1
|
Davis NM, El-Said E, Fortune P, Shen A, Succi MD. Transforming Health Care Landscapes: The Lever of Radiology Research and Innovation on Emerging Markets Poised for Aggressive Growth. J Am Coll Radiol 2024; 21:1552-1556. [PMID: 39096946 DOI: 10.1016/j.jacr.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Advances in radiology are crucial not only to the future of the field but to medicine as a whole. Here, we present three emerging areas of medicine that are poised to change how health care is delivered-hospital at home, artificial intelligence, and precision medicine-and illustrate how advances in radiological tools and technologies are helping to fuel the growth of these markets in the United States and across the globe.
Collapse
Affiliation(s)
- Nicole M Davis
- Innovation Office, Mass General Brigham, Somerville, Massachusetts
| | - Ezat El-Said
- Medically Engineered Solutions in Healthcare Incubator, Innovations in Operations Research Center, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Patrick Fortune
- Vice President, Strategic Innovation Leaders at Mass General Brigham, Innovation Office, Mass General Brigham, Somerville, Massachusetts
| | - Angela Shen
- Innovation Office, Mass General Brigham, Somerville, Massachusetts; Vice President, Strategic Innovation Leaders at Mass General Brigham
| | - Marc D Succi
- Innovation Office, Mass General Brigham, Somerville, Massachusetts; Harvard Medical School, Boston, Massachusetts; Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts; Medically Engineered Solutions in Healthcare Incubator, Innovations in Operations Research Center, Massachusetts General Hospital, Boston, Massachusetts. MDS is the Associate Chair of Innovation and Commercialization at Mass General Brigham Enterprise Radiology; Strategic Innovation Leader at Mass General Brigham Innovation; Founder and Executive Director of the MESH Incubator at Mass General Brigham.
| |
Collapse
|
2
|
Shukla S, Karbhari A, Rastogi S, Agarwal U, Rai P, Mahajan A. Bench-to-bedside imaging in brain metastases: a road to precision oncology. Clin Radiol 2024; 79:485-500. [PMID: 38637186 DOI: 10.1016/j.crad.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 04/20/2024]
Abstract
Radiology has seen tremendous evolution in the last few decades. At the same time, oncology has made great strides in diagnosing and treating cancer. Distant metastases of neoplasms are being encountered more often in light of longer patient survival due to better therapeutic strategies and diagnostic methods. Brain metastasis (BM) is a dismal manifestation of systemic cancer. In the present scenario, magnetic resonance imaging (MRI), computed tomography (CT) and positron emission tomography (PET) are playing a big role in providing molecular information about cancer. Lately, molecular imaging has emerged as a stirring arena of dynamic imaging techniques that have enabled clinicians and scientists to noninvasively visualize and understand biological processes at the cellular and molecular levels. This knowledge has impacted etiopathogenesis, detection, personalized treatment, drug development, and our understanding of carcinogenesis. This article offers insight into the molecular biology underlying brain metastasis, its pathogenesis, imaging protocols, and algorithms. It also discusses disease-specific molecular imaging features, focusing on common tumors that spread to the brain, such as lung, breast, colorectal cancer, melanoma, and renal cell carcinoma. Additionally, it covers various targeted treatment options, criteria for assessing treatment response, and the role of artificial intelligence in diagnosing, managing, and predicting prognosis for patients with brain metastases.
Collapse
Affiliation(s)
- S Shukla
- Department of Radiodiagnosis and Imaging, Mahamana Pandit Madan Mohan Malaviya Cancer Centre and Homi Bhabha Cancer Hospital, Tata Memorial Hospital, Varanasi, 221 005, Maharashtra, India; Department of Radiodiagnosis and Imaging, Homi Bhabha National Institute, Tata Memorial Hospital, Mumbai, 400 012, Maharashtra, India
| | - A Karbhari
- Department of Radiodiagnosis and Imaging, Homi Bhabha National Institute, Tata Memorial Hospital, Mumbai, 400 012, Maharashtra, India
| | - S Rastogi
- Department of Radiodiagnosis and Imaging, Homi Bhabha National Institute, Tata Memorial Hospital, Mumbai, 400 012, Maharashtra, India
| | - U Agarwal
- Department of Radiodiagnosis and Imaging, Homi Bhabha National Institute, Tata Memorial Hospital, Mumbai, 400 012, Maharashtra, India
| | - P Rai
- Department of Radiodiagnosis and Imaging, Homi Bhabha National Institute, Tata Memorial Hospital, Mumbai, 400 012, Maharashtra, India
| | - A Mahajan
- Department of Imaging, The Clatterbridge Cancer Centre NHS Foundation Trust, L7 8YA Liverpool, UK; Faculty of Health and Life Sciences, University of Liverpool, L7 8TX, Liverpool, UK.
