is known that conventional 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography/computed tomography (PET/CT) has limited sensitivity for ALN metastases. However, a recently developed dynamic whole-body (D-WB) [18F]FDG PET/CT scanning protocol, allowing for imaging of tissue [18F]FDG metabolic rate (MRFDG), has been shown to have the potential to increase lesion detectability. The study purpose was to examine detectability of malignant lesions in D-WB [18F]FDG PET/CT compared to conventional [18F]FDG PET/CT. RESULTS This study prospectively included ten women with locally advanced breast cancer who were referred for an [18F]FDG PET/CT as part of their diagnostic work-up. They all underwent D-WB [18F]FDG PET/CT, consisting of a 6 min single bed dynamic scan over the chest region started at the time of tracer injection, a 64 min dynamic WB PET scan consisting of 16 continuous bed motion passes, and finally a contrast-enhanced CT scan, with generation of MRFDG parametric images. Lesion visibility was assessed by tumor-to-background and contrast-to-noise ratios using volumes of interest isocontouring tumors with a set limit of 50% of SUVmax and background volumes placed in the vicinity of tumors. Lesion visibility was best in the MRFDG images, with target-to-background values 2.28 (95% CI: 2.04-2.54) times higher than target-to-background values in SUV images, and contrast-to-noise values 1.23 (95% CI: 1.12-1.35) times higher than contrast-to-noise values in SUV images. Furthermore, five imaging experts visually assessed the images and three additional suspicious lesions were found in the MRFDG images compared to SUV images; one suspicious ALN, one suspicious parasternal lymph node, and one suspicious lesion located in the pelvic bone. CONCLUSIONS D-WB [18F]FDG PET/CT with MRFDG images show potential for improved lesion detectability compared to conventional SUV images in locally advanced breast cancer. Further validation in larger cohorts is needed. CLINICAL TRIAL REGISTRATION The trial is registered in clinicaltrials.gov, NCT05110443, https://www. CLINICALTRIALS gov/study/NCT05110443?term=NCT05110443&rank=1 .
Collapse
Affiliation(s)
- Mette Abildgaard Pedersen
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, Aarhus, Denmark.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
| | - André H Dias
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, Aarhus, Denmark
| | - Karin Hjorthaug
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, Aarhus, Denmark
| | - Lars C Gormsen
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Joan Fledelius
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, Aarhus, Denmark
| | | | - Signe Borgquist
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Trine Tramm
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Lajord Munk
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mikkel Holm Vendelbo
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
18
|
Li T, Zhang J, Yan Y, Tan M, Chen Y. Applications of FAPI PET/CT in the diagnosis and treatment of breast and the most common gynecologic malignancies: a literature review. Front Oncol 2024; 14:1358070. [PMID: 38505595 PMCID: PMC10949888 DOI: 10.3389/fonc.2024.1358070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
The fibroblast activating protein (FAP) is expressed by some fibroblasts found in healthy tissues. However, FAP is overexpressed in more than 90% of epithelial tumors, including breast and gynecological tumors. As a result, the FAP ligand could be used as a target for diagnosis and treatment purposes. Positron emission tomography/computed tomography (PET/CT) is a hybrid imaging technique commonly used to locate and assess the tumor's molecular and metabolic functions. PET imaging involves the injection of a radiotracer that tends to accumulate more in metabolically active lesions such as cancer. Several radiotracers have been developed to target FAP in PET/CT imaging, such as the fibroblast-activation protein inhibitor (FAPI). These tracers bind to FAP with high specificity and affinity, allowing for the non-invasive detection and quantification of FAP expression in tumors. In this review, we discussed the applications of FAPI PET/CT in the diagnosis and treatment of breast and the most common gynecologic malignancies. Radiolabeled FAPI can improve the detection, staging, and assessment of treatment response in breast and the most common gynecologic malignancies, but the problem with normal hormone-responsive organs remains insurmountable. Compared to the diagnostic applications of FAPI, further research is needed for future therapeutic applications.
Collapse
Affiliation(s)
- Tengfei Li
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| | - Jintao Zhang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| | - Yuanzhuo Yan
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| | - Min Tan
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
19
|
Zhang A, Meng X, Yao Y, Zhou X, Zhang Y, Li N. Head to head comparison of 68Ga-DOTA-FAPI-04 vs 18F-FDG PET/CT in the evaluation of primary extrapulmonary tumors in the chest. Eur Radiol 2024; 34:1960-1970. [PMID: 37668694 DOI: 10.1007/s00330-023-10130-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 09/06/2023]
Abstract
OBJECTIVE We conducted a prospective study using 18F-flurodeoxyglucose (18F-FDG) and 68Ga-DOTA-FAPI-04 (fibroblast-activation protein inhibitor, 68Ga-FAPI) PET/CT to diagnose, differentiate, and stage primary extrapulmonary tumors of the thorax. METHODS Fifty-four participants were undergoing 18F-FDG and 68Ga-FAPI PET/CT and divided into the benign, intermediate, and malignant based on pathology. The maximum standardized uptake value (SUVmax), the tumor-to-blood pool ratio, and tumor-to-liver ratio were compared for primary tumors, lymph nodes, and metastases between the two modalities by two independent samples t tests. One-way ANOVA was used to compare the uptake of 18F-FDG or 68Ga-FAPI among the three groups. RESULTS Fifty-four participants were confirmed to have 71 primary lesions, 56 metastatic lymph nodes, and 43 metastatic lesions. 18F-FDG PET/CT could both effectively distinguish malignant lesions from non-malignant lesions, accuracies of 87.32% (p < 0.001). 68Ga-FAPI PET/CT effectively differentiated benign lesions from the non-benign, accuracy being 91.55% (p < 0.001). The accuracies of 18F-FDG and 68Ga-FAPI for detecting lymph node metastasis were 77.22% (61/79) and 87.34% (69/79) (p = 0.096). The uptake of 68Ga-FAPI in metastatic lymph nodes was significantly higher than that of the nonmetastatic (p < 0.001). The detection rate of 68Ga-FAPI PET/CT for metastatic lesions was significantly higher than that of 18F-FDG, 100% (43/43) vs. 53.49% (23/43) (p < 0.001). Compared with 18F-FDG PET/CT, 68Ga-FAPI PET/CT changed the treatment strategy of 7.4% (4/54) participants. CONCLUSION 68Ga-FAPI PET/CT is valuable in the diagnosis and differentiation of primary extrapulmonary tumors and superior to 18F-FDG PET/CT for evaluating lymph node and distant metastasis. CLINICAL RELEVANCE STATEMENT The application of 68Ga-FAPI PET/CT in primary extrapulmonary chest tumors is valuable, which is reflected in diagnosis, differentiation and exploration of lymph node metastasis and distant metastasis. KEY POINTS • 68Ga-FAPI PET/CT is valuable in the diagnosis, differentiation, and staging of primary extrapulmonary tumors. • 68Ga-FAPI PET/CT is superior to 18 F-FDG PET/CT for evaluating lymph node and distant metastasis.
Collapse
Affiliation(s)
- Annan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian, Beijing, 100142, China
| | - Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian, Beijing, 100142, China
| | - Yuan Yao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian, Beijing, 100142, China
| | - Xin Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian, Beijing, 100142, China
| | - Yan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian, Beijing, 100142, China
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian, Beijing, 100142, China.
| |
Collapse
|
20
|
Muzi M, Peterson LM, Specht JM, Hippe DS, Novakova-Jiresova A, Lee JH, Kurland BF, Mankoff DA, Obuchowski N, Linden HM, Kinahan PE. Repeatability of 18F-FDG uptake in metastatic bone lesions of breast cancer patients and implications for accrual to clinical trials. RESEARCH SQUARE 2024:rs.3.rs-3818932. [PMID: 38313279 PMCID: PMC10836099 DOI: 10.21203/rs.3.rs-3818932/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
BACKGROUND Standard measures of response such as Response Evaluation Criteria in Solid Tumors are ineffective for bone lesions, often making breast cancer patients with bone-dominant metastases ineligible for clinical trials with potentially helpful therapies. In this study we prospectively evaluated the test-retest uptake variability of 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) in a cohort of breast cancer patients with bone-dominant metastases to determine response criteria. The thresholds for 95% specificity of change versus no-change were then applied to a second cohort of breast cancer patients with bone-dominant metastases.In this study, nine patients with 38 bone lesions were imaged with 18F-FDG in the same calibrated scanner twice within 14 days. Tumor uptake was quantified as the maximum tumor voxel normalized by dose and body weight (SUVmax) and the mean of a 1-cc maximal uptake volume normalized by dose and lean-body-mass (SULpeak). The asymmetric repeatability coefficients with confidence intervals of SUVmax and SULpeak were used to determine limits of 18F-FDG uptake variability. A second cohort of 28 breast cancer patients with bone-dominant metastases that had 146 metastatic bone lesions was imaged with 18F-FDG before and after standard-of-care therapy for response assessment. RESULTS The mean relative difference of SUVmax in 38 bone tumors of the first cohort was 4.3%. The upper and lower asymmetric limits of the repeatability coefficient were 19.4% and -16.3%, respectively. The 18F-FDG repeatability coefficient confidence intervals resulted in the following patient stratification for the second patient cohort: 11-progressive disease, 5-stable disease, 7-partial response, and 1-complete response with three inevaluable patients. The asymmetric repeatability coefficients response criteria changed the status of 3 patients compared to standard the standard Positron Emission Tomography Response Criteria in Solid Tumors of ±30% SULpeak. CONCLUSIONS In evaluating bone tumor response for breast cancer patients with bone-dominant metastases using 18F-FDG uptake, the repeatability coefficients from test-retest studies show that reductions of more than 17% and increases of more than 20% are unlikely to be due to measurement variability. Serial 18F-FDG imaging in clinical trials investigating bone lesions from these patients, such as the ECOG-ACRIN EA1183 trial, benefit from confidence limits that allow interpretation of response.
Collapse
Affiliation(s)
- Mark Muzi
- University of Washington School of Medicine
| | | | | | | | | | - Jean H Lee
- University of Washington Department of Radiology
| | | | | | | | | | | |
Collapse
|
21
|
Chung HW, Park KS, Lim I, Noh WC, Yoo YB, Nam SE, So Y, Lee EJ. PET/MRI and Novel Targets for Breast Cancer. Biomedicines 2024; 12:172. [PMID: 38255277 PMCID: PMC10813582 DOI: 10.3390/biomedicines12010172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Breast cancer, with its global prevalence and impact on women's health, necessitates effective early detection and accurate staging for optimal patient outcomes. Traditional imaging modalities such as mammography, ultrasound, and dynamic contrast-enhanced magnetic resonance imaging (MRI) play crucial roles in local-regional assessment, while bone scintigraphy and 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) aid in evaluating distant metastasis. Despite the proven utility of 18F-FDG PET/CT in various cancers, its limitations in breast cancer, such as high false-negative rates for small and low-grade tumors, have driven exploration into novel targets for PET radiotracers, including estrogen receptor, human epidermal growth factor receptor-2, fibroblast activation protein, and hypoxia. The advent of PET/MRI, which combines metabolic PET information with high anatomical detail from MRI, has emerged as a promising tool for breast cancer diagnosis, staging, treatment response assessment, and restaging. Technical advancements including the integration of PET and MRI, considerations in patient preparation, and optimized imaging protocols contribute to the success of dedicated breast and whole-body PET/MRI. This comprehensive review offers the current technical aspects and clinical applications of PET/MRI for breast cancer. Additionally, novel targets in breast cancer for PET radiotracers beyond glucose metabolism are explored.
