1
|
Whitman J, Adhikarla V, Tumyan L, Mortimer J, Huang W, Rockne R, Peterson JR, Cole J. Validation of Clinical Dynamic Contrast-Enhanced Magnetic Resonance Imaging Perfusion Modeling and Neoadjuvant Chemotherapy Response Prediction in Breast Cancer Using 18FDG and 64Cu-DOTA-Trastuzumab Positron Emission Tomography Studies. JCO Clin Cancer Inform 2025; 9:e2300248. [PMID: 39808751 PMCID: PMC11902905 DOI: 10.1200/cci.23.00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/25/2024] [Accepted: 11/05/2024] [Indexed: 01/16/2025] Open
Abstract
PURPOSE Perfusion modeling presents significant opportunities for imaging biomarker development in breast cancer but has historically been held back by the need for data beyond the clinical standard of care (SoC) and uncertainty in the interpretability of results. We aimed to design a perfusion model applicable to breast cancer SoC dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) series with results stable to low temporal resolution imaging, comparable with published results using full-resolution DCE-MRI, and correlative with orthogonal imaging modalities indicative of biophysical markers. METHODS Subsampled high-temporal-resolution DCE-MRI series were run through our perfusion model and resulting fits were compared for consistency. The fits were also compared against previously published results from institutions using the full resolution series. The model was then evaluated on a separate cohort for validity of biomarker indications. Finally, the model was used as a fundamental part of predicting response to neoadjuvant chemotherapy (NACT). RESULTS Temporally subsampled DCE-MRI series yield perfusion fit variations on the scale of 1% of the tumor median value when input frames are varied. Fits generated from pseudoclinical series are within the variation range seen between imaging sites (ρ = 0.55), voxel-wise. The model also demonstrates significant correlations with orthogonal positron emission tomography imaging, indicating potential for use as a biomarker proxy. Specifically, using the perfusion fits as the grounding for a biophysical simulation of response, we correctly predict the pathologic complete response status after NACT in 15 of 18 patients, for an accuracy of 0.83, with a specificity and sensitivity of 0.83 as well. CONCLUSION Clinical DCE-MRI data may be leveraged to provide stable perfusion fit results and indirectly interrogate the tumor microenvironment. These fits can then be used downstream for prediction of response to NACT with high accuracy.
Collapse
Affiliation(s)
| | - Vikram Adhikarla
- Division of Mathematical Oncology and Computational Systems Biology, Beckman Research Institute, City of Hope
| | - Lusine Tumyan
- Department of Radiology, City of Hope National Medical Center
| | - Joanne Mortimer
- Department of Medical Oncology and Medical Therapeutics Research, City of Hope National Medical Center
| | - Wei Huang
- Advanced Imaging Research Center, Oregon Health and Science University
- Knight Cancer Institute, Oregon Health and Science University
| | - Russell Rockne
- Division of Mathematical Oncology and Computational Systems Biology, Beckman Research Institute, City of Hope
| | | | | |
Collapse
|
2
|
Zheng M, Liu Q, Zhang H, Wang Y, Zhang K, Mu H, Fu F, Zhang X, Wang Y, Miao L. Development of a Specifically Labeled 89Zr Antibody for the Noninvasive Imaging of Tumors Overexpressing B7-H3. Mol Pharm 2024; 21:5205-5216. [PMID: 39322604 DOI: 10.1021/acs.molpharmaceut.4c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
B7-H3 has emerged as a promising target and potential biomarker for diagnosing tumors, evaluating treatment efficacy, and determining patient prognosis. Hu4G4 is a recombinant humanized antibody that selectively targets the extracellular domain of human B7-H3. In this study, we describe the radiolabeling of hu4G4 with the positron emission tomography (PET) emitter radionuclide zirconium 89 (89Zr) and evaluate its potency as an immuno-PET tracer for B7-H3-targeted imaging by comparing it in vitro and in vivo to [89Zr]Zr-DFO-DS-5573a using various models. The radiolabeled compound, [89Zr]Zr-desferrioxamine-hu4G4 ([89Zr]Zr-DFO-hu4G4), demonstrated a high radiochemical purity (RCP) of greater than 99% and a specific activity of 74 MBq/mg following purification. Additionally, it maintained stability in human serum albumin (HSA) and acetate buffer, preserving over 90% of its RCP after 7 days. Three cell lines targeting human B7-H3(U87/CT26-CD276/GL261-CD276) were used. Flow cytometry analysis indicated that the B7-H3-positive cells (U87/CT26-CD276/GL261-CD276) had a higher B7-H3 protein level with no expression in the B7-H3-negative cells (CT26-wt/GL261-wt) (P < 0.001). Moreover, the cellular uptake was 45.71 ± 3.78% for [89Zr]Zr-DFO-hu4G4 in CT26-CD276 cells versus only 0.93 ± 0.47% in CT26-wt cells and 30.26 ± 0.70% when [89Zr]Zr-DFO-hu4G4 in CT26-CD276 cells were blocked with 100× 8H9. The cellular uptake of [89Zr]Zr-DFO-hu4G4 was akin to that observed with [89Zr]Zr-DFO-DS-5573a with no significant differences (45.71 ± 3.78 % vs 47.07 ± 0.86 %) in CT26-CD276 cells. Similarly, the CT26-CD276 mouse model demonstrated markedly low organ uptake and elevated tumor uptake 48 h after [89Zr]Zr-DFO-hu4G4 injection. PET/CT analysis showed that the tumor-to-muscle (T/M) ratios were substantially higher compared to other imaging groups: 27.65 ± 3.17 in CT26-CD276 mice versus 11.68 ± 4.19 in CT26-wt mice (P < 0.001) and 16.40 ± 0.78 when 100× 8H9 was used to block [89Zr]Zr-DFO-hu4G4 in CT26-CD276 mice (P < 0.01) at 48 h post-injection. Additionally, the tracer showed markedly high accumulation in the tumor region (22.57 ± 3.03% ID/g), comparable to the uptake of [89Zr]Zr-DFO-DS-5573a (24.76 ± 5.36% ID/g). A dosimetry estimation study revealed that the effective dose for [89Zr]Zr-DFO-hu4G4 was 2.96 × 10-01 mSv/MBq, which falls within the acceptable range for further research in nuclear medicine. Collectively, these results indicated that [89Zr]Zr-DFO-hu4G4 was successfully fabricated and applied in B7-H3-targeted tumor PET/CT imaging, which showed excellent imaging quality and tumor detection efficacy in tumor-bearing mice. It is a promising imaging agent for identifying tumors that overexpress B7-H3 for future clinical applications.
Collapse
Affiliation(s)
- Meng Zheng
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215006, China
- National Institution of Drug Clinical Trial, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Qingfeng Liu
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215006, China
- National Institution of Drug Clinical Trial, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Hua Zhang
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215006, China
- National Institution of Drug Clinical Trial, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yanan Wang
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215006, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou 215006, China
| | - Kaijie Zhang
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215006, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou 215006, China
| | - Huiwen Mu
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215006, China
- National Institution of Drug Clinical Trial, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Fengqing Fu
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, No. 178 Ganjiang Road, Suzhou 215000, China
| | - Xueguang Zhang
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, No. 178 Ganjiang Road, Suzhou 215000, China
- SuZhou Bright Scistar Antibody Biotech Co., Ltd., 303-305, Bldg 15, No. 8, Jinfeng Road, Suzhou New District, Suzhou, Jiangsu 215000, China
| | - Yan Wang
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215006, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou 215006, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Liyan Miao
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215006, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou 215006, China
| |
Collapse
|
3
|
Zhang Y, Zheng X, Huang Y, Li S, Li X, Zhu L. EDB-FN-targeted probes for near infrared fluorescent imaging and positron emission tomography imaging of breast cancer in mice. Sci Rep 2024; 14:22056. [PMID: 39333775 PMCID: PMC11437091 DOI: 10.1038/s41598-024-73362-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The extra domain B splice variant of fibronectin (EDB-FN), which is overexpressed in several cancers, is an approved diagnostic and therapeutic target of cancers. The aim of this study was to evaluate the EDB-FN-targeting peptide EDBp as a noninvasive imaging modality for molecular imaging of breast cancer in mice. Western blot, flow cytometry and immunofluorescence were used to assess the expression level of EDB-FN and its binding to EDRp in MCF7, SKBR3, 4T1, EMT6, MDA-MB-231 and MDA-MB-453 cells. Establishment MDA-MB-231-luc cells-based subcutaneous tumor model mice or pulmonary metastasis model mice. The EDRp molecular probes to perform fluorescent probes for near-infrared fluorescence (NIRF)·and PET imaging of model mice. Our results demonstrate that EDBp-Cy5 had a strong binding ability to the MDA-MB-231 cells and exhibited specific tumor accumulation in MDA-MB-231 subcutaneous and pulmonary metastasis model mice. Importantly, the EDBp peptide-based radiotracer [18F]-AlF-NOTA-EDBp provided excellent diagnostic value for positron emission tomography (PET) imaging of breast cancer, especially in subcutaneous model mice. The uptake of [18F]-AlF-NOTA-EDBp in subcutaneous tumors (6.53 ± 0.89%, ID/g) was unexpectedly higher than that in the kidney (4.96 ± 0.20, %ID/g). The high tumor uptake of these probes in mice suggests their potential for application in imaging of EDB-FN-positive breast cancer for disease staging of regional and distant metastases.
Collapse
Affiliation(s)
- Yun Zhang
- School of Nursing, Guangdong Pharmaceutical University, 280 East Waihuan Road, Guangzhou, 510006, China
| | - Xiaobin Zheng
- Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060, China
| | - Yanfang Huang
- School of Nursing, Guangdong Pharmaceutical University, 280 East Waihuan Road, Guangzhou, 510006, China
| | - Sijia Li
- School of Nursing, Guangdong Pharmaceutical University, 280 East Waihuan Road, Guangzhou, 510006, China
| | - Xinling Li
- Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060, China.
| | - Lijun Zhu
- School of Nursing, Guangdong Pharmaceutical University, 280 East Waihuan Road, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Mule N, Maffeis G, Cubeddu R, Santangelo C, Bianchini G, Panizza P, Taroni P. Monitoring of neoadjuvant chemotherapy through time domain diffuse optics: breast tissue composition changes and collagen discriminative potential. BIOMEDICAL OPTICS EXPRESS 2024; 15:4842-4858. [PMID: 39346975 PMCID: PMC11427201 DOI: 10.1364/boe.527968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 10/01/2024]
Abstract
The purpose of this clinical study is to test a broad spectral range (635-1060 nm) time-domain diffuse optical spectroscopy in monitoring the response of breast cancer patients to neoadjuvant chemotherapy (NAC). The broadband operation allows us to fully analyze tissue composition in terms of hemoglobin, water, lipids and collagen concentration, which has never been systematically studied until now during the course of therapy. Patients are subjected to multiple breast optical imaging sessions, each one performed at different stages of NAC, both on tumor-bearing and contralateral healthy breasts. We correlate the optical results with conventional imaging techniques and pathological response. Preliminary outcomes on 10 patients' data show an average significant reduction in the concentrations of oxy-hemoglobin (-53%, p = 0.0020), collagen (-36%, p = 0.0039) and water (-15%, p = 0.0195), and increase in lipids (+39%, p = 0.0137) from baseline to the end of therapy in the tumor-bearing breast of patients who responded to therapy at least partially. With respect to scattering, the scattering amplitude, a, increases slightly (+15%, p = 0.0039) by the end of the therapy compared to the baseline, while the scattering slope, b, shows no significant change (+4%, p = 0.9219). Some change in the constituents' concentrations was also noticed in the contralateral healthy breast, even though it was significant only for oxy-hemoglobin concentration. We observed that collagen seems to be the only component distinguishing between complete and partial responders by the end of 2-3 weeks from the baseline. In the complete responder group, collagen significantly decreased after 2-3 weeks with respect to baseline (p = 0.0423). While the partial responder group also showed a decrease, it did not reach statistical significance (p = 0.1012). This suggests that collagen could serve as a potential biomarker to measure NAC effectiveness early during treatment. Even though obtained on a small group of patients, these initial results are consistent with those of standard medical modalities and highlight the sensitivity of the technique to changes that occur in breast composition during NAC.
Collapse
Affiliation(s)
- Nikhitha Mule
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
- Scientific Institute (IRCCS) Ospedale San Raffaele, Breast Imaging Unit, Via Olgettina 60, 20132 Milano, Italy
| | - Giulia Maffeis
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Rinaldo Cubeddu
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Carolina Santangelo
- Scientific Institute (IRCCS) Ospedale San Raffaele, Breast Imaging Unit, Via Olgettina 60, 20132 Milano, Italy
| | - Giampaolo Bianchini
- Scientific Institute (IRCCS) Ospedale San Raffaele, Department of Medical Oncology, Via Olgettina 60, 20132 Milano, Italy
- School of Medicine and Surgery, Università Vita-Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Pietro Panizza
- Scientific Institute (IRCCS) Ospedale San Raffaele, Breast Imaging Unit, Via Olgettina 60, 20132 Milano, Italy
| | - Paola Taroni
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
5
|
Ohmatsu K, Omatsu T, Okonogi N, Ikoma Y, Murata K, Kishimoto R, Obata T, Yamada S, Karasawa K. Changes in Intratumor Blood Flow After Carbon-Ion Radiation Therapy for Early-Stage Breast Cancer. Int J Part Ther 2024; 12:100018. [PMID: 39022118 PMCID: PMC11252070 DOI: 10.1016/j.ijpt.2024.100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 07/20/2024] Open
Abstract
Purpose This study aimed to quantify the changes in intratumoral blood flow after carbon-ion radiation therapy (CIRT) for early-stage breast cancer and analyze their clinical significance. Patients and Methods We included 38 patients with early-stage breast cancer who underwent CIRT. Dynamic imaging was performed using a 3T superconducting magnetic resonance scanner to quantify the washin index (idx), which reflects contrast uptake, and washout idx, which reflects the rate of contrast washout from tumor tissue. The changes in the apparent diffusion coefficient, washin idx, and washout idx were examined before CIRT and at 1 and 3 months after treatment. Clinical factors and imaging features were examined using univariate and receiver operating characteristic curve analyses to identify factors predicting clinical complete response (cCR). Results The median observation period after CIRT was 51 (range: 12-122) months. During the observation period, 31 of the 38 patients achieved cCR, and 22 achieved cCR within 12 months. Tumor size (P < .001), washin idx (P = .043), and washout idx (P < .001) decreased significantly 1-month after CIRT. In contrast, the apparent diffusion coefficient values (P < .001) increased significantly 1-month after CIRT. Univariate analysis suggested that the washin idx after 1 and 3 months of CIRT was associated with cCR by 12 months post-CIRT (P = .028 and .021, respectively). No other parameters were associated with cCR by 12 months post-CIRT. Furthermore, receiver operating characteristic curve analyses showed that the area under the curve values of washin idx after 1 and 3 months of CIRT was 0.78 (specificity 75%, sensitivity 80%) and 0.73 (specificity 75%, sensitivity 71%), respectively. Conclusion Tumor changes can be quantified early after CIRT using contrast-enhanced magnetic resonance imaging in patients with breast cancer. Washin idx values 1 and 3 months after CIRT were associated with cCR within 12 months post-CIRT.