| |
Collapse
|
3
|
Wilson RC, Link JM, Lee YZ, Oldan JD, Young SL, Slayden OD. Uterine Uptake of Estrogen and Progestogen-Based Radiotracers in Rhesus Macaques with Endometriosis. Mol Imaging Biol 2024; 26:334-343. [PMID: 38133866 PMCID: PMC11034810 DOI: 10.1007/s11307-023-01892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE Endometriosis is an estrogen-dependent disorder of menstruating primates where tissues similar to the inner lining of the uterus exist "ectopically" outside of the uterus. The ectopic endometrium, like the endometrium within the uterus, expresses estrogen receptors (ER) and progesterone receptors (PR) and undergoes hormone-dependent cell proliferation and bleeding each menstrual cycle. The goal of this study was to conduct abdominopelvic positron emission tomography (PET) scans with computed tomography (CT) imaging of rhesus macaques (Macaca mulatta) using radiotracers that target ER and PR [16α-[18F]fluoroestradiol (FES) and 12-[18F]fluoro-furanyl-nor-progesterone (FFNP)] in individuals with and without endometriosis. We also aimed to determine if menstrual cycle phase and/or the presence of endometriosis affected the uptake of these radiotracers. PROCEDURES Rhesus macaques with either clinically diagnosed endometriosis (n = 6) or no endometriosis (n = 4) underwent PET/CT scans with FES. A subset of the animals also underwent PET/CT scans with FFNP. Standard uptake values corrected for body weight (SUVs) were obtained for each radiotracer in target and background tissues (e.g., intestinal). We performed repeated measure analysis of variance tests to determine how uterine and background uptake differed with scan time, phase of the menstrual cycle, and disease state. RESULTS Abdominopelvic PET/CT could not resolve small, individual endometriotic lesions. However, macaques with endometriosis displayed higher uterine uptake compared to those without the disorder. Radiotracer uptake differed by menstrual cycle phase with increased uterine uptake of both radiotracers in the proliferative phase of the menstrual cycle. Background intestinal uptake of FFNP increased over time after infusion, but only during the proliferative phase. CONCLUSIONS PET/CT with FES and FFNP support the concept that ER and PR levels are altered in individuals with endometriosis. This highlights the impact of the disease on typical reproductive tract function and may provide a novel pathway for the identification of individuals with endometriosis.
Collapse
Affiliation(s)
- Rachel C Wilson
- Department of Biology, Whitman College, Walla Walla, WA, USA.
| | - Jeanne M Link
- Center for Radiochemistry Research, Oregon Health & Science University, Portland, OR, USA
| | - Yueh Z Lee
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
| | - Jorge D Oldan
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
| | - Steven L Young
- Division of Reproduction Endocrinology and Infertility, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Ov D Slayden
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
4
|
Ulaner GA, Fowler AM, Clark AS, Linden H. Estrogen Receptor-Targeted and Progesterone Receptor-Targeted PET for Patients with Breast Cancer. PET Clin 2023; 18:531-542. [PMID: 37270377 DOI: 10.1016/j.cpet.2023.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Estrogen receptor (ER)-targeted imaging with 16α-18F-fluoro-17β-fluoroestradiol (18F-FES) has multiple proven clinical applications for patients with ER-positive breast cancer, including helping to select optimal patients for endocrine therapies, assessing ER status in lesions that are difficult to biopsy, and evaluating lesions with inconclusive results on other imaging tests. This has led to US Food and Drug Administration approval of 18F-FES PET for patients with ER-positive breast cancer. Newer progesterone receptor-targeted imaging agents are in clinical trials.