Collapse
Affiliation(s)
- Hyun Woo Chung
- Department of Nuclear Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (H.W.C.); (Y.S.)
| | - Kyoung Sik Park
- Department of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (W.C.N.); (Y.B.Y.); (S.E.N.)
- Research Institute of Medical Science, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea
| | - Ilhan Lim
- Department of Nuclear Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 07812, Republic of Korea;
| | - Woo Chul Noh
- Department of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (W.C.N.); (Y.B.Y.); (S.E.N.)
| | - Young Bum Yoo
- Department of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (W.C.N.); (Y.B.Y.); (S.E.N.)
| | - Sang Eun Nam
- Department of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (W.C.N.); (Y.B.Y.); (S.E.N.)
| | - Young So
- Department of Nuclear Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (H.W.C.); (Y.S.)
| | - Eun Jeong Lee
- Department of Nuclear Medicine, Seoul Medical Center, 156 Sinnae-ro, Jungnang-gu, Seoul 02053, Republic of Korea;
| |
Collapse
|
22
|
Castorina L, Comis AD, Prestifilippo A, Quartuccio N, Panareo S, Filippi L, Castorina S, Giuffrida D. Innovations in Positron Emission Tomography and State of the Art in the Evaluation of Breast Cancer Treatment Response. J Clin Med 2023; 13:154. [PMID: 38202160 PMCID: PMC10779934 DOI: 10.3390/jcm13010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
The advent of hybrid Positron Emission Tomography/Computed Tomography (PET/CT) and PET/Magnetic Resonance Imaging (MRI) scanners resulted in an increased clinical relevance of nuclear medicine in oncology. The use of [18F]-Fluorodeoxyglucose ([18F]FDG) has also made it possible to study tumors (including breast cancer) from not only a dimensional perspective but also from a metabolic point of view. In particular, the use of [18F]FDG PET allowed early confirmation of the efficacy or failure of therapy. The purpose of this review was to assess the literature concerning the response to various therapies for different subtypes of breast cancer through PET. We start by summarizing studies that investigate the validation of PET/CT for the assessment of the response to therapy in breast cancer; then, we present studies that compare PET imaging (including PET devices dedicated to the breast) with CT and MRI, focusing on the identification of the most useful parameters obtainable from PET/CT. We also focus on novel non-FDG radiotracers, as they allow for the acquisition of information on specific aspects of the new therapies.
Collapse
Affiliation(s)
- Luigi Castorina
- Nuclear Medicine Outpatient Unit, REM Radiotherapy Srl, Via Penninanzzo 11, 95029 Viagrande, Italy;
| | - Alessio Danilo Comis
- Nuclear Medicine Outpatient Unit, REM Radiotherapy Srl, Via Penninanzzo 11, 95029 Viagrande, Italy;
| | - Angela Prestifilippo
- Department of Oncology, IOM Mediterranean Oncology Institute, Via Penninanzzo 7, 95029 Viagrande, Italy; (A.P.); (D.G.)
| | - Natale Quartuccio
- Nuclear Medicine Unit, Ospedali Riuniti Villa Sofia-Cervello, 90146 Palermo, Italy;
| | - Stefano Panareo
- Nuclear Medicine Unit, Oncology and Haematology Department, University Hospital of Modena, 41124 Modena, Italy;
| | - Luca Filippi
- Nuclear Medicine Unit, Department of Oncohaematology, Fondazione PTV Policlinico Tor Vergata University Hospital, Viale Oxford 81, 00133 Rome, Italy;
| | - Serena Castorina
- Nuclear Medicine Unit, Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-San Marco”, 95123 Catania, Italy
| | - Dario Giuffrida
- Department of Oncology, IOM Mediterranean Oncology Institute, Via Penninanzzo 7, 95029 Viagrande, Italy; (A.P.); (D.G.)
| |
Collapse
|
23
|
Kudura K, Ritz N, Templeton AJ, Kutzker T, Hoffmann MHK, Antwi K, Zwahlen DR, Kreissl MC, Foerster R. An Innovative Non-Linear Prediction Model for Clinical Benefit in Women with Newly Diagnosed Breast Cancer Using Baseline FDG-PET/CT and Clinical Data. Cancers (Basel) 2023; 15:5476. [PMID: 38001736 PMCID: PMC10670812 DOI: 10.3390/cancers15225476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Objectives: We aimed to develop a novel non-linear statistical model integrating primary tumor features on baseline [18F]-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT), molecular subtype, and clinical data for treatment benefit prediction in women with newly diagnosed breast cancer using innovative statistical techniques, as opposed to conventional methodological approaches. Methods: In this single-center retrospective study, we conducted a comprehensive assessment of women newly diagnosed with breast cancer who had undergone a FDG-PET/CT scan for staging prior to treatment. Primary tumor (PT) volume, maximum and mean standardized uptake value (SUVmax and SUVmean), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were measured on PET/CT. Clinical data including clinical staging (TNM) but also PT anatomical site, histology, receptor status, proliferation index, and molecular subtype were obtained from the medical records. Overall survival (OS), progression-free survival (PFS), and clinical benefit (CB) were assessed as endpoints. A logistic generalized additive model was chosen as the statistical approach to assess the impact of all listed variables on CB. Results: 70 women with newly diagnosed breast cancer (mean age 63.3 ± 15.4 years) were included. The most common location of breast cancer was the upper outer quadrant (40.0%) in the left breast (52.9%). An invasive ductal adenocarcinoma (88.6%) with a high tumor proliferation index (mean ki-67 expression 35.1 ± 24.5%) and molecular subtype B (51.4%) was by far the most detected breast tumor. Most PTs displayed on hybrid imaging a greater volume (12.8 ± 30.4 cm3) with hypermetabolism (mean ± SD of PT maximum SUVmax, SUVmean, MTV, and TLG, respectively: 8.1 ± 7.2, 4.9 ± 4.4, 12.7 ± 30.4, and 47.4 ± 80.2). Higher PT volume (p < 0.01), SUVmax (p = 0.04), SUVmean (p = 0.03), and MTV (<0.01) significantly compromised CB. A considerable majority of patients survived throughout this period (92.8%), while five women died (7.2%). In fact, the OS was 31.7 ± 14.2 months and PFS was 30.2 ± 14.1 months. A multivariate prediction model for CB with excellent accuracy could be developed using age, body mass index (BMI), T, M, PT TLG, and PT volume as predictive parameters. PT volume and PT TLG demonstrated a significant influence on CB in lower ranges; however, beyond a specific cutoff value (respectively, 29.52 cm3 for PT volume and 161.95 cm3 for PT TLG), their impact on CB only reached negligible levels. Ultimately, the absence of distant metastasis M displayed a strong positive impact on CB far ahead of the tumor size T (standardized average estimate 0.88 vs. 0.4). Conclusions: Our results emphasized the pivotal role played by FDG-PET/CT prior to treatment in forecasting treatment outcomes in women newly diagnosed with breast cancer. Nevertheless, careful consideration is required when selecting the methodological approach, as our innovative statistical techniques unveiled non-linear influences of predictive biomarkers on treatment benefit, highlighting also the importance of early breast cancer diagnosis.
Collapse
Affiliation(s)
- Ken Kudura
- Department of Nuclear Medicine, Sankt Clara Hospital, 4058 Basel, Switzerland
- Department of Radiology, Sankt Clara Hospital, 4058 Basel, Switzerland
- Sankt Clara Research, 4002 Basel, Switzerland
- Division of Nuclear Medicine, Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Nando Ritz
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
| | - Arnoud J. Templeton
- Sankt Clara Research, 4002 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
| | - Tim Kutzker
- Faculty of Applied Statistics, Humboldt University, 10117 Berlin, Germany
| | - Martin H. K. Hoffmann
- Department of Nuclear Medicine, Sankt Clara Hospital, 4058 Basel, Switzerland
- Department of Radiology, Sankt Clara Hospital, 4058 Basel, Switzerland
| | - Kwadwo Antwi
- Department of Nuclear Medicine, Sankt Clara Hospital, 4058 Basel, Switzerland
- Department of Radiology, Sankt Clara Hospital, 4058 Basel, Switzerland
| | - Daniel R. Zwahlen
- Department of Radiooncology, Cantonal Hospital Winterthur, 8400 Winterthur, Switzerland
| | - Michael C. Kreissl
- Division of Nuclear Medicine, Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Robert Foerster
- Department of Radiooncology, Cantonal Hospital Winterthur, 8400 Winterthur, Switzerland
| |
Collapse
|
24
|
Chen X, Hu P, Yu H, Tan H, He Y, Cao S, Zhou Y, Shi H. Head-to-head intra-individual comparison of total-body 2-[ 18F]FDG PET/CT and digital PET/CT in patients with malignant tumor: how sensitive could it be? Eur Radiol 2023; 33:7890-7898. [PMID: 37338551 DOI: 10.1007/s00330-023-09825-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 03/14/2023] [Accepted: 03/26/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVES To comparatively evaluate the lesion-detecting ability of 2-[18F]FDG total-body PET/CT (TB PET/CT) and conventional digital PET/CT. METHODS This study enrolled 67 patients (median age, 65 years; 24 female and 43 male patients) who underwent a TB PET/CT scan and a conventional digital PET/CT scan after a single 2-[18F]FDG injection (3.7 MBq/kg). Raw PET data for TB PET/CT were acquired over the course of 5 min, and images were reconstructed using data from the first 1, 2, 3, and 4 min and the entire 5 min (G1, G2, G3, G4, and G5, respectively). The conventional digital PET/CT scan acquired in 2-3 min per bed (G0). Two nuclear medicine physicians independently assessed subjective image quality using a 5-point Likert scale and recorded the number of 2-[18F]FDG-avid lesions. RESULTS A total of 241 lesions (69 primary lesions; 32 liver, lung, and peritoneum metastases; and 140 regional lymph nodes) among 67 patients with various types of cancer were analyzed. The subjective image quality score and SNR (signal-to-noise ratio) increased gradually from G1 to G5, and these values were significantly higher than the values at G0 (all p < 0.05). Compared to conventional PET/CT, G4 and G5 of TB PET/CT detected an additional 15 lesions (2 primary lesions; 5 liver, lung, and peritoneum lesions; and 8 lymph node metastases). CONCLUSION TB PET/CT was more sensitive than conventional whole-body PET/CT in detecting small (4.3 mm, maximum standardized uptake value (SUVmax) of 1.0) or low-uptake (tumor-to-liver ratio of 1.6, SUVmax of 4.1) lesions. CLINICAL RELEVANCE STATEMENT This study explored the gain of the image quality and lesion detectability of TB PET/CT, compared to conventional PET/CT, and recommended the appropriate acquisition time for TB PET/CT in clinical practice with an ordinary 2-[18F] FDG dose. KEY POINTS • TB PET/CT increases the effective sensitivity to approximately 40 times that of conventional PET scanners. • The subjective image quality score and signal-to-noise ratio of TB PET/CT from G1 to G5 were better than those of conventional PET/CT. • 2-[18F]FDG TB PET/CT with a 4-min acquisition time at a regular tracer dose detected an additional 15 lesions compared to conventional PET/CT.