Collapse
Affiliation(s)
- Kenta Ohmatsu
- Department of Radiation Oncology, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan
| | - Tokuhiko Omatsu
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Noriyuki Okonogi
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Radiation Oncology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoko Ikoma
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kazutoshi Murata
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Riwa Kishimoto
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takayuki Obata
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Shigeru Yamada
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kumiko Karasawa
- Department of Radiation Oncology, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Eissler N, Altena R, Alhuseinalkhudhur A, Bragina O, Feldwisch J, Wuerth G, Loftenius A, Brun N, Axelsson R, Tolmachev V, Sörensen J, Frejd FY. Affibody PET Imaging of HER2-Expressing Cancers as a Key to Guide HER2-Targeted Therapy. Biomedicines 2024; 12:1088. [PMID: 38791050 PMCID: PMC11118066 DOI: 10.3390/biomedicines12051088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is a major prognostic and predictive marker overexpressed in 15-20% of breast cancers. The diagnostic reference standard for selecting patients for HER2-targeted therapy is based on the analysis of tumor biopsies. Previously patients were defined as HER2-positive or -negative; however, with the approval of novel treatment options, specifically the antibody-drug conjugate trastuzumab deruxtecan, many breast cancer patients with tumors expressing low levels of HER2 have become eligible for HER2-targeted therapy. Such patients will need to be reliably identified by suitable diagnostic methods. Biopsy-based diagnostics are invasive, and repeat biopsies are not always feasible. They cannot visualize the heterogeneity of HER2 expression, leading to a substantial number of misdiagnosed patients. An alternative and highly accurate diagnostic method is molecular imaging with radiotracers. In the case of HER2, various studies demonstrate the clinical utility and feasibility of such approaches. Radiotracers based on Affibody® molecules, small, engineered affinity proteins with a size of ~6.5 kDa, are clinically validated molecules with favorable characteristics for imaging. In this article, we summarize the HER2-targeted therapeutic landscape, describe our experience with imaging diagnostics for HER2, and review the currently available clinical data on HER2-Affibody-based molecular imaging as a novel diagnostic tool in breast cancer and beyond.
Collapse
Affiliation(s)
| | - Renske Altena
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Solna, Sweden
- Medical Unit Breast, Endocrine Tumors and Sarcoma, Theme Cancer, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, 17164 Solna, Sweden
- Medical Radiation Physics and Nuclear Medicine, Functional Unit of Nuclear Medicine, Karolinska University Hospital, 14157 Huddinge, Sweden
| | - Ali Alhuseinalkhudhur
- Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, 75310 Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, 75310 Uppsala, Sweden
| | - Olga Bragina
- Department of Nuclear Therapy and Diagnostic, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634055 Tomsk, Russia
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | | | | | | | | | - Rimma Axelsson
- Medical Radiation Physics and Nuclear Medicine, Functional Unit of Nuclear Medicine, Karolinska University Hospital, 14157 Huddinge, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 75310 Uppsala, Sweden
| | - Jens Sörensen
- Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, 75310 Uppsala, Sweden
| | - Fredrik Y. Frejd
- Affibody AB, 17165 Solna, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, 75310 Uppsala, Sweden
| |
Collapse
|
7
|
Vo VTT, Shin TH, Yang HJ, Kang SR, Kim SH. A comparison between centralized and asynchronous federated learning approaches for survival outcome prediction using clinical and PET data from non-small cell lung cancer patients. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 248:108104. [PMID: 38457959 DOI: 10.1016/j.cmpb.2024.108104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND AND OBJECTIVE Survival analysis plays an essential role in the medical field for optimal treatment decision-making. Recently, survival analysis based on the deep learning (DL) approach has been proposed and is demonstrating promising results. However, developing an ideal prediction model requires integrating large datasets across multiple institutions, which poses challenges concerning medical data privacy. METHODS In this paper, we propose FedSurv, an asynchronous federated learning (FL) framework designed to predict survival time using clinical information and positron emission tomography (PET)-based features. This study used two datasets: a public radiogenic dataset of non-small cell lung cancer (NSCLC) from the Cancer Imaging Archive (RNSCLC), and an in-house dataset from the Chonnam National University Hwasun Hospital (CNUHH) in South Korea, consisting of clinical risk factors and F-18 fluorodeoxyglucose (FDG) PET images in NSCLC patients. Initially, each dataset was divided into multiple clients according to histological attributes, and each client was trained using the proposed DL model to predict individual survival time. The FL framework collected weights and parameters from the clients, which were then incorporated into the global model. Finally, the global model aggregated all weights and parameters and redistributed the updated model weights to each client. We evaluated different frameworks including single-client-based approach, centralized learning and FL. RESULTS We evaluated our method on two independent datasets. First, on the RNSCLC dataset, the mean absolute error (MAE) was 490.80±22.95 d and the C-Index was 0.69±0.01. Second, on the CNUHH dataset, the MAE was 494.25±40.16 d and the C-Index was 0.71±0.01. The FL approach achieved centralized method performance in PET-based survival time prediction and outperformed single-client-based approaches. CONCLUSIONS Our results demonstrated the feasibility and effectiveness of employing FL for individual survival prediction in NSCLC patients, using clinical information and PET-based features.
Collapse
Affiliation(s)
- Vi Thi-Tuong Vo
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju, 61186, South Korea
| | - Tae-Ho Shin
- Interdisciplinary Program of Information Security, Chonnam National University, Gwangju, 61186, South Korea
| | - Hyung-Jeong Yang
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju, 61186, South Korea
| | - Sae-Ryung Kang
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital and Medical School, Hwasun, 58128, South Korea.
| | - Soo-Hyung Kim
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
8
|
Barba I, Carrillo-Bosch L, Seoane J. Targeting the Warburg Effect in Cancer: Where Do We Stand? Int J Mol Sci 2024; 25:3142. [PMID: 38542116 PMCID: PMC10970388 DOI: 10.3390/ijms25063142] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/06/2025] Open
Abstract
The Warburg effect, characterized by the preferential conversion of glucose to lactate even in the presence of oxygen and functional mitochondria, is a prominent metabolic hallmark of cancer cells and has emerged as a promising therapeutic target for cancer therapy. Elevated lactate levels and acidic pH within the tumor microenvironment (TME) resulting from glycolytic profoundly impact various cellular populations, including macrophage reprogramming and impairment of T-cell functionality. Altogether, the Warburg effect has been shown to promote tumor progression and immunosuppression through multiple mechanisms. This review provides an overview of the current understanding of the Warburg effect in cancer and its implications. We summarize recent pharmacological strategies aimed at targeting glycolytic enzymes, highlighting the challenges encountered in achieving therapeutic efficacy. Additionally, we examine the utility of the Warburg effect as an early diagnostic tool. Finally, we discuss the multifaceted roles of lactate within the TME, emphasizing its potential as a therapeutic target to disrupt metabolic interactions between tumor and immune cells, thereby enhancing anti-tumor immunity.
Collapse
Affiliation(s)
- Ignasi Barba
- Faculty of Medicine, University of Vic-Central University of Catalonia, 08500 Vic, Catalonia, Spain
- Vall d’Hebron Institute of Oncology (VHIO), CIBERONC, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Laura Carrillo-Bosch
- Vall d’Hebron Institute of Oncology (VHIO), CIBERONC, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Joan Seoane
- Vall d’Hebron Institute of Oncology (VHIO), CIBERONC, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
9
|
Miao Y, Feng R, Yu T, Guo R, Zhang M, Wang Y, Hai W, Shangguan C, Zhu Z, Li B. Value of 68Ga-FAPI-04 and 18F-FDG PET/CT in Early Prediction of Pathologic Response to Neoadjuvant Chemotherapy in Locally Advanced Gastric Cancer. J Nucl Med 2024; 65:213-220. [PMID: 38164574 DOI: 10.2967/jnumed.123.266403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/07/2023] [Indexed: 01/03/2024] Open
Abstract
This prospective study investigated whether PET parameters from 18F-FDG and 68Ga-fibroblast activation protein inhibitor (FAPI)-04 PET/CT can predict a pathologic response to neoadjuvant chemotherapy (NAC) early in patients with locally advanced gastric cancer (LAGC). Methods: The study included 28 patients with LAGC who underwent 18F-FDG PET/CT and 68Ga-FAPI-04 PET/CT at baseline and after 1 cycle of NAC. PET parameters including SUV and tumor-to-background ratio (TBR), as well as the change rate of SUV and TBR, were recorded. Patients were classified as major or minor pathologic responders according to postoperative pathology findings. We compared the PET parameters between the 2 pathologic response groups and different treatment regimens and analyzed their predictive performance for tumor pathologic response. Results: Major pathologic responders had significantly lower 68Ga-FAPI change rates (percentage SUVmax [%SUVmax], percentage SUVpeak [%SUVpeak], and percentage TBR [%TBR]) than minor pathologic responders. Among the PET parameters, 68Ga-FAPI %SUVmax (area under the curve, 0.856; P = 0.009), %SUVpeak (area under the curve, 0.811; P = 0.022), and %TBR (area under the curve, 0.864; P = 0.007) were significant parameters for early prediction of pathologic response to NAC in LAGC; they had the same predictive accuracy of 89.29%, with the thresholds of decrease to at least 52.43%, 60.46%, and 52.96%, respectively. In addition, 68Ga-FAPI %SUVmax and %TBR showed significant differences between the different treatment regimens. Conclusion: In this preliminary study, 68Ga-FAPI-04 PET change rate parameters were preferable to 18F-FDG in predicting pathologic response to NAC at an early stage in LAGC. 68Ga-FAPI %SUVmax and %TBR may be better predictors of therapeutic response between different treatment regimens. These findings may help optimize the treatment for patients with LAGC.
Collapse
Affiliation(s)
- Ying Miao
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Runhua Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Teng Yu
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Guo
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Wang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wangxi Hai
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengfang Shangguan
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and
| | - Zhenggang Zhu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China;
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China;
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Ruijin Center, Shanghai, China
| |
Collapse
|
10
|
Sunassee ED, Jardim-Perassi BV, Madonna MC, Ordway B, Ramanujam N. Metabolic Imaging as a Tool to Characterize Chemoresistance and Guide Therapy in Triple-Negative Breast Cancer (TNBC). Mol Cancer Res 2023; 21:995-1009. [PMID: 37343066 PMCID: PMC10592445 DOI: 10.1158/1541-7786.mcr-22-1004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/07/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
After an initial response to chemotherapy, tumor relapse is frequent. This event is reflective of both the spatiotemporal heterogeneities of the tumor microenvironment as well as the evolutionary propensity of cancer cell populations to adapt to variable conditions. Because the cause of this adaptation could be genetic or epigenetic, studying phenotypic properties such as tumor metabolism is useful as it reflects molecular, cellular, and tissue-level dynamics. In triple-negative breast cancer (TNBC), the characteristic metabolic phenotype is a highly fermentative state. However, during treatment, the spatial and temporal dynamics of the metabolic landscape are highly unstable, with surviving populations taking on a variety of metabolic states. Thus, longitudinally imaging tumor metabolism provides a promising approach to inform therapeutic strategies, and to monitor treatment responses to understand and mitigate recurrence. Here we summarize some examples of the metabolic plasticity reported in TNBC following chemotherapy and review the current metabolic imaging techniques available in monitoring chemotherapy responses clinically and preclinically. The ensemble of imaging technologies we describe has distinct attributes that make them uniquely suited for a particular length scale, biological model, and/or features that can be captured. We focus on TNBC to highlight the potential of each of these technological advances in understanding evolution-based therapeutic resistance.
Collapse
Affiliation(s)
- Enakshi D. Sunassee
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | - Megan C. Madonna
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Bryce Ordway
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL 33612, USA
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nirmala Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27708, USA
| |
Collapse
|
11
|
Abstract
Breast cancer (BC) remains one of the leading causes of death among women. The management and outcome in BC are strongly influenced by a multidisciplinary approach, which includes available treatment options and different imaging modalities for accurate response assessment. Among breast imaging modalities, MR imaging is the modality of choice in evaluating response to neoadjuvant therapy, whereas F-18 Fluorodeoxyglucose positron emission tomography, conventional computed tomography (CT), and bone scan play a vital role in assessing response to therapy in metastatic BC. There is an unmet need for a standardized patient-centric approach to use different imaging methods for response assessment.
Collapse
Affiliation(s)
- Saima Muzahir
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, 1364 Clifton Road, Atlanta GA 30322, USA; Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University Hospital, Room E152, 1364 Clifton Road, Atlanta, GA 30322, USA.
| | - Gary A Ulaner
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Newport Beach, CA, USA; Radiology and Translational Genomics, University of Southern California, Los Angeles, CA, USA
| | - David M Schuster
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University Hospital, Room E152, 1364 Clifton Road, Atlanta, GA 30322, USA
| |
Collapse
|
12
|
Cecil K, Huppert L, Mukhtar R, Dibble EH, O'Brien SR, Ulaner GA, Lawhn-Heath C. Metabolic Positron Emission Tomography in Breast Cancer. PET Clin 2023; 18:473-485. [PMID: 37369614 DOI: 10.1016/j.cpet.2023.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Metabolic PET, most commonly 18F-fluorodeoxyglucose (FDG) PET/computed tomography (CT), has had a major impact on the imaging of breast cancer and can have important clinical applications in appropriate patients. While limited for screening, FDG PET/CT outperforms conventional imaging in locally advanced breast cancer. FDG PET/CT is more sensitive than conventional imaging in assessing treatment response, accurately predicting complete response or nonresponse in early-stage cases. It also aids in determining disease extent and treatment response in the metastatic setting. Further research, including randomized controlled trials with FDG and other metabolic agents such as fluciclovine, is needed for optimal breast cancer imaging.
Collapse
Affiliation(s)
- Katherine Cecil
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Laura Huppert
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Rita Mukhtar
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA; Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Elizabeth H Dibble
- Department of Diagnostic Imaging, The Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, USA
| | - Sophia R O'Brien
- Divisions of Molecular Imaging and Therapy Breast Imaging, Department of Radiology, The Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Gary A Ulaner
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Irvine, CA, USA; Departments of Radiology and Translational Genomics, University of Southern California, Los Angeles, CA, USA
| | - Courtney Lawhn-Heath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
13
|
Ma G, You S, Xie Y, Gu B, Liu C, Hu X, Song S, Wang B, Yang Z. Pretreatment 18F-FDG uptake heterogeneity may predict treatment outcome of combined Trastuzumab and Pertuzumab therapy in patients with metastatic HER2 positive breast cancer. Cancer Imaging 2023; 23:90. [PMID: 37726862 PMCID: PMC10510219 DOI: 10.1186/s40644-023-00608-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023] Open
Abstract
OBJECTIVE Intra-tumoral heterogeneity of 18F-fluorodeoxyglucose (18F-FDG) uptake has been proven to be a surrogate marker for predicting treatment outcome in various tumors. However, the value of intra-tumoral heterogeneity in metastatic Human epidermal growth factor receptor 2(HER2) positive breast cancer (MHBC) remains unknown. The aim of this study was to evaluate 18F-FDG uptake heterogeneity to predict the treatment outcome of the dual target therapy with Trastuzumab and Pertuzumab(TP) in MHBC. METHODS Thirty-two patients with MHBC who underwent 18F-FDG positron emission tomography/computed tomography (PET/CT) scan before TP were enrolled retrospectively. The region of interesting (ROI) of the lesions were drawn, and maximum standard uptake value (SUVmax), mean standard uptake value (SUVmean), total lesion glycolysis (TLG), metabolic tumor volume (MTV) and heterogeneity index (HI) were recorded. Correlation between PET/CT parameters and the treatment outcome was analyzed by Spearman Rank Test. The ability to predict prognosis were determined by time-dependent survival receiver operating characteristic (ROC) analysis. And the survival analyses were then estimated by Kaplan-Meier method and compared by log-rank test. RESULTS The survival analysis showed that HI50% calculated by delineating the lesion with 50%SUVmax as threshold was a significant predictor of patients with MHBC treated by the treatment with TP. Patients with HI50% (≥ 1.571) had a significantly worse prognosis of progression free survival (PFS) (6.87 vs. Not Reach, p = 0.001). The area under curve (AUC), the sensitivity and the specificity were 0.88, 100% and 63.6% for PFS, respectively. CONCLUSION 18F-FDG uptake heterogeneity may be useful for predicting the prognosis of MHBC patients treated by TP.