Collapse
Affiliation(s)
- Gary A Ulaner
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Newport Beach, CA, USA; Radiology and Translational Genomics, University of Southern California, Los Angeles, CA, USA.
| | - Amy M Fowler
- Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Amy S Clark
- Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Hannah Linden
- Medical Oncology, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Wilson RC, Link JM, Lee YZ, Oldan JD, Young SL, Slayden OD. Uterine uptake of estrogen and progestogen-based radiotracers in rhesus macaques with endometriosis. RESEARCH SQUARE 2023:rs.3.rs-3311162. [PMID: 37720028 PMCID: PMC10503868 DOI: 10.21203/rs.3.rs-3311162/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Purpose Few investigations have examined the uptake of radiotracers that target the prominent sex-steroid receptors in the uterus across the menstrual cycle and with disease state. We aimed to determine if uptake of the radiotracers that target estrogen and progesterone receptors (ER and PR) differ with the presence of endometriosis and/or across the menstrual cycle. We performed PET and computed tomography (CT) imaging procedures on rhesus macaques (Macaca mulatta) using 16α-[18F]fluoroestradiol (FES) and 21-[18F]fluoro-furanyl-nor-progesterone (FFNP) in individuals with and without endometriosis in the proliferative and secretory phases of the menstrual cycle. Procedures Macaques with either clinically diagnosed endometriosis (n = 6) or no endometriosis (n = 4) underwent abdominopelvic PET/CT scans with FES. A subset of these animals also underwent PET/CT scans with FFNP. Standard uptake values corrected for body weight (SUVbw) were obtained for each radiotracer in target and background tissues (i.e., intestinal and muscle). We performed repeated measure analysis of variance tests to determine how uterine and background uptake differed with scan time, phase of the menstrual cycle, and disease state. Results PET/CT could not resolve small, individual endometriotic lesions. However, uterine uptake of both radiotracers was elevated in the proliferative phase compared to the secretory phase of the menstrual cycle. Intestinal uptake exhibited greater variation during the proliferative phase compared to the secretory phase. Further, intestinal uptake of FFNP increases as the scan progresses, but only during the proliferative phase. Muscle uptake did not differ with menstrual phase or radiotracer type. Lastly, macaques with endometriosis displayed higher uterine uptake of FES compared to those without endometriosis. Conclusions PET/CT with FES and FFNP support the concept that ER and PR levels are altered in individuals with endometriosis. This highlights the impact of the disease on typical reproductive tract function and may provide a novel pathway for the identification of individuals with endometriosis.
Collapse
Affiliation(s)
| | | | - Yueh Z Lee
- The University of North Carolina at Chapel Hill
| | | | | | | |
Collapse
|
6
|
Bouaod W, Zakoko AM, Asif H, Hussain A, Malik N, Ray SD, Peela J, Teja Peela AS, Jarari AM. The Potentiality of Prostate-Specific Antigen as a Prognostic Biomarker in Breast Cancer. Cureus 2023; 15:e44621. [PMID: 37799254 PMCID: PMC10547925 DOI: 10.7759/cureus.44621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2023] [Indexed: 10/07/2023] Open
Abstract
Background Serum prostate-specific antigen (PSA) is a well-established marker that can be measured as an indicator for screening, diagnosing, and managing prostate cancer due to its advanced tissue specificity. Numerous studies have revealed that free PSA is the predominant molecular form of PSA in breast cancer cases. In contrast, total PSA is prevalent in benign breast tumor cases and healthy females. This case-control study aims to measure PSA levels among individuals with breast cancer in order to establish PSA as a prognostic biomarker. Methods The study involved 150 female subjects between the ages of 18 and 70 and was conducted between 2013 and 2014. The subjects were then categorized into three groups: those with malignant breast cancer, those with benign breast tumors, and the control group with no history of malignant or benign breast tumors. Participants were asked to complete a lifestyle questionnaire and interview using hospital medical records to establish past and pertinent patient medical history. These cases were acquired from the 7th of October Hospital's surgery department and Benghazi Central Hospital's oncology clinic in Libya. Sandwich-type ELISA's were used for PSA quantitation, while the Wilcoxon Rank-Sum test was used to identify statistically significant differences between total PSA and free PSA measurements within each patient group. Results This study did not reveal significant statistical differences in total PSA levels between breast cancer cases and control groups (p=0.200), or between breast cancer and fibroadenoma patients (p=0.472). However, there was a significant difference in F-PSA levels between breast cancer and fibroadenoma cases (p=0.0001). Neither total-PSA (p=0.200) nor F-PSA (p=0.262) levels showed significant differences between breast cancer cases and controls. This study paved the way for further investigations into PSA's role in breast cancer. Despite its limitations, it offers an opportunity to delve deeper into understanding PSA's potential role and use in breast cancer. Conclusion A comprehensive statistical analysis revealed a positive correlation between F-PSA levels and breast cancer diagnosis. The findings suggest that PSA may serve as a prognostic biomarker for breast cancer. This may contribute to improved customized treatment approaches, offering precise and accurate risk assessments, understanding breast cancer biology, and improving health outcomes for patients with breast cancer.