Collapse
Affiliation(s)
- Xueqi Chen
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Pengcheng Hu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Haojun Yu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Yibo He
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Shuangliang Cao
- Central Research Institute, United Imaging Healthcare Group Co., Ltd., Shanghai, 201807, China
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare Group Co., Ltd., Shanghai, 201807, China
- School of Biomedical Engineering, Shanghai Tech University, Shanghai, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| |
Collapse
|
25
|
Gligorov J, Benderra MA, Barthere X, de Forceville L, Antoine EC, Cottu PH, Delaloge S, Pierga JY, Belkacemi Y, Houvenaegel G, Pujol P, Rivera S, Spielmann M, Penault-Llorca F, Namer M. Recommandations francophones pour la pratique clinique concernant la prise en charge des cancers du sein de Saint-Paul-de-Vence 2022-2023. Bull Cancer 2023; 110:10S1-10S43. [PMID: 38061827 DOI: 10.1016/s0007-4551(23)00473-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
With more than 60,000 new cases of breast cancer in mainland France in 2023 and 8% of all cancer deaths, breast cancer is the leading cancer in women in terms of incidence and mortality. While the number of new cases has almost doubled in 30 years, the percentage of patients at all stages alive at 5 years (87%) and 10 years (76%) testifies to the major progress made in terms of screening, characterisation and treatment. However, this progress, rapid as it is, needs to be evaluated and integrated into an overall strategy, taking into account the characteristics of the disease (stage and biology), as well as those of the patients being treated. These are the objectives of the St Paul-de-Vence recommendations for clinical practice. We report here the summary of the votes, discussions and conclusions of the Saint-Paul-de-Vence 2022-2023 RPCs.
Collapse
Affiliation(s)
- Joseph Gligorov
- Institut universitaire de cancérologie AP-HP Sorbonne université, Paris, France.
| | | | - Xavier Barthere
- Institut universitaire de cancérologie AP-HP Sorbonne université, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hirata K, Kamagata K, Ueda D, Yanagawa M, Kawamura M, Nakaura T, Ito R, Tatsugami F, Matsui Y, Yamada A, Fushimi Y, Nozaki T, Fujita S, Fujioka T, Tsuboyama T, Fujima N, Naganawa S. From FDG and beyond: the evolving potential of nuclear medicine. Ann Nucl Med 2023; 37:583-595. [PMID: 37749301 DOI: 10.1007/s12149-023-01865-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/09/2023] [Indexed: 09/27/2023]
Abstract
The radiopharmaceutical 2-[fluorine-18]fluoro-2-deoxy-D-glucose (FDG) has been dominantly used in positron emission tomography (PET) scans for over 20 years, and due to its vast utility its applications have expanded and are continuing to expand into oncology, neurology, cardiology, and infectious/inflammatory diseases. More recently, the addition of artificial intelligence (AI) has enhanced nuclear medicine diagnosis and imaging with FDG-PET, and new radiopharmaceuticals such as prostate-specific membrane antigen (PSMA) and fibroblast activation protein inhibitor (FAPI) have emerged. Nuclear medicine therapy using agents such as [177Lu]-dotatate surpasses conventional treatments in terms of efficacy and side effects. This article reviews recently established evidence of FDG and non-FDG drugs and anticipates the future trajectory of nuclear medicine.
Collapse
Affiliation(s)
- Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan.
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Daiju Ueda
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo Chuo-ku, Kumamoto, 860-8556, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Akira Yamada
- Department of Radiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-2621, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-0016, Japan
| | - Shohei Fujita
- Department of Radiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, N15, W5, Kita-ku, Sapporo, 060-8638, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
27
|
Vaz SC, Oliveira C, Teixeira R, Arias-Bouda LMP, Cardoso MJ, de Geus-Oei LF. The current role of nuclear medicine in breast cancer. Br J Radiol 2023; 96:20221153. [PMID: 37097285 PMCID: PMC10461286 DOI: 10.1259/bjr.20221153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 04/26/2023] Open
Abstract
Breast cancer is the most common cancer in females worldwide. Nuclear medicine plays an important role in patient management, not only in initial staging, but also during follow-up. Radiopharmaceuticals to study breast cancer have been used for over 50 years, and several of these are still used in clinical practice, according to the most recent guideline recommendations.In this critical review, an overview of nuclear medicine procedures used during the last decades is presented. Current clinical indications of each of the conventional nuclear medicine and PET/CT examinations are the focus of this review, and are objectively provided. Radionuclide therapies are also referred, mainly summarising the methods to palliate metastatic bone pain. Finally, recent developments and future perspectives in the field of nuclear medicine are discussed. In this context, the promising potential of new radiopharmaceuticals not only for diagnosis, but also for therapy, and the use of quantitative imaging features as potential biomarkers, are addressed.Despite the long way nuclear medicine has gone through, it looks like it will continue to benefit clinical practice, paving the way to improve healthcare provided to patients with breast cancer.
Collapse
Affiliation(s)
| | - Carla Oliveira
- Nuclear Medicine-Radiopharmacology, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | - Ricardo Teixeira
- Nuclear Medicine-Radiopharmacology, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | | | | | | |
Collapse
|
28
|
Caracciolo M, Castello A, Urso L, Borgia F, Marzola MC, Uccelli L, Cittanti C, Bartolomei M, Castellani M, Lopci E. Comparison of MRI vs. [ 18F]FDG PET/CT for Treatment Response Evaluation of Primary Breast Cancer after Neoadjuvant Chemotherapy: Literature Review and Future Perspectives. J Clin Med 2023; 12:5355. [PMID: 37629397 PMCID: PMC10455346 DOI: 10.3390/jcm12165355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
The purpose of this systematic review was to investigate the diagnostic accuracy of [18F]FDG PET/CT and breast MRI for primary breast cancer (BC) response assessment after neoadjuvant chemotherapy (NAC) and to evaluate future perspectives in this setting. We performed a critical review using three bibliographic databases (i.e., PubMed, Scopus, and Web of Science) for articles published up to the 6 June 2023, starting from 2012. The Quality Assessment of Diagnosis Accuracy Study (QUADAS-2) tool was adopted to evaluate the risk of bias. A total of 76 studies were identified and screened, while 14 articles were included in our systematic review after a full-text assessment. The total number of patients included was 842. Eight out of fourteen studies (57.1%) were prospective, while all except one study were conducted in a single center. In the majority of the included studies (71.4%), 3.0 Tesla (T) MRI scans were adopted. Three out of fourteen studies (21.4%) used both 1.5 and 3.0 T MRI and only two used 1.5 T. [18F]FDG was the radiotracer used in every study included. All patients accepted surgical treatment after NAC and each study used pathological complete response (pCR) as the reference standard. Some of the studies have demonstrated the superiority of [18F]FDG PET/CT, while others proved that MRI was superior to PET/CT. Recent studies indicate that PET/CT has a better specificity, while MRI has a superior sensitivity for assessing pCR in BC patients after NAC. The complementary value of the combined use of these modalities represents probably the most important tool to improve diagnostic performance in this setting. Overall, larger prospective studies, possibly randomized, are needed, hopefully evaluating PET/MR and allowing for new tools, such as radiomic parameters, to find a proper place in the setting of BC patients undergoing NAC.
Collapse
Affiliation(s)
- Matteo Caracciolo
- Nuclear Medicine Unit, Oncological Medical and Specialists Department, University Hospital of Ferrara, 44124 Ferrara, Italy
| | - Angelo Castello
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Luca Urso
- Department of Nuclear Medicine PET/CT Centre, S. Maria della Misericordia Hospital, 45100 Rovigo, Italy
| | - Francesca Borgia
- Nuclear Medicine Unit, Oncological Medical and Specialists Department, University Hospital of Ferrara, 44124 Ferrara, Italy
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Maria Cristina Marzola
- Department of Nuclear Medicine PET/CT Centre, S. Maria della Misericordia Hospital, 45100 Rovigo, Italy
| | - Licia Uccelli
- Nuclear Medicine Unit, Oncological Medical and Specialists Department, University Hospital of Ferrara, 44124 Ferrara, Italy
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Corrado Cittanti
- Nuclear Medicine Unit, Oncological Medical and Specialists Department, University Hospital of Ferrara, 44124 Ferrara, Italy
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Mirco Bartolomei
- Nuclear Medicine Unit, Oncological Medical and Specialists Department, University Hospital of Ferrara, 44124 Ferrara, Italy
| | - Massimo Castellani
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS—Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| |
Collapse
|
29
|
Dayes IS, Metser U, Hodgson N, Parpia S, Eisen AF, George R, Blanchette P, Cil TD, Arnaout A, Chan A, Levine MN. Impact of 18F-Labeled Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography Versus Conventional Staging in Patients With Locally Advanced Breast Cancer. J Clin Oncol 2023; 41:3909-3916. [PMID: 37235845 DOI: 10.1200/jco.23.00249] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/08/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
PURPOSE Patients with locally advanced breast cancer (LABC) typically undergo staging tests at presentation. If staging does not detect metastases, treatment consists of curative intent combined modality therapy (neoadjuvant chemotherapy, surgery, and regional radiation). Positron emission tomography-computed tomography (PET-CT) may detect more asymptomatic distant metastases, but the evidence is based on uncontrolled studies. METHODS For inclusion, patients had histological evidence of invasive ductal carcinoma of the breast and TNM stage III or IIb (T3N0, but not T2N1). Consenting patients from six regional cancer centers in Ontario were randomly assigned to 18F-labeled fluorodeoxyglucose PET-CT or conventional staging (bone scan, CT of the chest/abdomen and pelvis). The primary end point was upstaging to stage IV. A key secondary outcome was receiving curative intent combined modality therapy (ClinicalTrials.gov identifier: NCT02751710). RESULTS Between December 2016 and April 2022, 184 patients were randomly assigned to whole-body PET-CT and 185 patients to conventional staging. Forty-three (23%) PET-CT patients were upstaged to stage IV compared with 21 (11%) conventional staged patients (absolute difference, 12.3% [95% CI, 3.9 to 19.9]; P = .002). Consequently, treatment was changed in 35 (81.3%) of 43 upstaged PET-CT patients and 20 (95.2%) of the 21 upstaged conventional patients. Subsequently, 149 (81%) patients in the PET-CT group received combined modality treatment versus 165 (89.2%) patients in the conventional staging group (absolute difference, 8.2% [95% CI, 0.1 to 15.4]; P = .03). CONCLUSION In patients with LABC, PET-CT detected more distant metastases than conventional staging, and fewer PET-CT patients received combined modality therapy. Our randomized trial demonstrates the utility of the PET-CT staging strategy.