Collapse
Affiliation(s)
- Guang Ma
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
| | - Shuhui You
- Department of Breast Cancer and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yizhao Xie
- Department of Medical Oncology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Bingxin Gu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
| | - Cheng Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
| | - Xichun Hu
- Department of Breast Cancer and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
| | - Biyun Wang
- Department of Breast Cancer and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Zhongyi Yang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China.
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China.
| |
Collapse
|
14
|
de Jong D, Desperito E, Al Feghali KA, Dercle L, Seban RD, Das JP, Ma H, Sajan A, Braumuller B, Prendergast C, Liou C, Deng A, Roa T, Yeh R, Girard A, Salvatore MM, Capaccione KM. Advances in PET/CT Imaging for Breast Cancer. J Clin Med 2023; 12:4537. [PMID: 37445572 PMCID: PMC10342839 DOI: 10.3390/jcm12134537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
One out of eight women will be affected by breast cancer during her lifetime. Imaging plays a key role in breast cancer detection and management, providing physicians with information about tumor location, heterogeneity, and dissemination. In this review, we describe the latest advances in PET/CT imaging of breast cancer, including novel applications of 18F-FDG PET/CT and the development and testing of new agents for primary and metastatic breast tumor imaging and therapy. Ultimately, these radiopharmaceuticals may guide personalized approaches to optimize treatment based on the patient's specific tumor profile, and may become a new standard of care. In addition, they may enhance the assessment of treatment efficacy and lead to improved outcomes for patients with a breast cancer diagnosis.
Collapse
Affiliation(s)
- Dorine de Jong
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Elise Desperito
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA; (E.D.); (L.D.); (H.M.); (A.S.); (B.B.); (C.P.); (C.L.); (T.R.); (M.M.S.)
| | | | - Laurent Dercle
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA; (E.D.); (L.D.); (H.M.); (A.S.); (B.B.); (C.P.); (C.L.); (T.R.); (M.M.S.)
| | - Romain-David Seban
- Department of Nuclear Medicine and Endocrine Oncology, Institut Curie, 92210 Saint-Cloud, France;
- Laboratory of Translational Imaging in Oncology, Paris Sciences et Lettres (PSL) Research University, Institut Curie, 91401 Orsay, France
| | - Jeeban P. Das
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (J.P.D.); (R.Y.)
| | - Hong Ma
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA; (E.D.); (L.D.); (H.M.); (A.S.); (B.B.); (C.P.); (C.L.); (T.R.); (M.M.S.)
| | - Abin Sajan
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA; (E.D.); (L.D.); (H.M.); (A.S.); (B.B.); (C.P.); (C.L.); (T.R.); (M.M.S.)
| | - Brian Braumuller
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA; (E.D.); (L.D.); (H.M.); (A.S.); (B.B.); (C.P.); (C.L.); (T.R.); (M.M.S.)
| | - Conor Prendergast
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA; (E.D.); (L.D.); (H.M.); (A.S.); (B.B.); (C.P.); (C.L.); (T.R.); (M.M.S.)
| | - Connie Liou
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA; (E.D.); (L.D.); (H.M.); (A.S.); (B.B.); (C.P.); (C.L.); (T.R.); (M.M.S.)
| | - Aileen Deng
- Department of Hematology and Oncology, Novant Health, 170 Medical Park Road, Mooresville, NC 28117, USA;
| | - Tina Roa
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA; (E.D.); (L.D.); (H.M.); (A.S.); (B.B.); (C.P.); (C.L.); (T.R.); (M.M.S.)
| | - Randy Yeh
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (J.P.D.); (R.Y.)
| | - Antoine Girard
- Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, 35000 Rennes, France;
| | - Mary M. Salvatore
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA; (E.D.); (L.D.); (H.M.); (A.S.); (B.B.); (C.P.); (C.L.); (T.R.); (M.M.S.)
| | - Kathleen M. Capaccione
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA; (E.D.); (L.D.); (H.M.); (A.S.); (B.B.); (C.P.); (C.L.); (T.R.); (M.M.S.)
| |
Collapse
|
15
|
Tai H, Margolis R, Li J, Hoyt K. H-Scan Ultrasound Monitoring of Breast Cancer Response to Chemotherapy and Validation With Diffusion-Weighted Magnetic Resonance Imaging. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:1297-1306. [PMID: 36468546 DOI: 10.1002/jum.16143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 05/18/2023]
Abstract
OBJECTIVES H-scan ultrasound (US) imaging is a novel tissue characterization technique to detect apoptosis-induced changes in cancer cells after the initiation of effective drug treatment. The objective of the proposed research was to assess the sensitivity of 3-dimensional (3D) H-scan US technique for monitoring the response of breast cancer-bearing animals to neoadjuvant chemotherapy and correlate results to diffusion-weighted magnetic resonance imaging (DW-MRI) measurements of programmed cancer cell death. METHODS Experimental studies used female mice (N = 18) implanted with human breast cancer cells. Animals underwent H-scan US and DW-MRI imaging on days 0, 1, 3, 7, and 10. After imaging at day 0, breast tumor-bearing nude mice were treated biweekly with an apoptosis-inducing drug. Texture analysis of H-scan US images explored spatial relationships between local US scattering. At day 10, H-scan measurements were compared with DW-MRI-derived apparent diffusion coefficient (ADC) values and histological findings. RESULTS H-scan US imaging of low and high dose cisplatin-treated cancer-bearing animals revealed changes in image intensity suggesting a progressive decrease in aggregate US scatterer size that was not observed in control animals. Longitudinal trends discovered in H-scan US result matched with texture analysis and DW-MRI (P < .01). Further, analysis of the H-scan US image intensity and corresponding DW-MRI-derived ADC values revealed a strong linear correlation (R2 = .93, P < .001). These changes were due to cancer cell apoptotic activity and consider as early detectable biomarker during treatment. CONCLUSIONS The 3D H-scan technique holds promise for assisting clinicians in monitoring the early response of breast cancer tumor to neoadjuvant chemotherapy and adding value to traditional diagnostic ultrasound examinations.
Collapse
Affiliation(s)
- Haowei Tai
- Department of Electrical and Computer Engineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Ryan Margolis
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Junjie Li
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
16
|
Vogsen M, Harbo F, Jakobsen NM, Nissen HJ, Dahlsgaard-Wallenius SE, Gerke O, Jensen JD, Asmussen JT, Jylling AMB, Braad PE, Vach W, Ewertz M, Hildebrandt MG. Response Monitoring in Metastatic Breast Cancer: A Prospective Study Comparing 18F-FDG PET/CT with Conventional CT. J Nucl Med 2023; 64:355-361. [PMID: 36207136 PMCID: PMC10071809 DOI: 10.2967/jnumed.121.263358] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to compare contrast-enhanced CT (CE-CT) and 18F-FDG PET/CT for response monitoring in metastatic breast cancer using the standardized response evaluation criteria RECIST 1.1 and PERCIST. The objective was to examine whether progressive disease was detected systematically earlier by one of the modalities. Methods: Women with biopsy-verified metastatic breast cancer were enrolled prospectively and monitored using combined CE-CT and 18F-FDG PET/CT every 9-12 wk to evaluate response to first-line treatment. CE-CT scans and RECIST 1.1 were used for clinical decision-making without accessing the 18F-FDG PET/CT scans. At study completion, 18F-FDG PET/CT scans were unmasked and assessed according to PERCIST. Visual assessment was used if response criteria could not be applied. The modality-specific time to progression was defined as the time from the baseline scan until the first scan demonstrating progression. Paired comparative analyses for CE-CT versus 18F-FDG PET/CT were applied, and the primary endpoint was earlier detection of progression by one modality. Secondary endpoints were time to detection of progression, response categorization, visualization of changes in response over time, and measurable disease according to RECIST and PERCIST. Results: In total, 87 women were evaluable, with a median of 6 (1-11) follow-up scans. Progression was detected first by 18F-FDG PET/CT in 43 (49.4%) of 87 patients and first by CE-CT in 1 (1.15%) of 87 patients (P < 0.0001). Excluding patients without progression (n = 32), progression was seen first on 18F-FDG PET/CT in 78.2% (43/55) of patients. The median time from detection of progression by 18F-FDG PET/CT to that of CE-CT was 6 mo (95% CI, 4.3-6.4 mo). At baseline, 76 (87.4%) of 87 patients had measurable disease according to PERCIST and 51 (58.6%) of 87 patients had measurable disease according to RECIST 1.1. Moreover, 18F-FDG PET/CT provided improved visualization of changes in response over time, as seen in the graphical abstract. Conclusion: Disease progression was detected earlier by 18F-FDG PET/CT than by CE-CT in most patients, with a potentially clinically relevant median 6-mo delay for CE-CT. More patients had measurable disease according to PERCIST than according to RECIST 1.1. The magnitude of the final benefit for patients is a perspective for future research.
Collapse
Affiliation(s)
- Marianne Vogsen
- Department of Oncology, Odense University Hospital, Odense, Denmark;
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Odense Patient Data Explorative Network (OPEN), Odense University Hospital, Odense, Denmark
- Centre for Personalized Response Monitoring in Oncology (PREMIO), Odense University Hospital, Odense, Denmark
| | - Frederik Harbo
- Department of Radiology, Odense University Hospital, Odense, Denmark
| | - Nick M Jakobsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Henriette J Nissen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | | | - Oke Gerke
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Jon T Asmussen
- Department of Radiology, Odense University Hospital, Odense, Denmark
| | - Anne Marie B Jylling
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Poul-Erik Braad
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Werner Vach
- Basel Academy for Quality and Research in Medicine, Basel, Switzerland; and
| | - Marianne Ewertz
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Malene G Hildebrandt
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Centre for Personalized Response Monitoring in Oncology (PREMIO), Odense University Hospital, Odense, Denmark
- Centre for Innovative Medical Technology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
17
|
Pavlov MV, Bavrina AP, Plekhanov VI, Golubyatnikov GY, Orlova AG, Subochev PV, Davydova DA, Turchin IV, Maslennikova AV. Changes in the tumor oxygenation but not in the tumor volume and tumor vascularization reflect early response of breast cancer to neoadjuvant chemotherapy. Breast Cancer Res 2023; 25:12. [PMID: 36717842 PMCID: PMC9887770 DOI: 10.1186/s13058-023-01607-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Breast cancer neoadjuvant chemotherapy (NACT) allows for assessing tumor sensitivity to systemic treatment, planning adjuvant treatment and follow-up. However, a sufficiently large number of patients fail to achieve the desired level of pathological tumor response while optimal early response assessment methods have not been established now. In our study, we simultaneously assessed the early chemotherapy-induced changes in the tumor volume by ultrasound (US), the tumor oxygenation by diffuse optical spectroscopy imaging (DOSI), and the state of the tumor vascular bed by Doppler US to elaborate the predictive criteria of breast tumor response to treatment. METHODS A total of 133 patients with a confirmed diagnosis of invasive breast cancer stage II to III admitted to NACT following definitive breast surgery were enrolled, of those 103 were included in the final analysis. Tumor oxygenation by DOSI, tumor volume by US, and tumor vascularization by Doppler US were determined before the first and second cycle of NACT. After NACT completion, patients underwent surgery followed by pathological examination and assessment of the pathological tumor response. On the basis of these, data regression predictive models were created. RESULTS We observed changes in all three parameters 3 weeks after the start of the treatment. However, a high predictive potential for early assessment of tumor sensitivity to NACT demonstrated only the level of oxygenation, ΔStO2, (ρ = 0.802, p ≤ 0.01). The regression model predicts the tumor response with a high probability of a correct conclusion (89.3%). The "Tumor volume" model and the "Vascularization index" model did not accurately predict the absence of a pathological tumor response to treatment (60.9% and 58.7%, respectively), while predicting a positive response to treatment was relatively better (78.9% and 75.4%, respectively). CONCLUSIONS Diffuse optical spectroscopy imaging appeared to be a robust tool for early predicting breast cancer response to chemotherapy. It may help identify patients who need additional molecular genetic study of the tumor in order to find the source of resistance to treatment, as well as to correct the treatment regimen.
Collapse
Affiliation(s)
- Mikhail V. Pavlov
- Nizhny Novgorod Regional Clinical Oncology Dispensary, Delovaya St., 11/1, Nizhny Novgorod, Russia 603126
| | - Anna P. Bavrina
- grid.416347.30000 0004 0386 1631Privolzhsky Research Medical University, Minina Square, 10/1, Nizhny Novgorod, Russia 603950
| | - Vladimir I. Plekhanov
- grid.410472.40000 0004 0638 0147Institute of Applied Physics RAS, Ul’yanov Street, 46, Nizhny Novgorod, Russia 603950
| | - German Yu. Golubyatnikov
- grid.410472.40000 0004 0638 0147Institute of Applied Physics RAS, Ul’yanov Street, 46, Nizhny Novgorod, Russia 603950
| | - Anna G. Orlova
- grid.410472.40000 0004 0638 0147Institute of Applied Physics RAS, Ul’yanov Street, 46, Nizhny Novgorod, Russia 603950
| | - Pavel V. Subochev
- grid.410472.40000 0004 0638 0147Institute of Applied Physics RAS, Ul’yanov Street, 46, Nizhny Novgorod, Russia 603950
| | - Diana A. Davydova
- Nizhny Novgorod Regional Clinical Oncology Dispensary, Delovaya St., 11/1, Nizhny Novgorod, Russia 603126
| | - Ilya V. Turchin
- grid.410472.40000 0004 0638 0147Institute of Applied Physics RAS, Ul’yanov Street, 46, Nizhny Novgorod, Russia 603950
| | - Anna V. Maslennikova
- grid.416347.30000 0004 0386 1631Privolzhsky Research Medical University, Minina Square, 10/1, Nizhny Novgorod, Russia 603950 ,grid.28171.3d0000 0001 0344 908XNational Research Lobachevsky State University of Nizhny Novgorod, Gagarin Ave., 23, Nizhny Novgorod, Russia 603022
| |
Collapse
|
18
|
Li C, Liu J, Yang X, Yang Q, Huang W, Zhang M, Zhou D, Wang R, Gong J, Miao Q, Kang L, Yang J. Theranostic application of 64Cu/ 177Lu-labeled anti-Trop2 monoclonal antibody in pancreatic cancer tumor models. Eur J Nucl Med Mol Imaging 2022; 50:168-183. [PMID: 36063202 DOI: 10.1007/s00259-022-05954-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/23/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Pancreatic cancer is a malignant tumor with a high degree of malignancy, strong heterogeneity, and high lethality. Trop2 is a transmembrane glycoprotein associated with the occurrence, development, and poor prognosis of pancreatic cancer. This study aims to develop 64Cu/177Lu-labeled anti-Trop2 monoclonal antibody (hIMB1636) for positron emission tomography (PET) imaging and radioimmunotherapy (RIT) application in pancreatic cancer tumor models. METHODS The binding kinetics of hIMB1636 to Trop2 antigen was measured by Biolayer interferometry (BLI). Western blotting was used to screen the Trop2 expression of pancreatic cancer cell lines. Flow cytometry and cell immunofluorescence were used to evaluate the binding ability of hIMB1636 and Trop2 on the cell surface. hIMB1636 were conjugated with p-SCN-Bn-NOTA (NOTA) and DOTA-NHS-ester (DOTA) for 64Cu and 177Lu radiolabeling respectively. ImmunoPET imaging and RIT studies were performed using 64Cu-NOTA-hIMB1636 and 177Lu-DOTA-hIMB1636 in subcutaneous pancreatic cancer tumor models. RESULTS hIMB1636 had a strong binding affinity to Trop2 according to the results of BLI. The T3M-4 cell line showed the strongest expression of Trop2 and specific binding ability of hIMB1636 according to the results of Western blotting, flow cytometry, and cell immunofluorescence. The radiochemical purity of 64Cu-NOTA-hIMB1636 and 177Lu-DOTA-hIMB1636 exceeded 95%. PET imaging showed gradually an accumulation of 64Cu-NOTA-hIMB1636 in T3M-4 tumor models. The maximum tumor uptake was 8.95 ± 1.07%ID/g (n = 4) at 48 h post injection (p.i.), which had significant differences with T3M-4-blocked and PaTu8988-negative groups (P < 0.001). The high-177Lu-hIMB1636 group demonstrated the strongest tumor suppression with standardized tumor volume about 94.24 ± 14.62% (n = 5) at 14 days p.i., significantly smaller than other groups (P < 0.05). Ex vivo biodistribution and histological staining verified the in vivo PET imaging and RIT results. CONCLUSIONS This study demonstrated that 64Cu/177Lu-labeled hIMB1636 could noninvasively evaluate the expression level of Trop2 and inhibit the Trop2-overexpressed tumor growth in pancreatic cancer tumor models. Further clinical evaluation and translation of Trop2-targeted drug may be of great help in the stratification and management of pancreatic cancer patients.