Collapse
Affiliation(s)
- Wedad Bouaod
- Biochemistry, Benghazi Medical Center, Benghazi, LBY
| | | | - Hamza Asif
- Medicine, St. George's University - School of Medicine, Princeton, USA
| | - Azhar Hussain
- Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy, New York, USA
| | - Nadia Malik
- Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy, New York, USA
| | - Sidhartha D Ray
- Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy, New York, USA
| | - Jagannadha Peela
- Biochemistry and Genetics, St. Matthew's University School of Medicine, Grand Cayman, CYM
| | | | | |
Collapse
|
7
|
Tang C, Tong H, Liu B, Wang X, Jin Y, Tian E, Wang F. Robust ERα-Targeted Near-Infrared Fluorescence Probe for Selective Hydrazine Imaging in Breast Cancer. Anal Chem 2022; 94:14012-14020. [PMID: 36166661 DOI: 10.1021/acs.analchem.2c03395] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Breast cancer is the most common malignancy in women and may become worse when a high concentration of hydrazine is absorbed from the environment or drug metabolite. Therefore, rapid and sensitive detection of hydrazine in vivo is beneficial for people's health. In this work, a novel estrogen receptor α (ERα)-targeted near-infrared fluorescence probe was designed to detect hydrazine levels. The probe showed good ERα affinity and an excellent fluorescence response toward hydrazine. Selectivity experiments demonstrated that the probe had a strong anti-interference ability. Mechanistic studies, including mass spectrometry (MS) and density functional theory (DFT) calculation, indicated that intermolecular charge transfer (ICT) progress was hindered when the probe reacted with hydrazine, resulting in fluorescent quenching. In addition, the probe could selectively bind to MCF-7 breast cancer cells with excellent biocompatibility. The in vivo and ex vivo imaging studies demonstrated that the probe could rapidly visualize hydrazine with high contrast in MCF-7 xenograft tumors. Therefore, this probe can serve as a potential tool to robustly monitor hydrazine levels in vivo.
Collapse
Affiliation(s)
- Chu Tang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China.,Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang 712046, Shaanxi, China
| | - Hongjuan Tong
- Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang 712046, Shaanxi, China
| | - Bin Liu
- Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang 712046, Shaanxi, China
| | - Xinan Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yushen Jin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Erli Tian
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Fu Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China.,Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang 712046, Shaanxi, China.,School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
8
|
Yadav D, Kumar R, Phulia A, Basu S, Alavi A. Molecular Imaging Assessment of Hormonally Sensitive Breast Cancer: An Appraisal of 2-[18F]-Fluoro-2-Deoxy-Glucose and Newer Non-2-[18F]-Fluoro-2-Deoxy-Glucose PET Tracers. PET Clin 2022; 17:399-413. [PMID: 35717099 DOI: 10.1016/j.cpet.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hormone-sensitive breast cancer, which demonstrates hormone receptor positivity, accounts for approximately 75% of newly diagnosed breast cancer. 2-[18F]-Fluoro-2-deoxy-glucose is the nonspecific radiotracer of glucose metabolism as opposed to specific receptor based tracers like 16α-[18F]-fluoro-17β-estradiol and [18F]-fluoro-furanyl-norprogesterone, which provide essential information about receptor status in the management of hormonally active malignancies. The complementary information provided by (a) 2-[18F]-fluoro-2-deoxy-glucose imaging for staging and prognostication along with (b) analyzing the hormonal receptor status with receptor-based PET imaging in breast cancer can optimize tumor characterization and influence patient management.