Collapse
Affiliation(s)
- Ian S Dayes
- Department of Oncology, McMaster University, Hamilton, ON, Canada
- Juravinski Cancer Centre-Hamilton Health Sciences, Hamilton, ON, Canada
- Ontario Clinical Oncology Group, Hamilton, ON, Canada
- Escarpment Cancer Research Institute, Hamilton, ON, Canada
| | - Ur Metser
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- University Health Network Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Nicole Hodgson
- Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Sameer Parpia
- Department of Oncology, McMaster University, Hamilton, ON, Canada
- Ontario Clinical Oncology Group, Hamilton, ON, Canada
- Escarpment Cancer Research Institute, Hamilton, ON, Canada
| | - Andrea F Eisen
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Sunnybrook Health Sciences Centre-Odette Cancer Centre, Toronto, ON, Canada
- Ontario Health, Toronto, ON, Canada
| | - Ralph George
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- St Michael's Hospital, Toronto, ON, Canada
| | - Phillip Blanchette
- Department of Oncology, Western University, London, ON, Canada
- London Health Sciences Regional Cancer Program, London, ON, Canada
| | - Tulin D Cil
- University Health Network Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Angel Arnaout
- Department of Surgery, Ottawa University, Ottawa, ON, Canada
- Ottawa Hospital Cancer Centre, Ottawa, ON, Canada
| | - Adrien Chan
- Northern Ontario School of Medicine, Thunder Bay ON, Canada
- Thunder Bay Regional Health Sciences Cancer Centre, Thunder Bay, ON, Canada
| | - Mark N Levine
- Department of Oncology, McMaster University, Hamilton, ON, Canada
- Juravinski Cancer Centre-Hamilton Health Sciences, Hamilton, ON, Canada
- Ontario Clinical Oncology Group, Hamilton, ON, Canada
- Escarpment Cancer Research Institute, Hamilton, ON, Canada
| |
Collapse
|
30
|
Lim CH, Choi JY, Choi JH, Lee JH, Lee J, Lim CW, Kim Z, Woo SK, Park SB, Park JM. Development and External Validation of 18F-FDG PET-Based Radiomic Model for Predicting Pathologic Complete Response after Neoadjuvant Chemotherapy in Breast Cancer. Cancers (Basel) 2023; 15:3842. [PMID: 37568658 PMCID: PMC10417050 DOI: 10.3390/cancers15153842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The aim of our retrospective study is to develop and externally validate an 18F-FDG PET-derived radiomics model for predicting pathologic complete response (pCR) after neoadjuvant chemotherapy (NAC) in breast cancer patients. A total of 87 breast cancer patients underwent curative surgery after NAC at Soonchunhyang University Seoul Hospital and were randomly assigned to a training cohort and an internal validation cohort. Radiomic features were extracted from pretreatment PET images. A radiomic-score model was generated using the LASSO method. A combination model incorporating significant clinical variables was constructed. These models were externally validated in a separate cohort of 28 patients from Soonchunhyang University Buscheon Hospital. The model performances were assessed using area under the receiver operating characteristic (AUC). Seven radiomic features were selected to calculate the radiomic-score. Among clinical variables, human epidermal growth factor receptor 2 status was an independent predictor of pCR. The radiomic-score model achieved good discriminability, with AUCs of 0.963, 0.731, and 0.729 for the training, internal validation, and external validation cohorts, respectively. The combination model showed improved predictive performance compared to the radiomic-score model alone, with AUCs of 0.993, 0.772, and 0.906 in three cohorts, respectively. The 18F-FDG PET-derived radiomic-based model is useful for predicting pCR after NAC in breast cancer.
Collapse
Affiliation(s)
- Chae Hong Lim
- Department of Nuclear Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea;
| | - Joon Young Choi
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea;
| | - Joon Ho Choi
- Department of Nuclear Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea
| | - Jun-Hee Lee
- Department of Surgery, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
| | - Jihyoun Lee
- Department of Surgery, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
| | - Cheol Wan Lim
- Department of Surgery, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea
| | - Zisun Kim
- Department of Surgery, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea
| | - Sang-Keun Woo
- Division of Applied RI, Korea Institutes of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Soo Bin Park
- Department of Nuclear Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea;
| | - Jung Mi Park
- Department of Nuclear Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea
| |
Collapse
|
31
|
Höller A, Nguyen-Sträuli BD, Frauchiger-Heuer H, Ring A. "Diagnostic and Prognostic Biomarkers of Luminal Breast Cancer: Where are We Now?". BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:525-540. [PMID: 37533589 PMCID: PMC10392911 DOI: 10.2147/bctt.s340741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/12/2023] [Indexed: 08/04/2023]
Abstract
Luminal breast cancers are hormone receptor (estrogen and/or progesterone) positive that are further divided into HER2-negative luminal A and HER2-positive luminal B subtypes. According to currently accepted convention, they represent the most common subtypes of breast cancer, accounting for approximately 70% of cases. Biomarkers play a critical role in the functional characterization, prognostication, and therapeutic prediction, rendering them indispensable for the clinical management of invasive breast cancer. Traditional biomarkers include clinicopathological parameters, which are increasingly extended by genetic and other molecular markers, enabling the comprehensive characterization of patients with luminal breast cancer. Liquid biopsies capturing and analyzing circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) are emerging technologies that envision personalized management through precision oncology. This article reviews key biomarkers in luminal breast cancer and ongoing developments.
Collapse
Affiliation(s)
- Anna Höller
- Department of Gynecology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bich Doan Nguyen-Sträuli
- Department of Gynecology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Heike Frauchiger-Heuer
- Department of Gynecology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alexander Ring
- Department of Gynecology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Jia T, Lv Q, Cai X, Ge S, Sang S, Zhang B, Yu C, Deng S. Radiomic signatures based on pretreatment 18F-FDG PET/CT, combined with clinicopathological characteristics, as early prognostic biomarkers among patients with invasive breast cancer. Front Oncol 2023; 13:1210125. [PMID: 37576897 PMCID: PMC10415070 DOI: 10.3389/fonc.2023.1210125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
Purpose The aim of this study was to investigate the predictive role of fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) in the prognostic risk stratification of patients with invasive breast cancer (IBC). To achieve this, we developed a clinicopathologic-radiomic-based model (C-R model) and established a nomogram that could be utilized in clinical practice. Methods We retrospectively enrolled a total of 91 patients who underwent preoperative 18F-FDG PET/CT and randomly divided them into training (n=63) and testing cohorts (n=28). Radiomic signatures (RSs) were identified using the least absolute shrinkage and selection operator (LASSO) regression algorithm and used to compute the radiomic score (Rad-score). Patients were assigned to high- and low-risk groups based on the optimal cut-off value of the receiver operating characteristic (ROC) curve analysis for both Rad-score and clinicopathological risk factors. Univariate and multivariate Cox regression analyses were performed to determine the association between these variables and progression-free survival (PFS) or overall survival (OS). We then plotted a nomogram integrating all these factors to validate the predictive performance of survival status. Results The Rad-score, age, clinical M stage, and minimum standardized uptake value (SUVmin) were identified as independent prognostic factors for predicting PFS, while only Rad-score, age, and clinical M stage were found to be prognostic factors for OS in the training cohort. In the testing cohort, the C-R model showed superior performance compared to single clinical or radiomic models. The concordance index (C-index) values for the C-R model, clinical model, and radiomic model were 0.816, 0.772, and 0.647 for predicting PFS, and 0.882, 0.824, and 0.754 for OS, respectively. Furthermore, decision curve analysis (DCA) and calibration curves demonstrated that the C-R model had a good ability for both clinical net benefit and application. Conclusion The combination of clinicopathological risks and baseline PET/CT-derived Rad-score could be used to evaluate the prognosis in patients with IBC. The predictive nomogram based on the C-R model further enhanced individualized estimation and allowed for more accurate prediction of patient outcomes.
Collapse
Affiliation(s)
- Tongtong Jia
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingfu Lv
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaowei Cai
- Department of Nuclear Medicine, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
| | - Shushan Ge
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shibiao Sang
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chunjing Yu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Shengming Deng
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
33
|
Werner S, Sekler J, Gückel B, la Fougère C, Nikolaou K, Pfannenberg C, Preibsch H, Engler T, Olthof SC. Influence of [ 18F]FDG-PET/CT on Clinical Management Decisions in Breast Cancer Patients-A PET/CT Registry Study. Diagnostics (Basel) 2023; 13:2420. [PMID: 37510164 PMCID: PMC10378166 DOI: 10.3390/diagnostics13142420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/30/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
There is a lack of evidence regarding the clinical impact of [18F]fluorodeoxyglucose positron emission tomography/computed tomography ([18F]FDG-PET/CT, hereinafter referred to as PET/CT), especially regarding management changes and their link to overall survival. We analyzed 52 PET/CTs in 47 stage I-IV breast cancer patients, selected from a prospective oncological PET/CT registry. Indications for PET/CT were primary staging (n = 15), restaging (n = 17), and suspected recurrence (n = 20). PET/CT-induced management changes were categorized as major or minor. PET/CT-induced management changes in 41 of 52 scans (78.8%; 38 of 47 patients (80.9%)), of which major changes were suggested in 18 of 52 scans (34.6%, 17 of 47 patients, 36.2%). PET/CT downstaged 6 of 15 primary staging patients, excluding distant metastases. Major management changes were documented in 3 of 17 restaging exams. PET/CT ruled out clinically suspected recurrence in 6 of 20 cases and confirmed it in 11 of 20. In three cases, locoregional recurrence had already been diagnosed via biopsy. In 30 of 52 exams, additional diagnostic tests were avoided, of which 13 were invasive. PET/CT-based management changes resulted in a 5-year survival rate of 72.3% for the whole study group, 93.3% for the staging group, 53.8% for the restaging group, and 68.4% for the recurrence group. This study shows that PET/CT significantly impacts clinical management decisions in breast cancer patients in different clinical scenarios, potentially determining the patient's tumor stage as the basis for further therapy more reliably and by avoiding unnecessary diagnostic tests.
Collapse
Affiliation(s)
- Sebastian Werner
- Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany
| | - Julia Sekler
- Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital of Tuebingen, Otfried-Mueller-Straße 14, 72076 Tuebingen, Germany
| | - Brigitte Gückel
- Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital of Tuebingen, Otfried-Mueller-Straße 14, 72076 Tuebingen, Germany
| | - Christian la Fougère
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital of Tuebingen, Otfried-Mueller-Straße 14, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Faculty of Medicine, Eberhard Karls University, 72076 Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, 72076 Tuebingen, Germany
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Faculty of Medicine, Eberhard Karls University, 72076 Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, 72076 Tuebingen, Germany
| | - Christina Pfannenberg
- Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany
| | - Heike Preibsch
- Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany
| | - Tobias Engler
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Faculty of Medicine, Eberhard Karls University, 72076 Tuebingen, Germany
- Department of Women's Health, University Hospital Tuebingen, Calwer-Straße 7, 72076 Tuebingen, Germany
| | - Susann-Cathrin Olthof
- Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany
| |
Collapse
|
34
|
Jia T, Lv Q, Zhang B, Yu C, Sang S, Deng S. Assessment of androgen receptor expression in breast cancer patients using 18 F-FDG PET/CT radiomics and clinicopathological characteristics. BMC Med Imaging 2023; 23:93. [PMID: 37460990 PMCID: PMC10353086 DOI: 10.1186/s12880-023-01052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVE In the present study, we mainly aimed to predict the expression of androgen receptor (AR) in breast cancer (BC) patients by combing radiomic features and clinicopathological factors in a non-invasive machine learning way. MATERIALS AND METHODS A total of 48 BC patients, who were initially diagnosed by 18F-FDG PET/CT, were retrospectively enrolled in this study. LIFEx software was used to extract radiomic features based on PET and CT data. The most useful predictive features were selected by the LASSO (least absolute shrinkage and selection operator) regression and t-test. Radiomic signatures and clinicopathologic characteristics were incorporated to develop a prediction model using multivariable logistic regression analysis. The receiver operating characteristic (ROC) curve, Hosmer-Lemeshow (H-L) test, and decision curve analysis (DCA) were conducted to assess the predictive efficiency of the model. RESULTS In the univariate analysis, the metabolic tumor volume (MTV) was significantly correlated with the expression of AR in BC patients (p < 0.05). However, there only existed feeble correlations between estrogen receptor (ER), progesterone receptor (PR), and AR status (p = 0.127, p = 0.061, respectively). Based on the binary logistic regression method, MTV, SHAPE_SphericityCT (CT Sphericity from SHAPE), and GLCM_ContrastCT (CT Contrast from grey-level co-occurrence matrix) were included in the prediction model for AR expression. Among them, GLCM_ContrastCT was an independent predictor of AR status (OR = 9.00, p = 0.018). The area under the curve (AUC) of ROC in this model was 0.832. The p-value of the H-L test was beyond 0.05. CONCLUSIONS A prediction model combining radiomic features and clinicopathological characteristics could be a promising approach to predict the expression of AR and noninvasively screen the BC patients who could benefit from anti-AR regimens.