Collapse
Affiliation(s)
- Cuicui Li
- Department of Nuclear Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, 95 Yong'an Rd., Xicheng Dist., Beijing, 100050, China
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist., Beijing, 100034, China
| | - Jun Liu
- Department of Nuclear Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, 95 Yong'an Rd., Xicheng Dist., Beijing, 100050, China
| | - Xu Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, 95 Yong'an Rd., Xicheng Dist., Beijing, 100050, China
| | - Qi Yang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist., Beijing, 100034, China
| | - Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist., Beijing, 100034, China
| | - Mingyu Zhang
- Department of Nuclear Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, 95 Yong'an Rd., Xicheng Dist., Beijing, 100050, China
| | - Dandan Zhou
- NHC Key Laboratory of Biotechnology of Antibiotics, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Courtyard No. 2, Nanwei Rd., Xicheng Dist., Beijing, 100050, China
| | - Rong Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Jianhua Gong
- NHC Key Laboratory of Biotechnology of Antibiotics, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Courtyard No. 2, Nanwei Rd., Xicheng Dist., Beijing, 100050, China.
| | - Qingfang Miao
- NHC Key Laboratory of Biotechnology of Antibiotics, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Courtyard No. 2, Nanwei Rd., Xicheng Dist., Beijing, 100050, China.
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist., Beijing, 100034, China.
| | - Jigang Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, 95 Yong'an Rd., Xicheng Dist., Beijing, 100050, China.
| |
Collapse
|
19
|
Rapid Purification and Formulation of Radiopharmaceuticals via Thin-Layer Chromatography. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238178. [PMID: 36500272 PMCID: PMC9738419 DOI: 10.3390/molecules27238178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Before formulating radiopharmaceuticals for injection, it is necessary to remove various impurities via purification. Conventional synthesis methods involve relatively large quantities of reagents, requiring high-resolution and high-capacity chromatographic methods (e.g., semi-preparative radio-HPLC) to ensure adequate purity of the radiopharmaceutical. Due to the use of organic solvents during purification, additional processing is needed to reformulate the radiopharmaceutical into an injectable buffer. Recent developments in microscale radiosynthesis have made it possible to synthesize radiopharmaceuticals with vastly reduced reagent masses, minimizing impurities. This enables purification with lower-capacity methods, such as analytical HPLC, with a reduction of purification time and volume (that shortens downstream re-formulation). Still, the need for a bulky and expensive HPLC system undermines many of the advantages of microfluidics. This study demonstrates the feasibility of using radio-TLC for the purification of radiopharmaceuticals. This technique combines high-performance (high-resolution, high-speed separation) with the advantages of a compact and low-cost setup. A further advantage is that no downstream re-formulation step is needed. Production and purification of clinical scale batches of [18F]PBR-06 and [18F]Fallypride are demonstrated with high yield, purity, and specific activity. Automating this radio-TLC method could provide an attractive solution for the purification step in microscale radiochemistry systems.
Collapse
|
20
|
Bae SJ, Ahn SG, Ji JH, Chu CH, Kim D, Lee J, Park S, Cha C, Jeong J. Prognostic Value of Neutrophil-to-Lymphocyte Ratio and Early Standardized Uptake Value Reduction in Patients With Breast Cancer Receiving Neoadjuvant Chemotherapy. J Breast Cancer 2022; 25:485-499. [PMID: 36479600 PMCID: PMC9807322 DOI: 10.4048/jbc.2022.25.e44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/13/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE We investigated the treatment response and prognosis using the neutrophil-to-lymphocyte ratio (NLR) and standardized uptake value (SUV) of 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) in neoadjuvant settings. METHODS Baseline NLR and maximum SUV (SUVmax) were retrospectively analyzed in 273 females with breast cancer who received neoadjuvant chemotherapy followed by surgery. Of these, 101 patients underwent 18F-FDG PET after 3-4 neoadjuvant chemotherapy cycles, which allowed the measurement of ΔSUVmax, an early reduction in SUVmax. NLR and early SUVmax reduction (ΔSUVmax) were classified as low and high, respectively, relative to the median values. RESULTS The mean NLR was lower, and the mean ΔSUVmax was higher in patients with pathologic complete response (pCR) than in those with residual tumors. The ΔSUVmax was an independent variable associated with pCR. Furthermore, the high NLR group had poor recurrence-free survival (RFS) and overall survival. Among patients with ΔSUVmax data, high NLR (adjusted hazard ratio, 2.82; 95% confidence intervals [CI], 1.26-6.28; P = 0.016) and low ΔSUVmax (adjusted hazard ratio, 2.39; 95% CI, 1.07-5.34; P = 0.037) were independent prognostic factors for poor RFS. The categorization of the patients into four groups according to the combination of NLR and ΔSUVmax showed that patients with high NLR and low ΔSUVmax had significantly poorer RFS. CONCLUSION Baseline NLR and ΔSUVmax were significantly associated with the prognosis of patients with breast cancer who received neoadjuvant chemotherapy. These results suggest that metabolic non-responders with defective immune systems have worse survival outcomes.
Collapse
Affiliation(s)
- Soong June Bae
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Gwe Ahn
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Hwan Ji
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Chih Hao Chu
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Dooreh Kim
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Janghee Lee
- Department of Surgery, Sacred Heart Hospital, Hallym University, Dongtan, Korea
| | - Soeun Park
- Department of Surgery, CHA Ilsan Medical Center, CHA University, Goyang, Korea
| | - Chihwan Cha
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Joon Jeong
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Fourcade C, Ferrer L, Moreau N, Santini G, Brennan A, Rousseau C, Lacombe M, Fleury V, Colombié M, Jézéquel P, Rubeaux M, Mateus D. Deformable image registration with deep network priors: a study on longitudinal PET images. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac7e17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/04/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. This paper proposes a novel approach for the longitudinal registration of PET imaging acquired for the monitoring of patients with metastatic breast cancer. Unlike with other image analysis tasks, the use of deep learning (DL) has not significantly improved the performance of image registration. With this work, we propose a new registration approach to bridge the performance gap between conventional and DL-based methods: medical image registration method regularized by architecture (MIRRBA). Approach.
MIRRBA is a subject-specific deformable registration method which relies on a deep pyramidal architecture to parametrize the deformation field. Diverging from the usual deep-learning paradigms, MIRRBA does not require a learning database, but only a pair of images to be registered that is used to optimize the network's parameters. We applied MIRRBA on a private dataset of 110 whole-body PET images of patients with metastatic breast cancer. We used different architecture configurations to produce the deformation field and studied the results obtained. We also compared our method to several standard registration approaches: two conventional iterative registration methods (ANTs and Elastix) and two supervised DL-based models (LapIRN and Voxelmorph). Registration accuracy was evaluated using the Dice score, the target registration error, the average Hausdorff distance and the detection rate, while the realism of the registration obtained was evaluated using Jacobian's determinant. The ability of the different methods to shrink disappearing lesions was also computed with the disappearing rate. Main results. MIRRBA significantly improved all metrics when compared to DL-based approaches. The organ and lesion Dice scores of Voxelmorph improved by 6% and 52% respectively, while the ones of LapIRN increased by 5% and 65%. Regarding conventional approaches, MIRRBA presented comparable results showing the feasibility of our method. Significance. In this paper, we also demonstrate the regularizing power of deep architectures and present new elements to understand the role of the architecture in DL methods used for registration.
Collapse
|
22
|
Edmonds CE, O'Brien SR, Mankoff DA, Pantel AR. Novel applications of molecular imaging to guide breast cancer therapy. Cancer Imaging 2022; 22:31. [PMID: 35729608 PMCID: PMC9210593 DOI: 10.1186/s40644-022-00468-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
The goals of precision oncology are to provide targeted drug therapy based on each individual’s specific tumor biology, and to enable the prediction and early assessment of treatment response to allow treatment modification when necessary. Thus, precision oncology aims to maximize treatment success while minimizing the side effects of inadequate or suboptimal therapies. Molecular imaging, through noninvasive assessment of clinically relevant tumor biomarkers across the entire disease burden, has the potential to revolutionize clinical oncology, including breast oncology. In this article, we review breast cancer positron emission tomography (PET) imaging biomarkers for providing early response assessment and predicting treatment outcomes. For 2-18fluoro-2-deoxy-D-glucose (FDG), a marker of cellular glucose metabolism that is well established for staging multiple types of malignancies including breast cancer, we highlight novel applications for early response assessment. We then review current and future applications of novel PET biomarkers for imaging the steroid receptors, including the estrogen and progesterone receptors, the HER2 receptor, cellular proliferation, and amino acid metabolism.
Collapse
Affiliation(s)
- Christine E Edmonds
- Department of Radiology, Hospital of the University if Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Sophia R O'Brien
- Department of Radiology, Hospital of the University if Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - David A Mankoff
- Department of Radiology, Hospital of the University if Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Austin R Pantel
- Department of Radiology, Hospital of the University if Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
23
|
Response monitoring in metastatic breast cancer: a comparison of survival times between FDG-PET/CT and CE-CT. Br J Cancer 2022; 126:1271-1279. [PMID: 35013575 PMCID: PMC9042860 DOI: 10.1038/s41416-021-01654-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/06/2021] [Accepted: 11/23/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND We compared overall survival for metastatic breast cancer (MBC) patients monitored with CE-CT, FDG-PET/CT or a combination of them in an observational setting. METHODS Patients with biopsy-verified (recurrent or de novo) MBC (n = 300) who were treated at Odense university hospital (Denmark) and response monitored with FDG-PET/CT (n = 83), CE-CT (n = 144), or a combination of these (n = 73) were followed until 2019. Survival was compared between the scan groups, and were adjusted for clinico-histopathological variables representing potential confounders in a Cox proportional-hazard regression model. RESULTS The study groups were mostly comparable regarding baseline characteristics, but liver metastases were reported more frequently in CE-CT group (38.9%) than in FDG-PET/CT group (19.3%) and combined group (24.7%). Median survival was 30.0 months for CE-CT group, 44.3 months for FDG-PET/CT group and 54.0 months for Combined group. Five-year survival rates were significantly higher for FDG-PET/CT group (41.9%) and combined group (43.3%), than for CE-CT group (15.8%). Using the CE-CT group as reference, the hazard ratio was 0.44 (95% CI: 0.29-0.68, P = 0.001) for the FDG-PET/CT group after adjusting for baseline characteristics. FDG-PET/CT detected the first progression 4.7 months earlier than CE-CT, leading to earlier treatment change. CONCLUSIONS In this single-center, observational study, patients with metastatic breast cancer who were response monitored with FDG-PET/CT alone or in combination with CE-CT had longer overall survival than patients monitored with CE-CT alone. Confirmation of these findings by further, preferably randomised clinical trials is warranted.
Collapse
|
24
|
Vergato C, Doshi KA, Roblyer D, Waxman DJ. Type-I interferon signaling is essential for robust metronomic chemo-immunogenic tumor regression in murine breast cancer. CANCER RESEARCH COMMUNICATIONS 2022; 2:246-257. [PMID: 36187936 PMCID: PMC9524291 DOI: 10.1158/2767-9764.crc-21-0148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Many patients with breast cancer have a poor prognosis with limited therapeutic options. Here, we investigated the potential of chemo-immunogenic therapy as an avenue of treatment. We utilized two syngeneic mouse mammary tumor models, 4T1 and E0771, to examine the chemo-immunogenic potential of cyclophosphamide and the mechanistic contributions of cyclophosphamide-activated type-I interferon (IFN) signaling to therapeutic activity. Chemically-activated cyclophosphamide induced robust IFNα/β receptor-1-dependent signaling linked to hundreds of IFN-stimulated gene responses in both cell lines. Further, in 4T1 tumors, cyclophosphamide given on a medium-dose, 6-day intermittent metronomic schedule induced strong IFN signaling but comparatively weak immune cell infiltration associated with long-term tumor growth stasis. Induction of IFN signaling was somewhat weaker in E0771 tumors but was followed by widespread downstream gene responses, robust immune cell infiltration and extensive, prolonged tumor regression. The immune dependence of these effective anti-tumor responses was established by CD8 T-cell immunodepletion, which blocked cyclophosphamide-induced E0771 tumor regression and led to tumor stasis followed by regrowth. Strikingly, IFNα/β receptor-1 antibody blockade was even more effective in preventing E0771 immune cell infiltration and blocked the major tumor regression induced by cyclophosphamide treatment. Type-I IFN signaling is thus essential for the robust chemo-immunogenic response of these tumors to cyclophosphamide administered on a metronomic schedule.