Collapse
Affiliation(s)
- Divya Yadav
- MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Rakesh Kumar
- Division of Diagnostic Nuclear Medicine, Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| | - Ankita Phulia
- Maulana Azad Medical College, New Delhi, 110002, India
| | - Sandip Basu
- Radiation Medicine Centre (B.A.R.C), Tata Memorial Centre Annexe, Parel, Mumbai; Homi Bhabha National Institute, Mumbai, India
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Kurth J, Potratz M, Heuschkel M, Krause BJ, Schwarzenböck SM. GRPr Theranostics: Current Status of Imaging and Therapy using GRPr Targeting Radiopharmaceuticals. Nuklearmedizin 2022; 61:247-261. [PMID: 35668669 DOI: 10.1055/a-1759-4189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Addressing molecular targets, that are overexpressed by various tumor entities, using radiolabeled molecules for a combined diagnostic and therapeutic (theranostic) approach is of increasing interest in oncology. The gastrin-releasing peptide receptor (GRPr), which is part of the bombesin family, has shown to be overexpressed in a variety of tumors, therefore, serving as a promising target for those theranostic applications. A large amount of differently radiolabeled bombesin derivatives addressing the GRPr have been evaluated in the preclinical as well as clinical setting showing fast blood clearance and urinary excretion with selective GRPr-binding. Most of the available studies on GRPr-targeted imaging and therapy have evaluated the theranostic approach in prostate and breast cancer applying bombesin derivatives tagged with the predominantly used theranostic pair of 68Ga/177Lu which is the focus of this review.
Collapse
Affiliation(s)
- Jens Kurth
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Madlin Potratz
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Martin Heuschkel
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Bernd J Krause
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | | |
Collapse
|
10
|
Covington MF, Koppula BR, Fine GC, Salem AE, Wiggins RH, Hoffman JM, Morton KA. PET-CT in Clinical Adult Oncology: II. Primary Thoracic and Breast Malignancies. Cancers (Basel) 2022; 14:cancers14112689. [PMID: 35681669 PMCID: PMC9179296 DOI: 10.3390/cancers14112689] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Positron emission tomography (PET), typically combined with computed tomography (CT), has become a critical advanced imaging technique in oncology. With PET-CT, a radioactive molecule (radiotracer) is injected in the bloodstream and localizes to sites of tumor because of specific cellular features of the tumor that accumulate the targeting radiotracer. The CT scan, performed at the same time, provides information to facilitate assessment of the amount of radioactivity from deep or dense structures, and to provide detailed anatomic information. PET-CT has a variety of applications in oncology, including staging, therapeutic response assessment, restaging, and surveillance. This series of six review articles provides an overview of the value, applications, and imaging and interpretive strategies of PET-CT in the more common adult malignancies. The second article in this series addresses the use of PET-CT in breast cancer and other primary thoracic malignancies. Abstract Positron emission tomography combined with x-ray computed tomography (PET-CT) is an advanced imaging modality with oncologic applications that include staging, therapy assessment, restaging, and surveillance. This six-part series of review articles provides practical information to providers and imaging professionals regarding the best use of PET-CT for the more common adult malignancies. The second article of this series addresses primary thoracic malignancy and breast cancer. For primary thoracic malignancy, the focus will be on lung cancer, malignant pleural mesothelioma, thymoma, and thymic carcinoma, with an emphasis on the use of FDG PET-CT. For breast cancer, the various histologic subtypes will be addressed, and will include 18F fluorodeoxyglucose (FDG), recently Food and Drug Administration (FDA)-approved 18F-fluoroestradiol (FES), and 18F sodium fluoride (NaF). The pitfalls and nuances of PET-CT in breast and primary thoracic malignancies and the imaging features that distinguish between subcategories of these tumors are addressed. This review will serve as a resource for the appropriate roles and limitations of PET-CT in the clinical management of patients with breast and primary thoracic malignancies for healthcare professionals caring for adult patients with these cancers. It also serves as a practical guide for imaging providers, including radiologists, nuclear medicine physicians, and their trainees.
Collapse
Affiliation(s)
- Matthew F. Covington
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (M.F.C.); (B.R.K.); (G.C.F.); (A.E.S.); (R.H.W.); (J.M.H.)
| | - Bhasker R. Koppula
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (M.F.C.); (B.R.K.); (G.C.F.); (A.E.S.); (R.H.W.); (J.M.H.)
| | - Gabriel C. Fine
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (M.F.C.); (B.R.K.); (G.C.F.); (A.E.S.); (R.H.W.); (J.M.H.)
| | - Ahmed Ebada Salem
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (M.F.C.); (B.R.K.); (G.C.F.); (A.E.S.); (R.H.W.); (J.M.H.)