Collapse
Affiliation(s)
- Tongtong Jia
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Qingfu Lv
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Bin Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Chunjing Yu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China.
| | - Shibiao Sang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Shengming Deng
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
35
|
Schwenck J, Sonanini D, Cotton JM, Rammensee HG, la Fougère C, Zender L, Pichler BJ. Advances in PET imaging of cancer. Nat Rev Cancer 2023:10.1038/s41568-023-00576-4. [PMID: 37258875 DOI: 10.1038/s41568-023-00576-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 06/02/2023]
Abstract
Molecular imaging has experienced enormous advancements in the areas of imaging technology, imaging probe and contrast development, and data quality, as well as machine learning-based data analysis. Positron emission tomography (PET) and its combination with computed tomography (CT) or magnetic resonance imaging (MRI) as a multimodality PET-CT or PET-MRI system offer a wealth of molecular, functional and morphological data with a single patient scan. Despite the recent technical advances and the availability of dozens of disease-specific contrast and imaging probes, only a few parameters, such as tumour size or the mean tracer uptake, are used for the evaluation of images in clinical practice. Multiparametric in vivo imaging data not only are highly quantitative but also can provide invaluable information about pathophysiology, receptor expression, metabolism, or morphological and functional features of tumours, such as pH, oxygenation or tissue density, as well as pharmacodynamic properties of drugs, to measure drug response with a contrast agent. It can further quantitatively map and spatially resolve the intertumoural and intratumoural heterogeneity, providing insights into tumour vulnerabilities for target-specific therapeutic interventions. Failure to exploit and integrate the full potential of such powerful imaging data may lead to a lost opportunity in which patients do not receive the best possible care. With the desire to implement personalized medicine in the cancer clinic, the full comprehensive diagnostic power of multiplexed imaging should be utilized.
Collapse
Affiliation(s)
- Johannes Schwenck
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
| | - Dominik Sonanini
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Medical Oncology and Pulmonology, Department of Internal Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Jonathan M Cotton
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
| | - Hans-Georg Rammensee
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
- Department of Immunology, IFIZ Institute for Cell Biology, Eberhard Karls University of Tübingen, Tübingen, Germany
- German Cancer Research Center, German Cancer Consortium DKTK, Partner Site Tübingen, Tübingen, Germany
| | - Christian la Fougère
- Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
- German Cancer Research Center, German Cancer Consortium DKTK, Partner Site Tübingen, Tübingen, Germany
| | - Lars Zender
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
- Medical Oncology and Pulmonology, Department of Internal Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany
- German Cancer Research Center, German Cancer Consortium DKTK, Partner Site Tübingen, Tübingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany.
- German Cancer Research Center, German Cancer Consortium DKTK, Partner Site Tübingen, Tübingen, Germany.
| |
Collapse
|
36
|
Bonnin D, Ladoire S, Briot N, Bertaut A, Drouet C, Cochet A, Alberini JL. Performance of [18F]FDG-PET/CT Imaging in First Recurrence of Invasive Lobular Carcinoma. J Clin Med 2023; 12:jcm12082916. [PMID: 37109252 PMCID: PMC10144846 DOI: 10.3390/jcm12082916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Invasive lobular carcinoma accounts for 10 to 15% of all breast cancers. The first objective of this retrospective study was to assess the diagnostic performance of FDG-PET/CT scanning in women previously treated for invasive lobular carcinoma with suspected first recurrence. The secondary objectives were to evaluate the impact of PET/CT in a change in treatment and its prognostic value on specific survival. METHODS Patients in whom a PET/CT scan was performed from January 2011 to July 2019 in our Cancer Research Center were enrolled. Recurrence was suspected based on clinical symptoms, abnormal findings on conventional imaging, and/or elevated tumor markers. The diagnosis of recurrence was established by the oncologist after integration of all clinical, biological, histological, imaging, and follow-up data. Prognostic factors of recurrence as predicted by PET were determined using univariate logistic regression. KI67, mitotic index, or grade of mitosis were tested. Survival curves were compared using the log-rank test. Sixty-four patients (mean age: 60.3; SD = 12.4 years) were enrolled. The average time from initial diagnosis of the primary tumor to suspicion of recurrence was 5.2 ± 4.1 years. Forty-eight patients (75%) were judged to have recurrence by the oncologist: 7 local and 41 metastatic, with mainly bone (n = 24), lymph node (n = 14) and liver (n = 10) metastases. RESULTS Sensitivity, specificity, and positive and negative predictive values of PET/CT to predict recurrence were, respectively: 87%, 87%, 95%, and 70%. SUVmax at recurrence sites was generally high (mean: 6.4; SD = 2.9). False negative PET/CT results occurred with local (n = 2), peritoneal (n = 2), meningeal (n = 1), or bladder (n = 1) recurrences. In 40 patients with available histopathological data from suspected sites of recurrence, 30 PET/CT were true positive. In four patients, primary lung (n = 1) or gastric (n = 1) tumors or lymphomas (n = 2) were found. The detection of a recurrence resulted in a change in treatment in 44/48 patients (92%). No association between recurrence predicted by PET and biological biomarkers was found. Median specific survival appears shorter in patients with metastatic recurrence versus patients with local or no recurrence on PET/CT (p = 0.067). CONCLUSIONS FDG-PET/CT is an effective and reliable tool for the detection of invasive lobular carcinoma recurrence, although certain recurrence sites specific to this histological type can impair its diagnostic performance.
Collapse
Affiliation(s)
- David Bonnin
- Department of Nuclear Medicine, Georges Francois Leclerc Research Cancer Center, 21079 Dijon, France
| | - Sylvain Ladoire
- Department of Medical Oncology, Georges Francois Leclerc Research Cancer Center; 21000 Dijon, France
- Research Center INSERM LNC-UMR1231, 21000 Dijon, France
| | - Nathalie Briot
- Department of Methodology and Biostatistics, Georges-Francois Leclerc Research Cancer Center, 21000 Dijon, France
| | - Aurélie Bertaut
- Department of Methodology and Biostatistics, Georges-Francois Leclerc Research Cancer Center, 21000 Dijon, France
| | - Clément Drouet
- Department of Nuclear Medicine, Georges Francois Leclerc Research Cancer Center, 21079 Dijon, France
| | - Alexandre Cochet
- Department of Nuclear Medicine, Georges Francois Leclerc Research Cancer Center, 21079 Dijon, France
- Laboratoire ICMUB, University Bourgogne, 21000 Dijon, France
| | - Jean-Louis Alberini
- Department of Nuclear Medicine, Georges Francois Leclerc Research Cancer Center, 21079 Dijon, France
- Laboratoire ICMUB, University Bourgogne, 21000 Dijon, France
- Centre Georges-Francois Leclerc, 1 rue du Pr Marion, 21079 Dijon CEDEX, France
| |
Collapse
|
37
|
de Mooij CM, Ploumen RAW, Nelemans PJ, Mottaghy FM, Smidt ML, van Nijnatten TJA. The influence of receptor expression and clinical subtypes on baseline [18F]FDG uptake in breast cancer: systematic review and meta-analysis. EJNMMI Res 2023; 13:5. [PMID: 36689007 PMCID: PMC9871105 DOI: 10.1186/s13550-023-00953-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND To quantify the relationship between [18F]FDG uptake of the primary tumour measured by PET-imaging with immunohistochemical (IHC) expression of ER, PR, HER2, Ki-67, and clinical subtypes based on these markers in breast cancer patients. METHODS PubMed and Embase were searched for studies that compared SUVmax between breast cancer patients negative and positive for IHC expression of ER, PR, HER2, Ki-67, and clinical subtypes based on these markers. Two reviewers independently screened the studies and extracted the data. Standardized mean differences (SMD) and 95% confidence intervals (CIs) were estimated by using DerSimonian-Laird random-effects models. P values less than or equal to 5% indicated statistically significant results. RESULTS Fifty studies were included in the final analysis. SUVmax is significantly higher in ER-negative (31 studies, SMD 0.66, 0.56-0.77, P < 0.0001), PR-negative (30 studies, SMD 0.56; 0.40-0.71, P < 0.0001), HER2-positive (32 studies, SMD - 0.29, - 0.49 to - 0.10, P = 0.0043) or Ki-67-positive (19 studies, SMD - 0.77; - 0.93 to - 0.61, P < 0.0001) primary tumours compared to their counterparts. The majority of clinical subtypes were either luminal A (LA), luminal B (LB), HER2-positive or triple negative breast cancer (TNBC). LA is associated with significantly lower SUVmax compared to LB (11 studies, SMD - 0.49, - 0.68 to - 0.31, P = 0.0001), HER2-positive (15 studies, SMD - 0.91, - 1.21 to - 0.61, P < 0.0001) and TNBC (17 studies, SMD - 1.21, - 1.57 to - 0.85, P < 0.0001); and LB showed significantly lower uptake compared to TNBC (10 studies, SMD - 0.77, - 1.05 to - 0.49, P = 0.0002). Differences in SUVmax between LB and HER2-positive (9 studies, SMD - 0.32, - 0.88 to 0.24, P = 0.2244), and HER2-positive and TNBC (17 studies, SMD - 0.29, - 0.61 to 0.02, P = 0.0667) are not significant. CONCLUSION Primary tumour SUVmax is significantly higher in ER-negative, PR-negative, HER2-positive and Ki-67-positive breast cancer patients. Luminal tumours have the lowest and TNBC tumours the highest SUVmax. HER2 overexpression has an intermediate effect.
Collapse
Affiliation(s)
- Cornelis M de Mooij
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands.
- Department of Surgery, Maastricht University Medical Centre+, Maastricht, The Netherlands.
- GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| | - Roxanne A W Ploumen
- Department of Surgery, Maastricht University Medical Centre+, Maastricht, The Netherlands
- GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Patty J Nelemans
- Department of Epidemiology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Felix M Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
- GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Department of Nuclear Medicine, University Hospital RWTH Aachen University, Aachen, Germany
| | - Marjolein L Smidt
- Department of Surgery, Maastricht University Medical Centre+, Maastricht, The Netherlands
- GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Thiemo J A van Nijnatten
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
- GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
38
|
Park HL, Lee SW, Hong JH, Lee J, Lee A, Kwon SJ, Park SY, Yoo IR. Prognostic impact of 18F-FDG PET/CT in pathologic stage II invasive ductal carcinoma of the breast: re-illuminating the value of PET/CT in intermediate-risk breast cancer. Cancer Imaging 2023; 23:2. [PMID: 36600314 DOI: 10.1186/s40644-022-00519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The aim of this study is to investigate the impact of 18F-FDG PET/CT on prognosis of stage II invasive ductal carcinoma (IDC) of the breast primarily treated with surgery. METHODS The clinical records of 297 consecutive IDC with preoperative PET/CT and pathologically staged II in surgery from 2013 to 2017 were retrospectively reviewed. The maximum standardized uptake value (SUVmax), peak standardized uptake value (SUVpeak), tumor-to-liver ratio (TLR), and metabolic tumor volume (MTV) were measured. Association of clinicopathologic factors (age, T stage, N stage, AJCC pathologic stage of IIA or IIB, pathologic prognostic stage, grade, hormonal receptor status, HER2 status, Ki-67, and adjuvant therapy) and PET parameters with DFS was assessed using the Cox proportional hazards model. RESULTS There were 35 recurrences and 10 deaths at a median follow-up of 49 months (range 0.8 ~ 87.3). All PET parameters were significantly associated with DFS in univariate analysis but in multivariate analysis, SUVpeak was the only factor significantly associated with DFS (hazard ratio 2.58, 95% confidence interval 1.29-5.15, P = 0.007). In cohorts with higher values of SUVpeak or TLR, patients who received adjuvant chemotherapy had significantly superior DFS. CONCLUSION Metabolic parameters derived from preoperative PET/CT was significantly associated with recurrence in stage II IDC primarily treated with surgery. PET/CT can be a powerful prognostic tool in conjunction with novel staging systems and current biomarkers for patients undergoing contemporary therapy. Our results urge to reconsider the currently underestimated value of PET/CT confined to diagnostic aspect and to newly recognize its prognostic impact in these intermediate-risk breast cancer.
Collapse
Affiliation(s)
- Hye Lim Park
- Division of Nuclear Medicine, Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sea-Won Lee
- Department of Radiation Oncology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji Hyung Hong
- Division of Medical Oncology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jieun Lee
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ahwon Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Soo Jin Kwon
- Division of Nuclear Medicine, Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sonya Youngju Park
- Division of Nuclear Medicine, Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ie Ryung Yoo
- Division of Nuclear Medicine, Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
39
|
Medina EAG, Caballero BB, Miguel KL, Gutiérrez ZA, Fernández BM, Tul LEA, Rodríguez LEM, Guerrero OV, Varela IGS, Bernardo MDLCC, Montero YC, Ortiz MR, Carrasco JM, Torres KP, Prado YID, Rubio MC, Braojo IMP. Neoadjuvant Trastuzumab and Pertuzumab in Combination with Standard Chemotherapy for HER2-Positive Early Breast Cancer: Real-World Practice in Cuba. Cancer Treat Res Commun 2023; 34:100670. [PMID: 36549232 DOI: 10.1016/j.ctarc.2022.100670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE Dual HER2 blockade chemotherapy is the standard of care for localized HER2+ breast cancer (BC). However, despite the efficacy of neoadjuvant therapy, relapses occurring in around 10% of patients highlight the need to improve its clinical approach. Therefore, this study aimed to evaluate the effectiveness/safety of neoadjuvant therapy with subcutaneous (SC) trastuzumab- pertuzumab chemotherapy (real world) to extend the evidence, which comes mainly from clinical trials (selected population; intravenous [IV] trastuzumab). MATERIALS AND METHODS A prospective, longitudinal, observational study in a Cuban hospital. POPULATION women aged ≥18 years with histologically confirmed HER2+ early-stage BC (2017-2021) eligible for neoadjuvant treatment (IV pertuzumab, SC trastuzumab, taxane-based chemotherapy). The aim was to determine the pathological complete response (pCR) rate to this scheme, its safety, and the impact of patient's characteristics on the outcomes. RESULTS Eighty-seven women were included: n=29 (DPT [docetaxel-IV pertuzumab- SC trastuzumab 600 mg; 4 cycles]); n=58 (ddAC-DPT [dose-dense anthracycline-based scheme+DPT]; 8 cycles). The median age was 57 years (range 30-83), ECOG 0: 97%. Time from diagnosis to treatment (median) was 28 days. The overall pCR rate was 62.1% (55.2%, DPT; 66.5%, ddAC-DPT; p =0.351); HR+, 47.7% vs. HR-, 76.7% (p=0.006). There were no statistically significant differences based on nodal status, stage, or Ki-67 levels. Overall, 94.2% of patients experienced ≥1 adverse event related to treatment, all of them grade 1-3 and more common with ddAC-DPT. The main cause of treatment delays (n=19; ddAC-DPT, 16; DPT, 3) was treatment-related toxicities. CONCLUSION Neoadjuvant trastuzumab (SC) and pertuzumab plus chemotherapy for HER2+ early-stage BC showed benefits in a real-life setting, with an acceptable safety profile.
Collapse
Affiliation(s)
- Elías A Gracia Medina
- Instituto Nacional de Oncología y Radiobiología (Cuba). Medical Oncology Department.
| | | | - Karen López Miguel
- Instituto Nacional de Oncología y Radiobiología (Cuba). Medical Oncology Department
| | | | | | - Luis E Alsina Tul
- Instituto Nacional de Oncología y Radiobiología (Cuba). Medical Oncology Department
| | | | | | | | | | | | - Mónica Ramos Ortiz
- Instituto Nacional de Oncología y Radiobiología (Cuba). Mastology Service
| | | | - Keytia Peña Torres
- Instituto Nacional de Oncología y Radiobiología (Cuba). Mastology Service
| | - Yenia I Díaz Prado
- Instituto Nacional de Oncología y Radiobiología (Cuba). Mastology Service
| | | | | |
Collapse
|
40
|
Urso L, Evangelista L, Alongi P, Quartuccio N, Cittanti C, Rambaldi I, Ortolan N, Borgia F, Nieri A, Uccelli L, Schirone A, Panareo S, Arnone G, Bartolomei M. The Value of Semiquantitative Parameters Derived from 18F-FDG PET/CT for Predicting Response to Neoadjuvant Chemotherapy in a Cohort of Patients with Different Molecular Subtypes of Breast Cancer. Cancers (Basel) 2022; 14:5869. [PMID: 36497351 PMCID: PMC9738922 DOI: 10.3390/cancers14235869] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) is a strong prognostic factor in breast cancer (BC). The aim of this study was to investigate whether semiquantitative parameters derived from baseline [18F]Fluorodeoxyglucose ([18F]FDG) positron emission computed tomography/computed tomography (PET/CT) could predict pCR after NAC and survival outcomes in patients affected by different molecular subtypes of BC. We retrospectively retrieved patients from the databases of two Italian hospitals (Centre A: University Hospital of Ferrara; Centre B: University of Padua) meeting the following inclusion criteria: (1) diagnosis of BC; (2) history of NAC; (3) baseline [18F]FDG PET/CT performed before the first cycle of NAC; (4) available follow-up data (response after NAC and survival information). For each [18F]FDG PET/CT scan, semiquantitative parameters (SUVmax, SUVmean, MTV and TLG) related to the primary tumor (B), to the reference lesion for both axillary (N) and distant lymph node (DN), and to the whole-body burden of disease (WB) were evaluated. Patients enrolled were 133: 34 from centre A and 99 from centre B. Patients' molecular subtypes were: 9 luminal A, 49 luminal B, 33 luminal B + HER-2, 10 HER-2 enriched, and 32 triple negative (TNBC). Luminal A and HER-2 enriched BC patients were excluded from the analysis due to the small sample size. pCR after NAC was achieved in 47 patients (41.2%). [18F]FDG PET/CT detected the primary tumor in 98.3% of patients and lymph node metastases were more frequently detected in Luminal B subgroup. Among Luminal B patients, median SUVmean_B values were significantly higher (p = 0.027) in responders (7.06 ± 5.9) vs. non-responders (4.4 ± 2.1) to NAC. Luminal B + HER-2 non-responders showed a statistically significantly higher median MTV_B (7.3 ± 4.2 cm3 vs. 3.5 ± 2.5 cm3; p = 0.003) and TLG_B (36.5 ± 24.9 vs. 18.9 ± 17.7; p = 0.025) than responders at baseline [18F]FDG PET/CT. None of the semiquantitative parameters predicted pCR after NAC in TNBC patients. However, among TNBC patients who achieved pCR after NAC, 4 volumetric parameters (MTV_B, TLG_B, MTV_WB and TLG_WB) were significantly higher in patients dead at follow-up. If confirmed in further studies, these results could open up a widespread use of [18F]FDG PET/CT as a baseline predictor of response to NAC in luminal B and luminal B + HER-2 patients and as a prognostic tool in TNBC.
Collapse
Affiliation(s)
- Luca Urso
- Department of Translational Medicine, University of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy
- Nuclear Medicine Unit, Oncological Medical and Specialist Department, University Hospital of Ferrara, 44124 Cona, Italy
| | - Laura Evangelista
- Department of Medicine DIMED, University of Padua, 35128 Padua, Italy
| | - Pierpaolo Alongi
- Nuclear Medicine Unit, ARNAS Ospedali Civico, Di Cristina e Benfratelli, 90127 Palermo, Italy
| | - Natale Quartuccio
- Nuclear Medicine Unit, Ospedali Riuniti Villa Sofia-Cervello, 90146 Palermo, Italy
| | - Corrado Cittanti
- Department of Translational Medicine, University of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy
- Nuclear Medicine Unit, Oncological Medical and Specialist Department, University Hospital of Ferrara, 44124 Cona, Italy
| | - Ilaria Rambaldi
- Nuclear Medicine Unit, Oncological Medical and Specialist Department, University Hospital of Ferrara, 44124 Cona, Italy
| | - Naima Ortolan
- Department of Translational Medicine, University of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy
- Nuclear Medicine Unit, Oncological Medical and Specialist Department, University Hospital of Ferrara, 44124 Cona, Italy
| | - Francesca Borgia
- Department of Translational Medicine, University of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy
- Nuclear Medicine Unit, Oncological Medical and Specialist Department, University Hospital of Ferrara, 44124 Cona, Italy
| | - Alberto Nieri
- Nuclear Medicine Unit, Oncological Medical and Specialist Department, University Hospital of Ferrara, 44124 Cona, Italy
| | - Licia Uccelli
- Department of Translational Medicine, University of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy
- Nuclear Medicine Unit, Oncological Medical and Specialist Department, University Hospital of Ferrara, 44124 Cona, Italy
| | - Alessio Schirone
- Oncology Unit, Oncological Medical and Specialists Department, University Hospital of Ferrara, 44124 Ferrara, Italy
| | - Stefano Panareo
- Nuclear Medicine Unit, Oncology and Haematology Department, University Hospital of Modena, 41125 Modena, Italy
| | - Gaspare Arnone
- Nuclear Medicine Unit, ARNAS Ospedali Civico, Di Cristina e Benfratelli, 90127 Palermo, Italy
| | - Mirco Bartolomei
- Nuclear Medicine Unit, Oncological Medical and Specialist Department, University Hospital of Ferrara, 44124 Cona, Italy
| |
Collapse
|
41
|
Li J, Zhang B, Ge S, Deng S, Hu C, Sang S. Prognostic value of 18F-FDG PET/CT radiomic model based on primary tumor in patients with non-small cell lung cancer: A large single-center cohort study. Front Oncol 2022; 12:1047905. [DOI: 10.3389/fonc.2022.1047905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
ObjectivesIn the present study, we aimed to determine the prognostic value of the 18F-FDG PET/CT-based radiomics model when predicting progression-free survival (PFS) and overall survival (OS) in patients with non-small cell lung cancer (NSCLC).MethodsA total of 368 NSCLC patients who underwent 18F-FDG PET/CT before treatment were randomly assigned to the training (n = 257) and validation (n = 111) cohorts. Radiomics signatures from PET and CT images were obtained using LIFEx software, and then clinical and complex models were constructed and validated by selecting optimal parameters based on PFS and OS to construct radiomics signatures.ResultsIn the training cohort, the C-index of the clinical model for predicting PFS and OS in NSCLC patients was 0.748 and 0.834, respectively, and the AUC values were 0.758 and 0.846, respectively. The C-index of the complex model for predicting PFS and OS was 0.775 and 0.881, respectively, and the AUC values were 0.780 and 0.891, respectively. The C-index of the clinical model for predicting PFS and OS in the validation group was 0.729 and 0.832, respectively, and the AUC values were 0.776 and 0.850, respectively. The C-index of the complex model for predicting PFS and OS was 0.755 and 0.867, respectively, and the AUC values were 0.791 and 0.874, respectively. Moreover, decision curve analysis showed that the complex model had a higher net benefit than the clinical model.Conclusions18F-FDG PET/CT radiomics before treatment could predict PFS and OS in NSCLC patients, and the predictive power was higher when combined with clinical factors.