Collapse
Affiliation(s)
- Cameron Vergato
- Department of Biology, Boston University, Boston, Massachusetts
| | - Kshama A. Doshi
- Department of Biology, Boston University, Boston, Massachusetts
| | - Darren Roblyer
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - David J. Waxman
- Department of Biology, Boston University, Boston, Massachusetts
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
- Corresponding Author: David J. Waxman, Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215. Phone: 617-353-7401; E-mail:
| |
Collapse
|
25
|
Abd El-Gaid S, AbdelHafez MN, Mohamed G, Elazab MSS, Elahmadawy MA. Prediction of pathological response using 18F FDG PET/CT derived metabolic parameters in locally advanced breast cancer patients. Nucl Med Commun 2022; 43:292-303. [PMID: 34908020 DOI: 10.1097/mnm.0000000000001515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM OF WORK This study aims to assess the value of flurodeoxyglucose (FDG)-PET derived metabolic parameters for prediction of pathologic response in LABC postneoadjuvant therapy. METHODS Totally 47 patients with LABC underwent initial and postneoadjuvant therapy PET scans. ΔSUVmax%, ΔTLG% and ΔMTV% were calculated. Post-therapy histopathologic therapeutic response was assessed. RESULTS In total 91.5% of patients had invasive duct carcinoma and the remaining (8.5%) had invasive lobular carcinoma. Postneoadjuvant PET/CT was able to detect 91.7% of patients with pathologically proven complete response in primary tumor, 69% of those with Pathologic partial response and 88.3% of those with pathological no response (P value <0.001). However, 40 out of the 47 patients had regional nodal metastases. PET/CT was able to predict 57.1% of the patients with pathologically nonresponding nodal deposits and 93.9% of those revealed pathologic therapeutic effect (P value <0.001). Receiver operating characteristic curve (ROC) curve marked Δ1ry SUVmax of 26.25% (P value 0.003), Δ1ry TLG of 48.5% (P value 0.018). PET and pathological response correlated well with ΔSUVmax%, and Δ1ry TLG% correlated well with PET, pathologic response and expression of HER II receptors (P value <0.001, 0.003 and 0.037 respectively). ROC curve marked ΔLN SUVmax% of 80.15% (P value 0.012), ΔLN TLG% of 86.6% (P value 0.002), whereas for ΔLN MTV% cut off point of 55% (P value 0.003). ΔSUVmax%, ΔTLG % and ΔMTV% for regional nodal metastases, were significantly correlated with PET (P values <0.001, <0.001 and 0.003, respectively) and pathologic (P values 0.018, 0.001 and 0.002, respectively) response. CONCLUSION FDG-PET is a useful tool for monitoring the neoadjuvant therapeutic effect for primary and regional nodes in patients with LABC.
Collapse
Affiliation(s)
- Salwa Abd El-Gaid
- Nuclear Medicine Unit, Radiation Oncology & Nuclear Medicine Department
| | | | | | | | - Mai Amr Elahmadawy
- Nuclear Medicine Unit, Radiation Oncology & Nuclear Medicine Department
- Nuclear Medicine department, Children's Cancer Hospital Egypt, Cairo, Egypt
| |
Collapse
|
26
|
Kim M, Eleftheriou A, Ravotto L, Weber B, Rivlin M, Navon G, Capozza M, Anemone A, Longo DL, Aime S, Zaiss M, Herz K, Deshmane A, Lindig T, Bender B, Golay X. What do we know about dynamic glucose-enhanced (DGE) MRI and how close is it to the clinics? Horizon 2020 GLINT consortium report. MAGMA (NEW YORK, N.Y.) 2022; 35:87-104. [PMID: 35032288 PMCID: PMC8901523 DOI: 10.1007/s10334-021-00994-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/27/2022]
Abstract
Cancer is one of the most devastating diseases that the world is currently facing, accounting for 10 million deaths in 2020 (WHO). In the last two decades, advanced medical imaging has played an ever more important role in the early detection of the disease, as it increases the chances of survival and the potential for full recovery. To date, dynamic glucose-enhanced (DGE) MRI using glucose-based chemical exchange saturation transfer (glucoCEST) has demonstrated the sensitivity to detect both d-glucose and glucose analogs, such as 3-oxy-methyl-d-glucose (3OMG) uptake in tumors. As one of the recent international efforts aiming at pushing the boundaries of translation of the DGE MRI technique into clinical practice, a multidisciplinary team of eight partners came together to form the “glucoCEST Imaging of Neoplastic Tumors (GLINT)” consortium, funded by the Horizon 2020 European Commission. This paper summarizes the progress made to date both by these groups and others in increasing our knowledge of the underlying mechanisms related to this technique as well as translating it into clinical practice.
Collapse
Affiliation(s)
- Mina Kim
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Afroditi Eleftheriou
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Luca Ravotto
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, Switzerland
| | - Michal Rivlin
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gil Navon
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Martina Capozza
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Annasofia Anemone
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Torino, Italy
| | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Moritz Zaiss
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Neuroradiology, University Clinic Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Kai Herz
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Anagha Deshmane
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Tobias Lindig
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Xavier Golay
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.
| | | |
Collapse
|
27
|
Review of imaging techniques for evaluating morphological and functional responses to the treatment of bone metastases in prostate and breast cancer. Clin Transl Oncol 2022; 24:1290-1310. [PMID: 35152355 PMCID: PMC9192443 DOI: 10.1007/s12094-022-02784-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/20/2022] [Indexed: 12/27/2022]
Abstract
Bone metastases are very common complications associated with certain types of cancers that frequently negatively impact the quality of life and functional status of patients; thus, early detection is necessary for the implementation of immediate therapeutic measures to reduce the risk of skeletal complications and improve survival and quality of life. There is no consensus or universal standard approach for the detection of bone metastases in cancer patients based on imaging. Endorsed by the Spanish Society of Medical Oncology (SEOM), the Spanish Society of Medical Radiology (SERAM), and the Spanish Society of Nuclear Medicine and Molecular Imaging (SEMNIM) a group of experts met to discuss and provide an up-to-date review of our current understanding of the biological mechanisms through which tumors spread to the bone and describe the imaging methods available to diagnose bone metastasis and monitor their response to oncological treatment, focusing on patients with breast and prostate cancer. According to current available data, the use of next-generation imaging techniques, including whole-body diffusion-weighted MRI, PET/CT, and PET/MRI with novel radiopharmaceuticals, is recommended instead of the classical combination of CT and bone scan in detection, staging and response assessment of bone metastases from prostate and breast cancer.Clinical trial registration: Not applicable.
Collapse
|
28
|
van der Hoogt KJJ, Schipper RJ, Winter-Warnars GA, Ter Beek LC, Loo CE, Mann RM, Beets-Tan RGH. Factors affecting the value of diffusion-weighted imaging for identifying breast cancer patients with pathological complete response on neoadjuvant systemic therapy: a systematic review. Insights Imaging 2021; 12:187. [PMID: 34921645 PMCID: PMC8684570 DOI: 10.1186/s13244-021-01123-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/06/2021] [Indexed: 12/18/2022] Open
Abstract
This review aims to identify factors causing heterogeneity in breast DWI-MRI and their impact on its value for identifying breast cancer patients with pathological complete response (pCR) on neoadjuvant systemic therapy (NST). A search was performed on PubMed until April 2020 for studies analyzing DWI for identifying breast cancer patients with pCR on NST. Technical and clinical study aspects were extracted and assessed for variability. Twenty studies representing 1455 patients/lesions were included. The studies differed with respect to study population, treatment type, DWI acquisition technique, post-processing (e.g., mono-exponential/intravoxel incoherent motion/stretched exponential modeling), and timing of follow-up studies. For the acquisition and generation of ADC-maps, various b-value combinations were used. Approaches for drawing regions of interest on longitudinal MRIs were highly variable. Biological variability due to various molecular subtypes was usually not taken into account. Moreover, definitions of pCR varied. The individual areas under the curve for the studies range from 0.50 to 0.92. However, overlapping ranges of mean/median ADC-values at pre- and/or during and/or post-NST were found for the pCR and non-pCR groups between studies. The technical, clinical, and epidemiological heterogeneity may be causal for the observed variability in the ability of DWI to predict pCR accurately. This makes implementation of DWI for pCR prediction and evaluation based on one absolute ADC threshold for all breast cancer types undesirable. Multidisciplinary consensus and appropriate clinical study design, taking biological and therapeutic variation into account, is required for obtaining standardized, reliable, and reproducible DWI measurements for pCR/non-pCR identification.
Collapse
Affiliation(s)
- Kay J J van der Hoogt
- Department of Radiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands. .,GROW School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Robert J Schipper
- Department of Radiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Gonneke A Winter-Warnars
- Department of Radiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Leon C Ter Beek
- Department of Medical Physics, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Claudette E Loo
- Department of Radiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Ritse M Mann
- Department of Radiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Regina G H Beets-Tan
- Department of Radiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,GROW School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands.,Danish Colorectal Cancer Unit South, Institute of Regional Health Research, Vejle University Hospital, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
29
|
Hansen JA, Naghavi-Behzad M, Gerke O, Baun C, Falch K, Duvnjak S, Alavi A, Høilund-Carlsen PF, Hildebrandt MG. Diagnosis of bone metastases in breast cancer: Lesion-based sensitivity of dual-time-point FDG-PET/CT compared to low-dose CT and bone scintigraphy. PLoS One 2021; 16:e0260066. [PMID: 34793550 PMCID: PMC8601566 DOI: 10.1371/journal.pone.0260066] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 11/02/2021] [Indexed: 11/18/2022] Open
Abstract
We compared lesion-based sensitivity of dual-time-point FDG-PET/CT, bone scintigraphy (BS), and low-dose CT (LDCT) for detection of various types of bone metastases in patients with metastatic breast cancer. Prospectively, we included 18 patients with recurrent breast cancer who underwent dual-time-point FDG-PET/CT with LDCT and BS within a median time interval of three days. A total of 488 bone lesions were detected on any of the modalities and were categorized by the LDCT into osteolytic, osteosclerotic, mixed morphologic, and CT-negative lesions. Lesion-based sensitivity was 98.2% (95.4-99.3) and 98.8% (96.8-99.5) for early and delayed FDG-PET/CT, respectively, compared with 79.9% (51.1-93.8) for LDCT, 76.0% (36.3-94.6) for BS, and 98.6% (95.4-99.6) for the combined BS+LDCT. BS detected only 51.2% of osteolytic lesions which was significantly lower than other metastatic types. SUVs were significantly higher for all lesion types on delayed scans than on early scans (P<0.0001). Osteolytic and mixed-type lesions had higher SUVs than osteosclerotic and CT-negative metastases at both time-points. FDG-PET/CT had significantly higher lesion-based sensitivity than LDCT and BS, while a combination of the two yielded sensitivity comparable to that of FDG-PET/CT. Therefore, FDG-PET/CT could be considered as a sensitive one-stop-shop in case of clinical suspicion of bone metastases in breast cancer patients.
Collapse
Affiliation(s)
- Jeanette Ansholm Hansen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Obstetrics and Gynecology, Odense University Hospital, Odense, Denmark
| | - Mohammad Naghavi-Behzad
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- * E-mail:
| | - Oke Gerke
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Christina Baun
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Kirsten Falch
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Sandra Duvnjak
- Radiology Department–Breast Imaging, Herlev Gentofte Hospital, Copenhagen, Denmark
- Mammography Screening Center in the Capital Region, Herlev Gentofte Hospital, Copenhagen, Denmark
| | - Abass Alavi
- Division of Nuclear Medicine, Department of Radiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States of America
| | - Poul Flemming Høilund-Carlsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Malene Grubbe Hildebrandt
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Centre for Innovative Medical Technology, Odense University Hospital, Odense, Denmark
- Centre for Personalized Response Monitoring in Oncology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
30
|
Clinical Impact of FDG-PET/CT Compared with CE-CT in Response Monitoring of Metastatic Breast Cancer. Cancers (Basel) 2021; 13:cancers13164080. [PMID: 34439232 PMCID: PMC8392540 DOI: 10.3390/cancers13164080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The method of treatment evaluation in patients with chronic breast cancer may affect clinical decision making and treatment protocols. In this study, we compared the two imaging modalities for the evaluation of treatment responses in 65 patients with spread breast cancer. We included 34 patients who underwent contrast-enhanced computed tomography (CE-CT) and 31 patients who underwent positron emission tomography/computed tomography (FDG-PET/CT). Then, we compared the response categories and clinical effects within the two modalities during a follow-up period of an average of 17.3 months. Our results showed that CE-CT modality reported more scans as stable disease, while FDG-PET/CT modality reported regressive metastatic disease more often. This means that FDG-PET/CT responds more precisely with respect to the changes in patients’ clinical condition, while CE-CT tends to report stable disease in most of the scans. Therefore, FDG-PET/CT may be a more suitable imaging modality than CE-CT for the evaluation of treatment in patients with metastatic breast cancer. Abstract We compared response categories and impacts on treatment decisions for metastatic breast cancer (MBC) patients that are response-monitored with contrast-enhanced computed-tomography (CE-CT) or fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT). A comparative diagnostic study was performed on MBC patients undergoing response monitoring by CE-CT (n = 34) or FDG-PET/CT (n = 31) at the Odense University Hospital (Denmark). The responses were assessed visually and allocated into categories of complete response (CR/CMR), partial response (PR/PMR), stable disease (SD/SMD), and progressive disease (PD/PMD). Response categories, clinical impact, and positive predictive values (PPV) were compared for follow-up scans. A total of 286 CE-CT and 189 FDG-PET/CT response monitoring scans were performed. Response categories were distributed into CR (3.8%), PR (8.4%), SD (70.6%), PD (15%), and others (2.1%) by CE-CT and into CMR (22.2%), PMR (23.8%), SMD (31.2%), PMD (18.5%), and others (4.4%) by FDG-PET/CT, revealing a significant difference between the groups (P < 0.001). PD and PMD caused changes of treatment in 79.1% and 60%, respectively (P = 0.083). PPV for CE-CT and FDG-PET/CT was 0.85 (95% CI: 0.72–0.97) and 0.70 (95% CI: 0.53–0.87), respectively (P = 0.17). FDG-PET/CT indicated regression of disease more frequently than CE-CT, while CE-CT indicated stable disease more often. FDG-PET/CT seems to be more sensitive than CE-CT for monitoring response in metastatic breast cancer.
Collapse
|
31
|
Capozza M, Anemone A, Dhakan C, Della Peruta M, Bracesco M, Zullino S, Villano D, Terreno E, Longo DL, Aime S. GlucoCEST MRI for the Evaluation Response to Chemotherapeutic and Metabolic Treatments in a Murine Triple-Negative Breast Cancer: A Comparison with[ 18F]F-FDG-PET. Mol Imaging Biol 2021; 24:126-134. [PMID: 34383241 DOI: 10.1007/s11307-021-01637-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/30/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) patients have usually poor outcome after chemotherapy and early prediction of therapeutic response would be helpful. [18F]F-FDG-PET/CT acquisitions are often carried out to monitor variation in metabolic activity associated with response to the therapy, despite moderate accuracy and radiation exposure limit its application. The glucoCEST technique relies on the use of unlabelled D-glucose to assess glucose uptake with conventional MRI scanners and is currently under active investigations at clinical level. This work aims at validating the potential of MRI-glucoCEST in monitoring the therapeutic responses in a TNBC tumor murine model. PROCEDURES Breast tumor (4T1)-bearing mice were treated with doxorubicin or dichloroacetate for 1 week. PET/CT with [18F]F-FDG and MRI-glucoCEST were performed at baseline and after 3 cycles of treatment. Metabolic changes measured with [18F]F-FDG-PET and glucoCEST were compared and evaluated with changes in tumor volumes. RESULTS Doxorubicin-treated mice showed a significant decrease in tumor growth when compared to the control group. GlucoCEST imaging provided metabolic response after three cycles of treatment. Conversely, no variations were detected in [18F]F-FDG uptake. Dichloroacetate-treated mice did not show any decrease either in tumor volume or in tumor metabolic activity as assessed by both glucoCEST and [18F]F-FDG-PET. CONCLUSIONS Metabolic changes during doxorubicin treatment can be predicted by glucoCEST imaging that appears more sensitive than [18F]F-FDG-PET in reporting on therapeutic response. These findings support the view that glucoCEST may be a sensitive technique for monitoring metabolic response, but future studies are needed to explore the accuracy of this approach in other tumor types and treatments.