- Department of Radiodiagnosis and Intervention, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| | - Richard H. Wiggins
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (M.F.C.); (B.R.K.); (G.C.F.); (A.E.S.); (R.H.W.); (J.M.H.)
| | - John M. Hoffman
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (M.F.C.); (B.R.K.); (G.C.F.); (A.E.S.); (R.H.W.); (J.M.H.)
| | - Kathryn A. Morton
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84132, USA; (M.F.C.); (B.R.K.); (G.C.F.); (A.E.S.); (R.H.W.); (J.M.H.)
- Intermountain Healthcare Hospitals, Summit Physician Specialists, Murray, UT 84123, USA
- Correspondence: ; Tel.: +1-801-581-7553
| |
Collapse
|
11
|
Liu H, Lin X, Xu D, Li J, Fang J, Li J, Meng L, Zeng X, Li Y, Huang J, Guo Z, Zhang X. Radioiodinated Ethinylestradiol Derivatives for Estrogen Receptor Targeting Breast Cancer Imaging. ACS Med Chem Lett 2022; 13:203-210. [PMID: 35178176 PMCID: PMC8842134 DOI: 10.1021/acsmedchemlett.1c00559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/24/2022] [Indexed: 12/30/2022] Open
Abstract
Two novel PEGylated ethinylestradiol (PEG = poly(ethylene glycol)) estrogen receptor (ER) targeting probes [131I]EITE and [131I]MITE were synthesized and evaluated. Both probes had a nanomolar binding affinity to the ER receptor (36.47 nM for [131I]EITE and 61.83 nM for [131I]MITE). They showed high uptake in ER-positive MCF-7 cells and tumors, which could be significantly blocked by a coinjection of excess estradiol. Their ER specificities were further demonstrated by the low uptake in ER-negative MDA-MB-231 cells and tumors. The maximum tumor-to-muscle (T/M) ratios reach to 6.59 for [131I]EITE at 1 h postinjection (p.i.) and to 3.69 for [131I]MITE at 2 h p.i. in MCF-7 tumors. Among these two probes, [131I]EITE showed a faster tumor accumulation and a higher T/M ratio indicating it could be a better candidate for the potential diagnosis of ER-positive breast cancers.
Collapse
Affiliation(s)
- Huanhuan Liu
- State
Key Laboratory of Molecular Vaccinology and Molecular Diagnostics
& Center for Molecular Imaging and Translational Medicine, School
of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiaoru Lin
- State
Key Laboratory of Molecular Vaccinology and Molecular Diagnostics
& Center for Molecular Imaging and Translational Medicine, School
of Public Health, Xiamen University, Xiamen 361102, China
| | - Duo Xu
- State
Key Laboratory of Molecular Vaccinology and Molecular Diagnostics
& Center for Molecular Imaging and Translational Medicine, School
of Public Health, Xiamen University, Xiamen 361102, China
| | - Jingchao Li
- State
Key Laboratory of Molecular Vaccinology and Molecular Diagnostics
& Center for Molecular Imaging and Translational Medicine, School
of Public Health, Xiamen University, Xiamen 361102, China
| | - Jianyang Fang
- State
Key Laboratory of Molecular Vaccinology and Molecular Diagnostics
& Center for Molecular Imaging and Translational Medicine, School
of Public Health, Xiamen University, Xiamen 361102, China
| | - Jindian Li
- State
Key Laboratory of Molecular Vaccinology and Molecular Diagnostics
& Center for Molecular Imaging and Translational Medicine, School
of Public Health, Xiamen University, Xiamen 361102, China
| | - Lingxin Meng
- State
Key Laboratory of Molecular Vaccinology and Molecular Diagnostics
& Center for Molecular Imaging and Translational Medicine, School
of Public Health, Xiamen University, Xiamen 361102, China
| | - Xinying Zeng
- State
Key Laboratory of Molecular Vaccinology and Molecular Diagnostics
& Center for Molecular Imaging and Translational Medicine, School
of Public Health, Xiamen University, Xiamen 361102, China
| | - Yesen Li
- The
First Affiliated Hospital, Xiamen University, Xiamen 361003, China
| | - Jinxiong Huang
- The
First Affiliated Hospital, Xiamen University, Xiamen 361003, China
| | - Zhide Guo
- State
Key Laboratory of Molecular Vaccinology and Molecular Diagnostics
& Center for Molecular Imaging and Translational Medicine, School
of Public Health, Xiamen University, Xiamen 361102, China,
| | - Xianzhong Zhang
- State
Key Laboratory of Molecular Vaccinology and Molecular Diagnostics
& Center for Molecular Imaging and Translational Medicine, School
of Public Health, Xiamen University, Xiamen 361102, China,
| |
Collapse
|
12
|