Collapse
|
42
|
Edelmann MR. Radiolabelling small and biomolecules for tracking and monitoring. RSC Adv 2022; 12:32383-32400. [PMID: 36425706 PMCID: PMC9650631 DOI: 10.1039/d2ra06236d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Radiolabelling small molecules with beta-emitters has been intensively explored in the last decades and novel concepts for the introduction of radionuclides continue to be reported regularly. New catalysts that induce carbon/hydrogen activation are able to incorporate isotopes such as deuterium or tritium into small molecules. However, these established labelling approaches have limited applicability for nucleic acid-based drugs, therapeutic antibodies, or peptides, which are typical of the molecules now being investigated as novel therapeutic modalities. These target molecules are usually larger (significantly >1 kDa), mostly multiply charged, and often poorly soluble in organic solvents. However, in preclinical research they often require radiolabelling in order to track and monitor drug candidates in metabolism, biotransformation, or pharmacokinetic studies. Currently, the most established approach to introduce a tritium atom into an oligonucleotide is based on a multistep synthesis, which leads to a low specific activity with a high level of waste and high costs. The most common way of tritiating peptides is using appropriate precursors. The conjugation of a radiolabelled prosthetic compound to a functional group within a protein sequence is a commonly applied way to introduce a radionuclide or a fluorescent tag into large molecules. This review highlights the state-of-the-art in different radiolabelling approaches for oligonucleotides, peptides, and proteins, as well as a critical assessment of the impact of the label on the properties of the modified molecules. Furthermore, applications of radiolabelled antibodies in biodistribution studies of immune complexes and imaging of brain targets are reported.
Collapse
Affiliation(s)
- Martin R Edelmann
- Department of Pharmacy and Pharmacology, University of Bath Bath BA2 7AY UK
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Therapeutic Modalities, Small Molecule Research, Isotope Synthesis, F. Hoffmann-La Roche Ltd CH-4070 Basel Switzerland
| |
Collapse
|
43
|
Urso L, Manco L, Castello A, Evangelista L, Guidi G, Castellani M, Florimonte L, Cittanti C, Turra A, Panareo S. PET-Derived Radiomics and Artificial Intelligence in Breast Cancer: A Systematic Review. Int J Mol Sci 2022; 23:13409. [PMID: 36362190 PMCID: PMC9653918 DOI: 10.3390/ijms232113409] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 08/13/2023] Open
Abstract
Breast cancer (BC) is a heterogeneous malignancy that still represents the second cause of cancer-related death among women worldwide. Due to the heterogeneity of BC, the correct identification of valuable biomarkers able to predict tumor biology and the best treatment approaches are still far from clear. Although molecular imaging with positron emission tomography/computed tomography (PET/CT) has improved the characterization of BC, these methods are not free from drawbacks. In recent years, radiomics and artificial intelligence (AI) have been playing an important role in the detection of several features normally unseen by the human eye in medical images. The present review provides a summary of the current status of radiomics and AI in different clinical settings of BC. A systematic search of PubMed, Web of Science and Scopus was conducted, including all articles published in English that explored radiomics and AI analyses of PET/CT images in BC. Several studies have demonstrated the potential role of such new features for the staging and prognosis as well as the assessment of biological characteristics. Radiomics and AI features appear to be promising in different clinical settings of BC, although larger prospective trials are needed to confirm and to standardize this evidence.
Collapse
Affiliation(s)
- Luca Urso
- Department of Translational Medicine, University of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy
- Nuclear Medicine Unit, Oncological Medical and Specialist Department, University Hospital of Ferrara, 44124 Cona, Italy
| | - Luigi Manco
- Medical Physics Unit, Azienda USL of Ferrara, 44124 Ferrara, Italy
- Medical Physics Unit, University Hospital of Ferrara, 44124 Cona, Italy
| | - Angelo Castello
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Laura Evangelista
- Department of Medicine DIMED, University of Padua, 35128 Padua, Italy
| | - Gabriele Guidi
- Medical Physics Unit, University Hospital of Modena, 41125 Modena, Italy
| | - Massimo Castellani
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Luigia Florimonte
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Corrado Cittanti
- Department of Translational Medicine, University of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy
- Nuclear Medicine Unit, Oncological Medical and Specialist Department, University Hospital of Ferrara, 44124 Cona, Italy
| | - Alessandro Turra
- Medical Physics Unit, University Hospital of Ferrara, 44124 Cona, Italy
| | - Stefano Panareo
- Nuclear Medicine Unit, Oncology and Haematology Department, University Hospital of Modena, 41125 Modena, Italy
| |
Collapse
|
44
|
Dondi F, Albano D, Bellini P, Camoni L, Treglia G, Bertagna F. Relationship between Baseline [ 18F]FDG PET/CT Semiquantitative Parameters and BRCA Mutational Status and Their Prognostic Role in Patients with Invasive Ductal Breast Carcinoma. Tomography 2022; 8:2662-2675. [PMID: 36412681 PMCID: PMC9680390 DOI: 10.3390/tomography8060222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022] Open
Abstract
AIM To assess the relationship between [18F]FDG PET/CT, breast cancer gene (BRCA) status, and their prognostic role in patients with ductal breast cancer (DBC). METHODS Forty-one women were included. PET/CT semiquantitative parameters such as standardized uptake value (SUV) body weight max (SUVmax), SUV body weight mean (SUVmean), SUV lean body mass (SUVlbm), SUV body surface area (SUVbsa), metabolic tumor volume (MTV), total lesion glycolysis (TLG), ratio SUVmax/blood-pool (S-BP), and ratio SUVmax/liver (S-L) were also extracted. The relationship between these parameters, BRCA, and other clinicopathological features were evaluated. Kaplan-Meier, univariate, and multivariate analyses were performed to find independent prognosticators for progression free (PFS) and overall survival (OS). RESULTS Significant positive correlations between BRCA status and SUVmax (p-value 0.025), SUVlbm (p-value 0.016), and SUVbsa (p-value 0.018) were reported. Mean PFS was 53.90 months with relapse/progression of disease occurring in nine (22.0%) patients; mean OS was 57.48 months with death occurring in two (4.9%) patients. Survival curves revealed TLG, MTV, and BRCA status as prognosticator for PFS; BRCA was also a prognosticator for OS. Univariate and multivariate analyses did not confirm such insights. CONCLUSION We reported a correlation between some PET/CT parameters and BRCA status; some insights on their prognostic role have been underlined.
Collapse
Affiliation(s)
- Francesco Dondi
- Nuclear Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Domenico Albano
- Nuclear Medicine, Università degli Studi di Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Pietro Bellini
- Nuclear Medicine, Università degli Studi di Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Luca Camoni
- Nuclear Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Giorgio Treglia
- Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana, 6900 Lugano, Switzerland
- Correspondence:
| | - Francesco Bertagna
- Nuclear Medicine, Università degli Studi di Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| |
Collapse
|
45
|
Satoh Y, Imai M, Ikegawa C, Hirata K, Abo N, Kusuzaki M, Oyama-Manabe N, Onishi H. Effect of radioactivity outside the field of view on image quality of dedicated breast positron emission tomography: preliminary phantom and clinical studies. Ann Nucl Med 2022; 36:1010-1018. [PMID: 36207497 DOI: 10.1007/s12149-022-01789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Semi-quantitative positron emission tomography (PET) values, such as the maximum standardized uptake value (SUVmax), are widely used to identify malignant lesions and evaluate the response to treatment. The image quality of ring-shaped dedicated breast positron emission tomography (dbPET) has been known to decrease the closer it is to the detector's edge. This study aimed to investigate the effect of radioactivity (RI) outside the detector field of view (FOV) on the image quality of the ring-shaped dbPET. METHODS A breast phantom containing the left myocardium, which was prepared using a 3D printer, filled with 18F-fluorodeoxyglucose (FDG) solution with various RI concentration ratios (RCRs) of myocardium to background and scanned with the edge of an apex positioned exactly in line with the edge of the FOV of the dbPET scanner. The phantom image quality was visually and quantitatively evaluated. Following the phantom study, left-right breast differences (the left breast uptake ratio to the right breast (LUR)) on clinical dbPET images of 74 women were quantitatively evaluated. The relationships between these parameters, clinical indices, and FDG uptake in the left myocardium on PET/computed tomography (CT) images were analyzed. RESULTS The phantom study showed that the higher the RCR of the myocardium and the closer it is to the top edge of the phantom, the higher is the pixel value of the dbPET images. In a clinical study, LUR was significantly correlated with myocardial SUVmax (r = 0.96, p < 0.0001) and metabolic myocardial volume (r = 0.63, p = 0.001) for whole-body PET/CT imaging. Although no significant correlations were found between LUR and age (r = 0.05, p = 0.6865), body mass index (r = 0.03, p = 0.8178), or distance between the left myocardial apex and chest wall (r = 0.16, p = 0.1667). CONCLUSIONS FDG uptake in the myocardium affected dbPET images of the left breast, especially near the chest wall. Further, the effect of RI outside the FOV, such as in the myocardium, must be considered in the quantitative evaluation of breast cancer using dbPET.
Collapse
Affiliation(s)
- Yoko Satoh
- Yamanashi PET Imaging Clinic, Chuo City, Yamanashi Prefecture, Japan.