Collapse
Affiliation(s)
- Martina Capozza
- Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Annasofia Anemone
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Chetan Dhakan
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, Turin, 10126, Italy
| | - Melania Della Peruta
- Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Martina Bracesco
- Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Sara Zullino
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Daisy Villano
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Enzo Terreno
- Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy.,Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy.,Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, Turin, 10126, Italy
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, Turin, 10126, Italy
| | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy.,Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, Turin, 10126, Italy
| |
Collapse
|
32
|
Kobata T, Maeda Y, Morimoto M, Oishi A, Matsumoto K, Sasakawa Y, Monden T, Iwasaki T. [Investigation of the Administration Accuracy of an Auto Infusion Device in 18F-FDG PET]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2021; 77:726-730. [PMID: 34305059 DOI: 10.6009/jjrt.2021_jsrt_77.7.726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE The administration accuracy of the automated infusion device for the positron emission radiopharmaceutical affects to calculation of the standardized uptake value (SUV) in 18F-fluorodeoxyglucose (18F-FDG) PET examination. The purpose of this study was to investigate the administration error in the clinical use of an automated infusion device for quantitative management in PET examination. METHODS We assumed clinical use of the automated infusion device and investigated two types of administration errors. First, for investigating the administration error over time in a day (errorday), a total of 13 infusion works were performed every 30 minutes. Second, for investigating the long period administration error (errorperiod), the infusion work was performed once before clinical use of an automated infusion device. The dispensed radioactivity was set to 150 MBq. The administration error was calculated using output values from the automated infusion device and measured values from the dose calibrator. RESULTS The administration errorday was 0.9±1.3%, and the maximum error was 2.7%. The administration errorperiod was 1.1±2.0%, and the maximum error was 5.9%. CONCLUSION We investigated the administration error of the automated infusion device. We confirmed the approximately 1% administration error and high-accuracy injection in an automated-device method.
Collapse
Affiliation(s)
- Takuya Kobata
- Department of Clinical Radiology, Kagawa University Hospital
| | - Yukito Maeda
- Department of Clinical Radiology, Kagawa University Hospital
| | | | - Akihiro Oishi
- Department of Clinical Radiology, Kagawa University Hospital
| | | | | | | | | |
Collapse
|
33
|
Abstract
PET/CT has become a preferred imaging modality over PET-only scanners in clinical practice. However, along with the significant improvement in diagnostic accuracy and patient throughput, pitfalls on PET/CT are reported as well. This review provides a general overview on the potential influence of the limitations with respect to PET/CT instrumentation and artifacts associated with the modality integration on the image appearance and quantitative accuracy of PET. Approaches proposed in literature to address the limitations or minimize the artifacts are discussed as well as their current challenges for clinical applications. Although the CT component can play an important role in assisting clinical diagnosis, we concentrate on the imaging scenarios where CT is used to provide auxiliary information for attenuation compensation and scatter correction in PET.
Collapse
Affiliation(s)
- Yu-Jung Tsai
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT
| | - Chi Liu
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT; Department of Biomedical Engineering, Yale University, New Haven, CT.
| |
Collapse
|
34
|
Place de la TEP-TDM au 18FDG dans la prise en charge des cancers du sein et influence des facteurs histologiques et moléculaires. IMAGERIE DE LA FEMME 2021. [DOI: 10.1016/j.femme.2021.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Gillman JA, Pantel AR, Mankoff DA, Edmonds CE. Update on Quantitative Imaging for Predicting and Assessing Response in Oncology. Semin Nucl Med 2020; 50:505-517. [PMID: 33059820 PMCID: PMC9788668 DOI: 10.1053/j.semnuclmed.2020.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Molecular imaging has revolutionized clinical oncology by imaging-specific facets of cancer biology. Through noninvasive measurements of tumor physiology, targeted radiotracers can serve as biomarkers for disease characterization, prognosis, response assessment, and predicting long-term response/survival. In turn, these imaging biomarkers can be utilized to tailor therapeutic regimens to tumor biology. In this article, we review biomarker applications for response assessment and predicting long-term outcomes. 18F-fluorodeoxyglucose (FDG), a measure of cellular glucose metabolism, is discussed in the context of lymphoma and breast and lung cancer. FDG has gained widespread clinical acceptance and has been integrated into the routine clinical care of several malignancies, most notably lymphoma. The novel radiotracers 16α-18F-fluoro-17β-estradiol and 18F-fluorothymidine are reviewed in application to the early prediction of response assessment of breast cancer. Through illustrative examples, we explore current and future applications of molecular imaging biomarkers in the advancement of precision medicine.
Collapse
Affiliation(s)
- Jennifer A Gillman
- Department of Radiology, Division of Nuclear Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Austin R Pantel
- Department of Radiology, Division of Nuclear Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - David A Mankoff
- Department of Radiology, Division of Nuclear Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Christine E Edmonds
- Department of Radiology, Division of Nuclear Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
36
|
Jones EF, Hathi DK, Freimanis R, Mukhtar RA, Chien AJ, Esserman LJ, van’t Veer LJ, Joe BN, Hylton NM. Current Landscape of Breast Cancer Imaging and Potential Quantitative Imaging Markers of Response in ER-Positive Breast Cancers Treated with Neoadjuvant Therapy. Cancers (Basel) 2020; 12:E1511. [PMID: 32527022 PMCID: PMC7352259 DOI: 10.3390/cancers12061511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/24/2022] Open
Abstract
In recent years, neoadjuvant treatment trials have shown that breast cancer subtypes identified on the basis of genomic and/or molecular signatures exhibit different response rates and recurrence outcomes, with the implication that subtype-specific treatment approaches are needed. Estrogen receptor-positive (ER+) breast cancers present a unique set of challenges for determining optimal neoadjuvant treatment approaches. There is increased recognition that not all ER+ breast cancers benefit from chemotherapy, and that there may be a subset of ER+ breast cancers that can be treated effectively using endocrine therapies alone. With this uncertainty, there is a need to improve the assessment and to optimize the treatment of ER+ breast cancers. While pathology-based markers offer a snapshot of tumor response to neoadjuvant therapy, non-invasive imaging of the ER disease in response to treatment would provide broader insights into tumor heterogeneity, ER biology, and the timing of surrogate endpoint measurements. In this review, we provide an overview of the current landscape of breast imaging in neoadjuvant studies and highlight the technological advances in each imaging modality. We then further examine some potential imaging markers for neoadjuvant treatment response in ER+ breast cancers.
Collapse
Affiliation(s)
- Ella F. Jones
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94115, USA; (D.K.H.); (R.F.); (B.N.J.); (N.M.H.)
| | - Deep K. Hathi
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94115, USA; (D.K.H.); (R.F.); (B.N.J.); (N.M.H.)
| | - Rita Freimanis
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94115, USA; (D.K.H.); (R.F.); (B.N.J.); (N.M.H.)
| | - Rita A. Mukhtar
- Department of Surgery, University of California, San Francisco, CA 94115, USA;
| | - A. Jo Chien
- School of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA; (A.J.C.); (L.J.v.V.)
| | - Laura J. Esserman
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA;
| | - Laura J. van’t Veer
- School of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA; (A.J.C.); (L.J.v.V.)
| | - Bonnie N. Joe
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94115, USA; (D.K.H.); (R.F.); (B.N.J.); (N.M.H.)
| | - Nola M. Hylton
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94115, USA; (D.K.H.); (R.F.); (B.N.J.); (N.M.H.)
| |
Collapse
|
37
|
Liu XS, Yuan LL, Gao Y, Zhou LM, Yang JW, Pei ZJ. Overexpression of METTL3 associated with the metabolic status on 18F-FDG PET/CT in patients with Esophageal Carcinoma. J Cancer 2020; 11:4851-4860. [PMID: 32626532 PMCID: PMC7330681 DOI: 10.7150/jca.44754] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
Background: To investigate the expression of methyltransferase 3 (METTL3) and its relationship with 18F-FDG uptake in patients with esophageal carcinoma (ESCA). Materials and methods: This study analyzed the expression of METTL3 in ESCA and its relationship with clinicopathological features by The Cancer Genome Atlas (TCGA) database. Immunohistochemical staining was performed on 57 tumor tissues of ESCA patients who underwent PET/CT scan before surgery to evaluate the expression of METTL3, glucose transporter 1 (GLUT1), and hexokinase 2 (HK2) in tumor tissues and peritumoral tissues. Analyze the relationship between SUVmax with METTL3, HK2, and GLUT1 expression. Results: The expression of METTL3, GLUT1, and HK2 was significantly increased in ESCA tissues compared with normal tissues (p < 0.001). The expression of METTL3 was correlated with tumor size and histological differentiation (p < 0.05), and there was no significant difference between age, sex, pathological types, tumor staging, or lymph node metastasis (p > 0.05). The SUVmax was significantly higher in tumors with high METTL3 expression (17.822±6.249) compared to low METTL3 expression (9.573±5.082) (p < 0.001). There was a positive correlation between the SUVmax and METTL3 expression in ESCA (r2 = 0.647, p < 0.001). Multivariate analysis confirmed the association between SUVmax and METTL3 expression (p < 0.05). GLUT1 and HK2 expression in ESCA was positively correlated with 18F-FDG uptake and METTL3 status (p < 0.001). Conclusions: The high expression of METTL3 is related to the high SUVmax in ESCA, and METTL3 may increase 18F-FDG uptake by regulating GLUT1 and HK2.
Collapse
Affiliation(s)
- Xu-Sheng Liu
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 44200, China
| | - Ling-Ling Yuan
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Yan Gao
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 44200, China
| | - Lu-Meng Zhou
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 44200, China
| | - Jian-Wei Yang
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 44200, China
| | - Zhi-Jun Pei
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 44200, China.,Hubei Key Laboratory of WudangLocal Chinese Medicine Research, Shiyan, 442000, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, China
| |
Collapse
|
38
|
Magometschnigg H, Pinker K, Helbich T, Brandstetter A, Rudas M, Nakuz T, Baltzer P, Wadsak W, Hacker M, Weber M, Dubsky P, Filipits M. PIK3CA Mutational Status Is Associated with High Glycolytic Activity in ER+/HER2- Early Invasive Breast Cancer: a Molecular Imaging Study Using [ 18F]FDG PET/CT. Mol Imaging Biol 2020; 21:991-1002. [PMID: 30652258 DOI: 10.1007/s11307-018-01308-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE In PIK3CA mutant breast cancer, downstream hyperactivation of the PI3K/AKT/mTOR pathway may be associated with increased glycolysis of cancer cells. The purpose of this study was to investigate the functional association of PIK3CA mutational status and tumor glycolysis in invasive ER+/HER2- early breast cancer. PROCEDURES This institutional review board-approved retrospective study included a dataset of 67 ER+/HER2- early breast cancer patients. All patients underwent 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/X-ray computed tomography ([18F]FDG PET/CT) and clinico-pathologic assessments as part of a prospective study. For this retrospective analysis, pyrosequencing was used to detect PIK3CA mutations of exons 4, 7, 9, and 20. Tumor glucose metabolism was assessed semi-quantitatively with [18F]FDG PET/CT using maximum standardized uptake values (SUVmax). SUVmax values were corrected for the partial volume effect, and metabolic tumor volume was calculated using the volume of interest automated lesion growing function 2D tumor size, i.e., maximum tumor diameter was assessed on concurrent pre-treatment contrast-enhanced magnetic resonance imaging. RESULTS PIK3CA mutations were present in 45 % of all tumors. Mutations were associated with a small tumor diameter (p < 0.01) and with low nuclear grade (p = 0.04). Glycolytic activity was positively associated with nuclear grade (p = 0.01), proliferation (p = 0.002), regional lymph node metastasis (p = 0.015), and metabolic tumor volume (p = 0.001) but not with tumor size/T-stage. In invasive ductal carcinomas, median SUVmax was increased in PIK3CA-mutated compared to wild-type tumors; however, this increase did not reach statistical significance (p = 0.05). Multivariate analysis of invasive ductal carcinomas revealed [18F]FDG uptake to be independently associated with PIK3CA status (p = 0.002) and nuclear tumor grade (p = 0.046). Size, volume, and regional nodal status had no influence on glycolytic activity. PIK3CA mutational status did not influence glycolytic metabolism in lobular carcinomas. Glycolytic activity and PIK3CA mutational status had no significant influence on recurrence-free survival or disease-specific survival. CONCLUSIONS In ER+/HER2- invasive ductal carcinomas of the breast, glucose uptake is independently associated with PIK3CA mutations. Initial data suggest that [18F]FDG uptake reflects complex genomic alterations and may have the potential to be used as candidate biomarker for monitoring therapeutic response and resistance mechanisms in emerging therapies that target the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Heinrich Magometschnigg
- Department of Biomedical Imaging and Image-guided Therapy, Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - Katja Pinker
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Thomas Helbich
- Department of Biomedical Imaging and Image-guided Therapy, Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - Anita Brandstetter
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Margaretha Rudas
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Thomas Nakuz
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Pascal Baltzer
- Department of Biomedical Imaging and Image-guided Therapy, Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Michael Weber
- Department of Biomedical Imaging and Image-guided Therapy, Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - Peter Dubsky
- Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
- Department of Surgery, Breast Centre Clinic St. Anna, Lucerne, Switzerland.
| | - Martin Filipits
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
39
|
Tank A, Peterson HM, Pera V, Tabassum S, Leproux A, O'Sullivan T, Jones E, Cabral H, Ko N, Mehta RS, Tromberg BJ, Roblyer D. Diffuse optical spectroscopic imaging reveals distinct early breast tumor hemodynamic responses to metronomic and maximum tolerated dose regimens. Breast Cancer Res 2020; 22:29. [PMID: 32169100 PMCID: PMC7071774 DOI: 10.1186/s13058-020-01262-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Background Breast cancer patients with early-stage disease are increasingly administered neoadjuvant chemotherapy (NAC) to downstage their tumors prior to surgery. In this setting, approximately 31% of patients fail to respond to therapy. This demonstrates the need for techniques capable of providing personalized feedback about treatment response at the earliest stages of therapy to identify patients likely to benefit from changing treatment. Diffuse optical spectroscopic imaging (DOSI) has emerged as a promising functional imaging technique for NAC monitoring. DOSI uses non-ionizing near-infrared light to provide non-invasive measures of absolute concentrations of tissue chromophores such as oxyhemoglobin. In 2011, we reported a new DOSI prognostic marker, oxyhemoglobin flare: a transient increase in oxyhemoglobin capable of discriminating NAC responders within the first day of treatment. In this follow-up study, DOSI was used to confirm the presence of the flare as well as to investigate whether DOSI markers of NAC response are regimen dependent. Methods This dual-center study examined 54 breast tumors receiving NAC measured with DOSI before therapy and the first week following chemotherapy administration. Patients were treated with either a standard of care maximum tolerated dose (MTD) regimen or an investigational metronomic (MET) regimen. Changes in tumor chromophores were tracked throughout the first week and compared to pathologic response and treatment regimen at specific days utilizing generalized estimating equations (GEE). Results Within patients receiving MTD therapy, the oxyhemoglobin flare was confirmed as a prognostic DOSI marker for response appearing as soon as day 1 with post hoc GEE analysis demonstrating a difference of 48.77% between responders and non-responders (p < 0.0001). Flare was not observed in patients receiving MET therapy. Within all responding patients, the specific treatment was a significant predictor of day 1 changes in oxyhemoglobin, showing a difference of 39.45% (p = 0.0010) between patients receiving MTD and MET regimens. Conclusions DOSI optical biomarkers are differentially sensitive to MTD and MET regimens at early timepoints suggesting the specific treatment regimen should be considered in future DOSI studies. Additionally, DOSI may help to identify regimen-specific responses in a more personalized manner, potentially providing critical feedback necessary to implement adaptive changes to the treatment strategy.