- Department of Radiology, University of Yamanashi, Chuo City, Yamanashi Prefecture, 409-3821, Japan.
| | - Masamichi Imai
- Yamanashi PET Imaging Clinic, Chuo City, Yamanashi Prefecture, Japan
| | - Chihiro Ikegawa
- Yamanashi PET Imaging Clinic, Chuo City, Yamanashi Prefecture, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Norifumi Abo
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mao Kusuzaki
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Noriko Oyama-Manabe
- Department of Radiology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Hiroshi Onishi
- Department of Radiology, University of Yamanashi, Chuo City, Yamanashi Prefecture, 409-3821, Japan
| |
Collapse
|
46
|
Zhang X, Li M, Gai Y, Chen J, Tao J, Yang L, Hu F, Song W, Yen TC, Lan X. 18F-PFPN PET: A New and Attractive Imaging Modality for Patients with Malignant Melanoma. J Nucl Med 2022; 63:1537-1543. [PMID: 35115367 PMCID: PMC9536710 DOI: 10.2967/jnumed.121.263179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
18F-FDG PET has limited diagnostic applications in malignant melanoma (MM). 18F-N-(2-(diethylamino)ethyl)-5-(2-(2-(2-fluoroethoxy)ethoxy)ethoxy)picolinamide (18F-PFPN) is a novel PET probe with high affinity and selectivity for melanin. We conducted a clinical study with 2 aims, first to investigate the biodistribution and radiation dosimetry of 18F-PFPN in healthy volunteers, and second, to examine the diagnostic utility of 18F-PFPN PET imaging in patients with MM. Methods: 18F-PFPN was synthesized through a fluoro-for-tosyl exchange reaction. Five healthy volunteers were enrolled to investigate the biodistribution, pharmacokinetics, radiation dosimetry, and safety of the tracer. Subsequently, a total of 21 patients with clinically suspected or confirmed MM underwent both 18F-PFPN PET/MRI and 18F-FDG PET/CT scans. The normalized SUVmax of selected lesions was determined for both tracers and compared in patient- and lesion-based analyses. Results: 18F-PFPN has an elevated radiochemical yield and was highly stable in vivo. In healthy volunteers, 18F-PFPN was safe and well tolerated, and its effective absorbed dose was comparable to that of 18F-FDG. In patient-based analysis, 18F-PFPN uptake was higher than 18F-FDG for both primary tumors and nodal metastases. In lesion-based analysis,18F-PFPN PET imaging could detect 365 metastases that were missed on 18F-FDG PET. Additionally, 18F-PFPN PET imaging had clinical value in distinguishing false-positive lesions on 18F-FDG PET. Conclusion: 18F-PFPN is a safe and well-tolerated melanin PET tracer. In a pilot clinical study, 18F-PFPN PET imaging outperformed traditional 18F-FDG PET in identifying both primary MM and its distant spread.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Mengting Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Yang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenyu Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Tzu-Chen Yen
- Department of Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan City, Taiwan; and
- Aprinoia Therapeutics Co., Ltd., Suzhou, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
47
|
Khalid Z, Khan G, Arbab MA. Extrinsically evolved system for breast cancer detection. EVOLUTIONARY INTELLIGENCE 2022. [DOI: 10.1007/s12065-022-00752-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Muduly DK, Ephraim R, Sultania M, Ray S, Bhoriwal S, Pathak M, Kar M. Correlation of 18-fluorodeoxyglucose uptake values on PET-CT scan with histological prognostic markers in breast cancer. Asia Pac J Clin Oncol 2022; 19:e106-e110. [PMID: 35799361 DOI: 10.1111/ajco.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 03/08/2022] [Accepted: 05/07/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND Positron emission tomography-computed tomography (PET-CT) scan utilizes 18-fluorodeoxyglucose (18-FDG), based on the principle of higher glycolytic activity and reduced glucose-6-phosphatase levels in cancer cells. This imaging modality is usually advised in the metastatic evaluation of stage III breast cancer patients. The correlation of maximum standard uptake values of primary lesion with different pathological and molecular markers has not been studied extensively. METHODS Retrospective analysis of the data was performed from our prospectively maintained breast cancer database. All the patients who had undergone 18-FDG PET-CT scan at initial evaluation for staging between June 2017 and April 2020 were included in the study. One-way ANOVA test or Student's t-test as appropriate was performed to assess the difference of means in maximum standard uptake values (SUVmax) of the primary lesion and axillary nodes with clinical stage, histological grade, molecular subtype. Bonferroni post hoc test was also applied. RESULTS Out of 388 patients in the breast cancer database, 45 patients met inclusion criteria. There was a significant correlation of molecular subtype (p = 0.029) with SUVmax of the primary lesion. Higher primary SUVmax was associated with higher T stage (p = 0.01) and higher histological grade (p = 0.06). In each molecular subtype, there was an increase in mean SUVmax of the primary lesion with increasing histological grade and vice versa. CONCLUSIONS SUVmax of the primary lesion in breast cancer patients reflects tumor biology. Higher SUVmax can predict patients with triple-negative breast cancers and higher grades in primary tumors. However, further large-scale validatory studies are essential.
Collapse
Affiliation(s)
- Dillip Kumar Muduly
- Department of Surgical Oncology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Rebba Ephraim
- Department of Surgical Oncology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Mahesh Sultania
- Department of Surgical Oncology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Sudatta Ray
- Department of Nuclear Medicine, SUM Ultimate Medicare, Bhubaneswar, India
| | - Sandeep Bhoriwal
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Mona Pathak
- Department of Community Medicine, Kalinga Institute of Medical Sciences, Bhubaneswar, India
| | - Madhabananda Kar
- Department of Surgical Oncology, All India Institute of Medical Sciences, Bhubaneswar, India
| |
Collapse
|
49
|
Yadav D, Kumar R, Phulia A, Basu S, Alavi A. Molecular Imaging Assessment of Hormonally Sensitive Breast Cancer: An Appraisal of 2-[18F]-Fluoro-2-Deoxy-Glucose and Newer Non-2-[18F]-Fluoro-2-Deoxy-Glucose PET Tracers. PET Clin 2022; 17:399-413. [PMID: 35717099 DOI: 10.1016/j.cpet.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hormone-sensitive breast cancer, which demonstrates hormone receptor positivity, accounts for approximately 75% of newly diagnosed breast cancer. 2-[18F]-Fluoro-2-deoxy-glucose is the nonspecific radiotracer of glucose metabolism as opposed to specific receptor based tracers like 16α-[18F]-fluoro-17β-estradiol and [18F]-fluoro-furanyl-norprogesterone, which provide essential information about receptor status in the management of hormonally active malignancies. The complementary information provided by (a) 2-[18F]-fluoro-2-deoxy-glucose imaging for staging and prognostication along with (b) analyzing the hormonal receptor status with receptor-based PET imaging in breast cancer can optimize tumor characterization and influence patient management.
Collapse
Affiliation(s)
- Divya Yadav
- MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Rakesh Kumar
- Division of Diagnostic Nuclear Medicine, Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| | - Ankita Phulia
- Maulana Azad Medical College, New Delhi, 110002, India
| | - Sandip Basu
- Radiation Medicine Centre (B.A.R.C), Tata Memorial Centre Annexe, Parel, Mumbai; Homi Bhabha National Institute, Mumbai, India
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
50
|
Wong K, Sheehan-Dare G, Nguyen A, Ho B, Liu V, Lee J, Brown L, Dear R, Chan L, Sharma S, Malaroda A, Smith I, Lim E, Emmett L. 64Cu-SAR-Bombesin PET-CT Imaging in the Staging of Estrogen/Progesterone Receptor Positive, HER2 Negative Metastatic Breast Cancer Patients: Safety, Dosimetry and Feasibility in a Phase I Trial. Pharmaceuticals (Basel) 2022; 15:ph15070772. [PMID: 35890071 PMCID: PMC9316435 DOI: 10.3390/ph15070772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancers are most frequently oestrogen receptor (ER) and progesterone receptor (PR) positive and [18F]Fluorodeoxyglucose PET-CT (FDG) has lower sensitivity for these subtypes. The gastrin-releasing peptide receptor (GRPR) is overexpressed in ER+/PR+ breast cancers. This study assessed the safety and potential of [64Cu]Cu-Sarcophagine (SAR)-Bombesin PET/CT (BBN) in re-staging metastatic ER+/PR+/human epidermal growth-factor-2-negative (HER2-) breast cancer. Seven patients with metastatic ER+/PR+/HER2- breast cancer undergoing staging underwent [64Cu]Cu-SAR-BBN PET-CT. Bloods, vital signs and electrocardiogram, blood tracer-clearance and dosimetry were undertaken. GRPR status was assessed in available metastatic biopsy samples. Staging with conventional imaging ([18F]FDG, bone scan and diagnostic CT) was within 3 weeks of [64Cu]Cu-SAR-BBN PET/CT. PET scans were assessed visually and quantitatively. Seven patients underwent imaging. One of the seven had de-novo metastatic breast cancer and six of the seven recurrent metastatic disease. Two of the seven had lobular subtype. No adverse events were reported. All seven patients were positive on conventional imaging (six of seven on FDG). [64Cu]Cu-SAR-BBN imaging was positive in five of the seven. Both [64Cu]Cu-SAR-BBN-negative patients had disease identified on [18F]FDG. One patient was [64Cu]Cu-SAR-BBN positive/[18F]FDG negative. Four of seven patients were [64Cu]Cu-SAR-BBN positive/[18F]FDG positive. In these four, mean SUVmax was higher for [64Cu]Cu-SAR-BBN than [18F]FDG (SUVmax 15 vs. 12). In the classical lobular subtype (two of seven), [64Cu]Cu-SAR-BBN was more avid compared to [18F]FDG (SUVmax 20 vs. 11, and 20 vs. <3). Dosimetry calculations estimated whole-body effective dose for 200 MBq of [64Cu]Cu-SAR-BBN to be 1.9 mSv. [64Cu]Cu-SAR-BBN PET/CT appears safe and may have diagnostic value in metastatic ER+/PR+/HER2- breast cancer, particularly the lobular subtype. Further evaluation is warranted.
Collapse
Affiliation(s)
- Keith Wong
- Department of Theranostics and Nuclear Medicine, St Vincent’s Hospital, 390 Victoria Street, Sydney, NSW 2010, Australia
| | - Gemma Sheehan-Dare
- Department of Theranostics and Nuclear Medicine, St Vincent’s Hospital, 390 Victoria Street, Sydney, NSW 2010, Australia
| | - Andrew Nguyen
- Department of Theranostics and Nuclear Medicine, St Vincent’s Hospital, 390 Victoria Street, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Bao Ho
- Department of Theranostics and Nuclear Medicine, St Vincent’s Hospital, 390 Victoria Street, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Victor Liu
- Department of Theranostics and Nuclear Medicine, St Vincent’s Hospital, 390 Victoria Street, Sydney, NSW 2010, Australia
| | - Jonathan Lee
- Department of Theranostics and Nuclear Medicine, St Vincent’s Hospital, 390 Victoria Street, Sydney, NSW 2010, Australia
| | - Lauren Brown
- The Kinghorn Cancer Centre, St Vincent’s Hospital, Sydney, NSW 2010, Australia
| | - Rachel Dear
- The Kinghorn Cancer Centre, St Vincent’s Hospital, Sydney, NSW 2010, Australia
| | - Lyn Chan
- Department of Theranostics and Nuclear Medicine, St Vincent’s Hospital, 390 Victoria Street, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Shikha Sharma
- Department of Theranostics and Nuclear Medicine, St Vincent’s Hospital, 390 Victoria Street, Sydney, NSW 2010, Australia
| | - Alessandra Malaroda
- Department of Theranostics and Nuclear Medicine, St Vincent’s Hospital, 390 Victoria Street, Sydney, NSW 2010, Australia
| | - Isabelle Smith
- Department of Theranostics and Nuclear Medicine, St Vincent’s Hospital, 390 Victoria Street, Sydney, NSW 2010, Australia
| | - Elgene Lim
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
- The Kinghorn Cancer Centre, St Vincent’s Hospital, Sydney, NSW 2010, Australia
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Louise Emmett
- Department of Theranostics and Nuclear Medicine, St Vincent’s Hospital, 390 Victoria Street, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
- The Kinghorn Cancer Centre, St Vincent’s Hospital, Sydney, NSW 2010, Australia
- Correspondence: ; Tel.: +61-411331065; Fax: +61-283832619
| |
Collapse
|