Collapse
Affiliation(s)
- Anup Tank
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Hannah M Peterson
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Vivian Pera
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Syeda Tabassum
- Department of Electrical Engineering, Boston University, Boston, MA, USA
| | - Anais Leproux
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, California, USA
| | - Thomas O'Sullivan
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Eric Jones
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - Howard Cabral
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - Naomi Ko
- Department of Hematology and Medical Oncology, Boston Medical Center, Boston, MA, USA
| | - Rita S Mehta
- Department of Medicine, University of California Irvine, Irvine, California, USA
| | - Bruce J Tromberg
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, California, USA
| | - Darren Roblyer
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|
40
|
Leithner D, Helbich TH, Bernard-Davila B, Marino MA, Avendano D, Martinez DF, Jochelson MS, Kapetas P, Baltzer PAT, Haug A, Hacker M, Tanyildizi Y, Morris EA, Pinker K. Multiparametric 18F-FDG PET/MRI of the Breast: Are There Differences in Imaging Biomarkers of Contralateral Healthy Tissue Between Patients With and Without Breast Cancer? J Nucl Med 2020; 61:20-25. [PMID: 31253745 PMCID: PMC6954464 DOI: 10.2967/jnumed.119.230003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
The rationale was to assess whether there are differences in multiparametric 18F-FDG PET/MRI biomarkers of contralateral healthy breast tissue in patients with benign and malignant breast tumors. Methods: In this institutional review board-approved prospective single-institution study, 141 women with imaging abnormalities on mammography or sonography (BI-RADS 4/5) underwent combined 18F-FDG PET/MRI of the breast at 3T with dynamic contrast-enhanced MRI, diffusion-weighted imaging, and the radiotracer 18F-FDG. In all patients, the following imaging biomarkers were recorded for the contralateral (tumor-free) breast: breast parenchymal uptake (BPU) (from 18F-FDG PET), mean apparent diffusion coefficient (from diffusion-weighted imaging), background parenchymal enhancement (BPE), and amount of fibroglandular tissue (FGT) (from MRI). Appropriate statistical tests were used to assess differences in 18F-FDG PET/MRI biomarkers between patients with benign and malignant lesions. Results: There were 100 malignant and 41 benign lesions. BPE was minimal in 61 patients, mild in 56, moderate in 19, and marked in 5. BPE differed significantly (P < 0.001) between patients with benign and malignant lesions, with patients with cancer demonstrating decreased BPE in the contralateral tumor-free breast. FGT approached but did not reach significance (P = 0.055). BPU was 1.5 for patients with minimal BPE, 1.9 for mild BPE, 2.2 for moderate BPE, and 1.9 for marked BPE. BPU differed significantly between patients with benign lesions (mean, 1.9) and patients with malignant lesions (mean, 1.8) (P < 0.001). Mean apparent diffusion coefficient did not differ between groups (P = 0.19). Conclusion: Differences in multiparametric 18F-FDG PET/MRI biomarkers, obtained from contralateral tumor-free breast tissue, exist between patients with benign and patients with malignant breast tumors. Contralateral BPE, BPU, and FGT are decreased in breast cancer patients and may potentially serve as imaging biomarkers for the presence of malignancy.
Collapse
Affiliation(s)
- Doris Leithner
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
- Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Thomas H Helbich
- Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Blanca Bernard-Davila
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maria Adele Marino
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Biomedical Sciences and Morphologic and Functional Imaging, University of Messina, Messina, Italy
| | - Daly Avendano
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Breast Imaging, Breast Cancer Center TecSalud, ITESM Monterrey, Nuevo Leon, Mexico
| | - Danny F Martinez
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maxine S Jochelson
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Panagiotis Kapetas
- Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Pascal A T Baltzer
- Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Alexander Haug
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna, Austria; and
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Yasemin Tanyildizi
- Department of Neuroradiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Elizabeth A Morris
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Katja Pinker
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York
- Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
41
|
Wang J, van Dam RM. High-Efficiency Production of Radiopharmaceuticals via Droplet Radiochemistry: A Review of Recent Progress. Mol Imaging 2020; 19:1536012120973099. [PMID: 33296272 PMCID: PMC7731702 DOI: 10.1177/1536012120973099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/02/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
New platforms are enabling radiochemistry to be carried out in tiny, microliter-scale volumes, and this capability has enormous benefits for the production of radiopharmaceuticals. These droplet-based technologies can achieve comparable or better yields compared to conventional methods, but with vastly reduced reagent consumption, shorter synthesis time, higher molar activity (even for low activity batches), faster purification, and ultra-compact system size. We review here the state of the art of this emerging direction, summarize the radiotracers and prosthetic groups that have been synthesized in droplet format, describe recent achievements in scaling up activity levels, and discuss advantages and limitations and the future outlook of these innovative devices.
Collapse
Affiliation(s)
- Jia Wang
- Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA, Los Angeles, CA, USA
| | - R. Michael van Dam
- Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA, Los Angeles, CA, USA
| |
Collapse
|
42
|
Schmidkonz C, Krumbholz M, Atzinger A, Cordes M, Goetz TI, Prante O, Ritt P, Schaefer C, Agaimy A, Hartmann W, Rössig C, Fröhlich B, Bäuerle T, Dirksen U, Kuwert T, Metzler M. Assessment of treatment responses in children and adolescents with Ewing sarcoma with metabolic tumor parameters derived from 18F-FDG-PET/CT and circulating tumor DNA. Eur J Nucl Med Mol Imaging 2019; 47:1564-1575. [PMID: 31853559 DOI: 10.1007/s00259-019-04649-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/05/2019] [Indexed: 11/25/2022]
Abstract
PURPOSE The purpose of this study was to perform a prospective integrated analysis of 18F-fluorodeoxyglucose (18F-FDG)-positron emission tomography (PET)/computed tomography (CT) and circulating tumor DNA (ctDNA) to assess responses to multimodal chemotherapy in children and adolescents suffering from Ewing sarcoma (EwS). METHODS A total of 20 patients with histologically confirmed EwS underwent multiple 18F-FDG-PET/CT, performed at the time of each patient's initial diagnosis and after the second and fifth induction chemotherapy block (EWING2008 treatment protocol, NCT00987636). Additional PET examinations were performed as clinically indicated in some patients, e.g., in patients suspected of having progressive or relapsing disease. All 263 18F-FDG-positive lesions in the field of view suggestive of tumor tissue were assessed quantitatively to calculate PET-derived parameters, including whole-body metabolic tumor volume (wb-MTV) and whole-body total lesion glycolysis (wb-TLG), as well as the following data: standardized uptake value (SUV)max and SUVmean. Tumor-specific ctDNA in patient plasma samples was quantified using digital droplet PCR (ddPCR), and the correlations between ctDNA levels and PET-derived parameters were analyzed. Metabolic responses to multimodal chemotherapy as assessed with PET-parameters were compared to biochemical responses as assessed with changes in ctDNA levels. RESULTS Twenty patients underwent a total of 87 18F-FDG-PET/CT scans, which detected 263 FDG-positive tumor lesions. Significant correlations between SUVmax, SUVmean, wb-MTV and wb-TLG values, and ctDNA levels were observed (all p < 0.0001). All patients suffering from EwS, with histology serving as gold standard, also presented with a positive corresponding ctDNA sample and a positive 18F-FDG-PET/CT examination before initiation of therapy. There were no false-negative results. Evaluation of treatment response after the fifth block of induction chemotherapy showed that the agreement between the metabolic response and biochemical response was 90%, which was statistically significant (Cohen κ = 0.62; p < 0.05). Non-detectable ctDNA after the second block of induction chemotherapy was associated with complete biochemical and metabolic responses after the fifth block of induction chemotherapy in 16/17 patients (94%). During a median follow-up period of 36 months (range: 8-104 months), four patients had tumor relapses, which, in all cases, were accompanied by an increase in plasma ctDNA levels and a positive 18F-FDG-PET/CT. No false-negative results were observed in the study cohort. Complete biochemical and metabolic responses after the fifth block of induction chemotherapy had a high positive predictive value for disease remission during the follow-up period; specifically, the positive predictive value was 88%. CONCLUSION The combination of 18F-FDG-PET/CT and ctDNA quantification is a very promising noninvasive tool for assessing treatment responses and detecting tumor relapses in children and young adolescents suffering from EwS who are undergoing multimodal chemotherapy.
Collapse
Affiliation(s)
- Christian Schmidkonz
- Department of Nuclear Medicine, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Manuela Krumbholz
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin Atzinger
- Department of Nuclear Medicine, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Cordes
- Department of Nuclear Medicine, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Theresa Ida Goetz
- Department of Nuclear Medicine, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Olaf Prante
- Department of Nuclear Medicine, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Philipp Ritt
- Department of Nuclear Medicine, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christiane Schaefer
- Pediatrics III, West German Cancer Centre, University Hospital of Essen, Essen, Germany
| | - Abbas Agaimy
- Institute of Pathology, University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk Institute of Pathology, University Hospital of Münster, Münster, Germany
| | - Claudia Rössig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Birgit Fröhlich
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Tobias Bäuerle
- Institute of Radiology Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Uta Dirksen
- Pediatrics III, West German Cancer Centre, University Hospital of Essen, Essen, Germany
| | - Torsten Kuwert
- Department of Nuclear Medicine, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Markus Metzler
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
43
|
Wu S, Wang Y, Li J, Zhang N, Mo M, Klimberg S, Kaklamani V, Cochet A, Shao Z, Cheng J, Liu G. Subtype-Guided 18 F-FDG PET/CT in Tailoring Axillary Surgery Among Patients with Node-Positive Breast Cancer Treated with Neoadjuvant Chemotherapy: A Feasibility Study. Oncologist 2019; 25:e626-e633. [PMID: 32297448 DOI: 10.1634/theoncologist.2019-0583] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/25/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The purpose of this study was to investigate the value of 18 [F]-fluorodeoxyglucose (18 F-FDG) positron emission tomography/computed tomography (PET/CT) in tailoring axillary surgery by predicting nodal response among patients with node-positive breast cancer after neoadjuvant chemotherapy (NAC). METHODS One hundred thirty-three patients with breast cancer with biopsy-confirmed nodal metastasis were prospectively enrolled. 18 F-FDG PET/CT scan was performed before NAC (a second one after two cycles with baseline maximum standardized uptake value [SUVmax ] ≥2.5), and a subset of patients underwent targeted axillary dissection (TAD). All the patients underwent axillary lymph node dissection (ALND). The accuracy was calculated by a comparison with the final pathologic results. RESULTS With the cutoff value of 2.5 for baseline SUVmax and 78.4% for change in SUVmax , sequential 18 F-FDG PET/CT scans demonstrated a sensitivity of 79.0% and specificity of 71.4% in predicting axillary pathologic complete response with an area under curve (AUC) of 0.75 (95% confidence interval, 0.65-0.84). Explorative subgroup analyses indicated little value for estrogen receptor (ER)-negative, human epidermal growth factor receptor 2 (HER2)-positive patients (AUC, 0.55; sensitivity, 56.5%; specificity, 50.0%). Application of 18 F-FDG PET/CT could spare 19 patients from supplementary ALNDs and reduce one of three false-negative cases in TAD among the remaining patients without ER-negative/HER2-positive subtype. CONCLUSION Application of the subtype-guided 18 F-FDG PET/CT could accurately predict nodal response and aid in tailoring axillary surgery among patients with node-positive breast cancer after NAC, which includes identifying candidates appropriate for TAD or directly proceeding to ALND. This approach might help to avoid false-negative events in TAD. IMPLICATIONS FOR PRACTICE This feasibility study showed that 18 [F]-fluorodeoxyglucose (18 F-FDG) positron emission tomography/computed tomography (PET/CT) could accurately predict nodal response after neoadjuvant chemotherapy (NAC) among patients with breast cancer with initial nodal metastasis except in estrogen receptor-negative, human epidermal growth factor receptor 2-positive subtype. Furthermore, the incorporation of 18 F-FDG PET/CT can tailor subsequent axillary surgery by identifying patients with residual nodal disease, thus sparing those patients supplementary axillary lymph node dissection. Finally, we have proposed a possibly feasible flowchart involving 18 F-FDG PET/CT that might be applied in post-NAC axillary evaluation.
Collapse
Affiliation(s)
- Siyu Wu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yujie Wang
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jianwei Li
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Na Zhang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Miao Mo
- Clinical Statistics Center, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Suzanne Klimberg
- Division of Breast Surgical Oncology, Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
| | - Virginia Kaklamani
- Division of Hematology and Oncology, Northwestern University, Chicago, Illinois, USA
| | - Alexandre Cochet
- Department of Nuclear Medicine, Centre Georges-François Leclerc, University Hospital of Dijon, Dijon, France
| | - Zhiming Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Jingyi Cheng
- Department of Nuclear Medicine, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Guangyu Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| |
Collapse
|
44
|
Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, Ruddy K, Tsang J, Cardoso F. Breast cancer. Nat Rev Dis Primers 2019; 5:66. [PMID: 31548545 DOI: 10.1038/s41572-019-0111-2] [Citation(s) in RCA: 1740] [Impact Index Per Article: 290.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/22/2019] [Indexed: 12/24/2022]
Abstract
Breast cancer is the most frequent malignancy in women worldwide and is curable in ~70-80% of patients with early-stage, non-metastatic disease. Advanced breast cancer with distant organ metastases is considered incurable with currently available therapies. On the molecular level, breast cancer is a heterogeneous disease; molecular features include activation of human epidermal growth factor receptor 2 (HER2, encoded by ERBB2), activation of hormone receptors (oestrogen receptor and progesterone receptor) and/or BRCA mutations. Treatment strategies differ according to molecular subtype. Management of breast cancer is multidisciplinary; it includes locoregional (surgery and radiation therapy) and systemic therapy approaches. Systemic therapies include endocrine therapy for hormone receptor-positive disease, chemotherapy, anti-HER2 therapy for HER2-positive disease, bone stabilizing agents, poly(ADP-ribose) polymerase inhibitors for BRCA mutation carriers and, quite recently, immunotherapy. Future therapeutic concepts in breast cancer aim at individualization of therapy as well as at treatment de-escalation and escalation based on tumour biology and early therapy response. Next to further treatment innovations, equal worldwide access to therapeutic advances remains the global challenge in breast cancer care for the future.
Collapse
Affiliation(s)
- Nadia Harbeck
- LMU Munich, University Hospital, Department of Obstetrics and Gynecology, Breast Center and Comprehensive Cancer Center (CCLMU), Munich, Germany.
| | - Frédérique Penault-Llorca
- Department of Pathology and Biopathology, Jean Perrin Comprehensive Cancer Centre, UMR INSERM 1240, University Clermont Auvergne, Clermont-Ferrand, France
| | - Javier Cortes
- IOB Institute of Oncology, Quironsalud Group, Madrid and Barcelona, Spain.,Vall d´Hebron Institute of Oncology, Barcelona, Spain
| | - Michael Gnant
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Nehmat Houssami
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Philip Poortmans
- Department of Radiation Oncology, Institut Curie, Paris, France.,Université PSL, Paris, France
| | - Kathryn Ruddy
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Janice Tsang
- Hong Kong Breast Oncology Group, The University of Hong Kong, Hong Kong, China
| | - Fatima Cardoso
- Breast Unit, Champalimaud Clinical Center/Champalimaud Foundation, Lisbon, Portugal
| |
Collapse
|
45
|
Liu C, Gong C, Liu S, Zhang Y, Zhang Y, Xu X, Yuan H, Wang B, Yang Z. 18F-FES PET/CT Influences the Staging and Management of Patients with Newly Diagnosed Estrogen Receptor-Positive Breast Cancer: A Retrospective Comparative Study with 18F-FDG PET/CT. Oncologist 2019; 24:e1277-e1285. [PMID: 31337657 DOI: 10.1634/theoncologist.2019-0096] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/27/2019] [Indexed: 01/13/2023] Open
Abstract
PURPOSE We compared the clinical value of 16a-18F-fluoro-17b-estradiol (18F-FES) positron emission tomography (PET)/computed tomography (CT) and 18F-fluoro-2-deoxy-D-glucose (18F-FDG) PET/CT and investigated whether and how 18F-FES PET/CT affects the implemented management of newly diagnosed estrogen receptor positive breast cancer patients. MATERIALS AND METHODS We retrospectively analyzed 19 female patients newly diagnosed with immunohistochemistry-confirmed estrogen receptor (ER)-positive breast cancer who underwent 18F-FES and 18F-FDG PET/CT within 1 week in our center. The sensitivity of 18F-FES and 18F-FDG in diagnosed lesions were compared. To investigate the definite clinical impact of 18F-FES on managing patients with newly diagnosed ER positive breast cancer, we designed two kinds of questionnaires. Referring physicians completed the first questionnaire based on the 18F-FDG report to propose the treatment regime, and the second was completed immediately after reviewing the imaging report of 18F-FES to indicate intended management changes. RESULTS In total, 238 lesions were analyzed in 19 patients with newly diagnosed ER-positive breast cancer. Lesion detection was achieved in 216 sites with 18F-FES PET and in 197 sites with 18F-FDG PET/CT. These results corresponded to sensitivities of 90.8% for 18F-FES versus 82.8% for 18F-FDG PET/CT in diagnosed lesions. Thirty-five physicians were given the questionnaires referring to the treatment strategy, with 27 of them completing both questionnaires. The application of 18F-FES in addition to 18F-FDG PET/CT changed the management in 26.3% of the 19 patients with newly diagnosed ER-positive breast cancer. CONCLUSION Performing 18F-FES PET/CT in newly diagnosed ER-positive breast cancer patients increases the value of diagnosis equivocal lesions and treatment management compared with 18F-FDG PET/CT. IMPLICATIONS FOR PRACTICE This study investigated whether 16a-18F-fluoro-17b-estradiol (18F-FES) positron emission tomography (PET)/computed tomography (CT) affects the clinical management of patients with newly diagnosed estrogen receptor (ER)-positive breast cancer. Physicians completing two questionnaires comparing the clinical impact of 18F-FES and 18F-FDG on individual management plans in patients with newly diagnosed ER-positive breast cancer confirmed that 18F-FES scans led to change in management in 26.3% of the 19 patients with newly diagnosed ER positive breast cancer. This retrospective study indicates the potential impact of 18F-FES PET/CT on intended management of patients with newly diagnosed estrogen receptor positive breast cancer in comparison to 18F-fluoro-2-deoxy-D-glucose PET/CT.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Center for Biomedical Imaging, Fudan University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, People's Republic of China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai, People's Republic of China
| | - Chengcheng Gong
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Shuai Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Center for Biomedical Imaging, Fudan University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, People's Republic of China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai, People's Republic of China
| | - Yingjian Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Center for Biomedical Imaging, Fudan University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, People's Republic of China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai, People's Republic of China
| | - Yongping Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Center for Biomedical Imaging, Fudan University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, People's Republic of China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai, People's Republic of China
| | - Xiaoping Xu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Center for Biomedical Imaging, Fudan University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, People's Republic of China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai, People's Republic of China
| | - Huiyu Yuan
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Center for Biomedical Imaging, Fudan University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, People's Republic of China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai, People's Republic of China
| | - Biyun Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Zhongyi Yang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Center for Biomedical Imaging, Fudan University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, People's Republic of China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
46
|
Higuchi T, Fujimoto Y, Ozawa H, Bun A, Fukui R, Miyagawa Y, Imamura M, Kitajima K, Yamakado K, Miyoshi Y. Significance of Metabolic Tumor Volume at Baseline and Reduction of Mean Standardized Uptake Value in 18F-FDG-PET/CT Imaging for Predicting Pathological Complete Response in Breast Cancers Treated with Preoperative Chemotherapy. Ann Surg Oncol 2019; 26:2175-2183. [PMID: 30941655 PMCID: PMC6545174 DOI: 10.1245/s10434-019-07325-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Indexed: 12/25/2022]
Abstract
Background The usefulness of 18F-fluorodeoxyglucose-positron emission tomography/computed tomography for evaluating the treatment efficacy of breast cancers is well-established; however, the predictive values of parameters such as metabolic tumor volume (MTV) and total lesion glycolysis (TLG) remain unknown. Methods This study examined 199 breast cancers treated with primary systemic chemotherapy (PSC) followed by operation, and determined the values of maximum standardized uptake value (SUVmax), peak SUV (SUVpeak), mean SUV (SUVmean), MTV, and TLG at baseline. Among these cases, data on early changes in these metabolic parameters in 70 breast cancers were also assessed. Results A pathological complete response (pCR) was achieved in 64 breast cancers. Breast cancers with low MTV at baseline had a significantly higher pCR rate than breast cancers with high MTV (47.9% vs. 23.4%; p = 0.0005). High reduction rates (∆) of SUVmax (p = 0.0001), SUVpeak (p = 0.0001), and SUVmean (p < 0.0001) resulted in an increased pCR compared with those for low ∆. The pCR rate was highest for the combination of low MTV and high ∆SUVmean (86.7%), and lowest for high MTV and low ∆SUVmean (15.4%); the remaining combinations were intermediate (58.6%; p < 0.0001). The combination of low MTV at baseline and high ∆SUVmean was a significant and independent predictor for pCR (odds ratio 28.63; 95% confidence interval 1.94–422.42; p = 0.0146) in multivariable analysis. Conclusions Low levels of MTV at baseline and a high reduction of SUVmean after PSC was significantly associated with pCR. These findings suggest the usefulness of these metabolic parameters for predicting the treatment efficacy of breast cancers. Electronic supplementary material The online version of this article (10.1245/s10434-019-07325-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tomoko Higuchi
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Yukie Fujimoto
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Hiromi Ozawa
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Ayako Bun
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Reiko Fukui
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Yoshimasa Miyagawa
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Michiko Imamura
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Kazuhiro Kitajima
- Department of Nuclear Medicine and PET Center, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Koichiro Yamakado
- Department of Nuclear Medicine and PET Center, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Yasuo Miyoshi
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.
| |
Collapse
|
47
|
Combination of breast imaging parameters obtained from 18F-FDG PET and CT scan can improve the prediction of breast-conserving surgery after neoadjuvant chemotherapy in luminal/HER2-negative breast cancer. Eur J Radiol 2019; 113:81-88. [DOI: 10.1016/j.ejrad.2019.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/09/2019] [Accepted: 02/04/2019] [Indexed: 11/20/2022]
|
48
|
Piotrzkowska-Wróblewska H, Dobruch-Sobczak K, Klimonda Z, Karwat P, Roszkowska-Purska K, Gumowska M, Litniewski J. Monitoring breast cancer response to neoadjuvant chemotherapy with ultrasound signal statistics and integrated backscatter. PLoS One 2019; 14:e0213749. [PMID: 30870478 PMCID: PMC6417657 DOI: 10.1371/journal.pone.0213749] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
Background Neoadjuvant chemotherapy (NAC) is used in patients with breast cancer to reduce tumor focus, metastatic risk, and patient mortality. Monitoring NAC effects is necessary to capture resistant patients and stop or change treatment. The existing methods for evaluating NAC results have some limitations. The aim of this study was to assess the tumor response at an early stage, after the first doses of the NAC, based on the variability of the backscattered ultrasound energy, and backscatter statistics. The backscatter statistics has not previously been used to monitor NAC effects. Methods The B-mode ultrasound images and raw radio frequency data from breast tumors were obtained using an ultrasound scanner before chemotherapy and 1 week after each NAC cycle. The study included twenty-four malignant breast cancers diagnosed in sixteen patients and qualified for neoadjuvant treatment before surgery. The shape parameter of the homodyned K distribution and integrated backscatter, along with the tumor size in the longest dimension, were determined based on ultrasound data and used as markers for NAC response. Cancer tumors were assigned to responding and non-responding groups, according to histopathological evaluation, which was a reference in assessing the utility of markers. Statistical analysis was performed to rate the ability of markers to predict the final NAC response based on data obtained after subsequent therapeutic doses. Results Statistically significant differences (p<0.05) between groups were obtained after 2, 3, 4, and 5 doses of NAC for quantitative ultrasound markers and after 5 doses for the assessment based on maximum tumor dimension. Statistical analysis showed that, after the second and third NAC courses the classification based on integrated backscatter marker was characterized by an AUC of 0.69 and 0.82, respectively. The introduction of the second quantitative marker describing the statistical properties of scattering increased the corresponding AUC values to 0.82 and 0.91. Conclusions Quantitative ultrasound information can characterize the tumor's pathological response better and at an earlier stage of therapy than the assessment of the reduction of its dimensions. The introduction of statistical parameters of ultrasonic backscatter to monitor the effects of chemotherapy can increase the effectiveness of monitoring and contribute to a better personalization of NAC therapy.
Collapse
Affiliation(s)
| | - Katarzyna Dobruch-Sobczak
- Ultrasound Department, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
- Radiology Department, Cancer Center and Institute of Oncology, M. Skłodowska-Curie Memorial, Warsaw, Poland
| | - Ziemowit Klimonda
- Ultrasound Department, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Karwat
- Ultrasound Department, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Roszkowska-Purska
- Department of Pathology, Cancer Center and Institute of Oncology, M. Skłodowska-Curie Memorial, Warsaw, Poland
| | - Magdalena Gumowska
- Radiology Department, Cancer Center and Institute of Oncology, M. Skłodowska-Curie Memorial, Warsaw, Poland
| | - Jerzy Litniewski
- Ultrasound Department, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|
49
|
Pramesh CS, Chaturvedi H, Reddy VA, Saikia T, Ghoshal S, Pandit M, Babu KG, Ganpathy KV, Savant D, Mitera G, Sullivan R, Booth CM. Choosing Wisely India: ten low-value or harmful practices that should be avoided in cancer care. Lancet Oncol 2019; 20:e218-e223. [PMID: 30857957 DOI: 10.1016/s1470-2045(19)30092-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/14/2022]
Abstract
The Choosing Wisely India campaign was an initiative that was established to identify low-value or potentially harmful practices that are relevant to the Indian cancer health-care system. We undertook a multidisciplinary framework-driven consensus process to identify a list of low-value or harmful cancer practices that are frequently undertaken in India. A task force convened by the National Cancer Grid of India included Indian representatives from surgical, medical, and radiation oncology. Each specialty had representation from the private and public sectors. The task force included two representatives from national patient and patient advocacy groups. Of the ten practices that were identified, four are completely new recommendations, and six are revisions or adaptations from previous Choosing Wisely USA and Canada lists. Recommendations in the final list pertain to diagnosis and treatment (five practices), palliative care (two practices), imaging (two practices), and system-level delivery of care (two practices). Implementation of this list and reporting of concordance with its recommendations will facilitate the delivery of high-quality, value-based cancer care in India.
Collapse
Affiliation(s)
- C S Pramesh
- Department of Surgical Oncology, Tata Memorial Centre, Mumbai, India.
| | | | - Vijay Anand Reddy
- Department of Radiation Oncology, Apollo Hospitals, Hyderabad, India
| | - Tapan Saikia
- Department of Medical Oncology, Prince Aly Khan Hospital, Mumbai, India
| | - Sushmita Ghoshal
- Department of Radiation Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | - K Govind Babu
- Department of Medical Oncology, Kidwai Memorial Institute of Oncology, Bengaluru, India
| | - K V Ganpathy
- Jeet Association for Support to Cancer Patients, Mumbai, India
| | | | - Gunita Mitera
- Department of Health Policy, Management and Evaluation, University of Toronto, Canada
| | - Richard Sullivan
- Institute of Cancer Policy, King's College London, and King's Health Partners Comprehensive Cancer Centre, London, UK
| | - Christopher M Booth
- Department of Cancer Care and Epidemiology, Queen's University Cancer Research Institute, Kingston, ON, Canada
| | | |
Collapse
|
50
|
Le Bihan T, Navarro AS, Le Bris N, Le Saëc P, Gouard S, Haddad F, Gestin JF, Chérel M, Faivre-Chauvet A, Tripier R. Synthesis of C-functionalized TE1PA and comparison with its analogues. An example of bioconjugation on 9E7.4 mAb for multiple myeloma 64Cu-PET imaging. Org Biomol Chem 2019; 16:4261-4271. [PMID: 29701218 DOI: 10.1039/c8ob00499d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In view of the excellent copper(ii) and 64-copper(ii) complexation of a TE1PA ligand, a monopicolinate cyclam, in both aqueous medium and in vivo, we looked for a way to make it bifunctional, while maintaining its chelating properties. Overcoming the already known drawback of grafting via its carboxyl group, which is essential to the overall properties of the ligand, a TE1PA bifunctional derivative bearing an additional isothiocyanate coupling function on a carbon atom of the macrocyclic ring was synthesized. This led to an architecture that is comparable to that of other commercially available bifunctional copper(ii) chelators such as p-SCN-Bn-DOTA already used in clinical trials for 64Cu-immuno-PET imaging. The C-functionalization of TE1PA on one carbon atom in the β-N position of the cyclam backbone was successfully achieved by adapting our patented methodology to the huge challenge, allowing the regiospecific mono-N-functionalization of the unsymmetrical ligand. The obtained ligand p-SCN-Bn-TE1PA was coupled to a 9E7.4 murine antibody (mAb), an IgG2a anti CD-138 for multiple myeloma (MM) targeting. The conjugation efficiency was assessed by looking at the 64Cu radiolabeling and the radiopharmaceutical 64Cu-9E7.4-p-SCN-Bn-TE1PA immunoreactivity, and in particular by comparing with 9E7.4-p-SCN-Bn-NOTA and 9E7.4-p-SCN-Bn-DOTA obtained from commercial and presumably highly efficient chelators NOTA and DOTA, respectively. The results are quite clear, showing that p-SCN-Bn-TE1PA has a coupling rate 5 times higher and an immunoreactivity 1.5 to 2 times greater than those of its two competitors. p-SCN-Bn-TE1PA also outperforms TE1PA conjugated via its carboxylic function on the same antibody. The first 64Cu-immuno-PET preclinical study in a syngeneic model of MM was performed, confirming the good in vivo properties of 64Cu-9E7.4-p-SCN-Bn-TE1PA for PET imaging, considering the high clearance even after 24 h and the particularly important tumor-to-liver ratio that was increasing at 48 h.
Collapse
Affiliation(s)
- Thomas Le Bihan
- Université de Brest, UMR-CNRS 6521/IBSAM, UFR Sciences et Techniques, 6 Avenue Victor le Gorgeu, C.S. 93837, 29238 Brest, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|