Sellmyer MA, Lee IK, Mankoff DA. Building the Bridge: Molecular Imaging Biomarkers for 21 st Century Cancer Therapies. J Nucl Med 2021; 62:jnumed.121.262484. [PMID: 34446450 PMCID: PMC8612205 DOI: 10.2967/jnumed.121.262484] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 01/17/2023] Open
Abstract
Precision medicine, where the molecular underpinnings of the disease are assessed for tailored therapies, has greatly impacted cancer care. In parallel, a new pillar of therapeutics has emerged with profound success, including immunotherapies such as checkpoint inhibitors and cell-based therapies. Nonetheless, it remains essential to develop paradigms to predict and monitor for therapeutic response. Molecular imaging has the potential to add substantially to all phases of cancer patient care: predicative, companion diagnostics can illuminate therapeutic target density within a tumor, and pharmacodynamic imaging biomarkers can complement traditional modalities to judge a favorable treatment response. This "Focus on Molecular Imaging" article discusses the current role of molecular imaging in oncology and highlights an additional step in clinical paradigm termed a "therapeutic biomarker," which serves to assess whether next generation drugs reach their target to elicit a favorable clinical response.
Collapse
Affiliation(s)
- Mark A. Sellmyer
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Iris K. Lee
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David A. Mankoff
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Hao W, Li Y, Du B, Li X. Heterogeneity of estrogen receptor based on 18F-FES PET imaging in breast cancer patients. Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00456-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Gu F, O'Sullivan F, Muzi M, Mankoff DA. Quantitation of multiple injection dynamic PET scans: an investigation of the benefits of pooling data from separate scans when mapping kinetics. Phys Med Biol 2021; 66:10.1088/1361-6560/ac0683. [PMID: 34049293 PMCID: PMC8284854 DOI: 10.1088/1361-6560/ac0683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/28/2021] [Indexed: 11/11/2022]
Abstract
Multiple injection dynamic positron emission tomography (PET) scanning is used in the clinical management of certain groups of patients and in medical research. The analysis of these studies can be approached in two ways: (i) separate analysis of data from individual tracer injections, or (ii), concatenate/pool data from separate injections and carry out a combined analysis. The simplicity of separate analysis has some practical appeal but may not be statistically efficient. We use a linear model framework associated with a kinetic mapping scheme to develop a simplified theoretical understanding of separate and combined analysis. The theoretical framework is explored numerically using both 1D and 2D simulation models. These studies are motivated by the breast cancer flow-metabolism mismatch studies involving15O-water (H2O) and18F-Fluorodeoxyglucose (FDG) and repeat15O-H2O injections used in brain activation investigations. Numerical results are found to be substantially in line with the simple theoretical analysis: mean square error characteristics of alternative methods are well described by factors involving the local voxel-level resolution of the imaging data, the relative activities of the individual scans and the number of separate injections involved. While voxel-level resolution has dependence on scan dose, after adjustment for this effect, the impact of a combined analysis is understood in simple terms associated with the linear model used for kinetic mapping. This is true for both data reconstructed by direct filtered backprojection or iterative maximum likelihood. The proposed analysis has potential to be applied to the emerging long axial field-of-view PET scanners.
Collapse
Affiliation(s)
- Fengyun Gu
- Department of Statistics, University College Cork, Cork, Ireland
| | | | - Mark Muzi
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
| | - David A Mankoff
- Department of Radiology, University of Pennsylvania, Philadelphia, United States of America
| |
Collapse
|
15
|
Wahl RL, Chareonthaitawee P, Clarke B, Drzezga A, Lindenberg L, Rahmim A, Thackeray J, Ulaner GA, Weber W, Zukotynski K, Sunderland J. Mars Shot for Nuclear Medicine, Molecular Imaging, and Molecularly Targeted Radiopharmaceutical Therapy. J Nucl Med 2021; 62:6-14. [PMID: 33334911 DOI: 10.2967/jnumed.120.253450] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
The Society of Nuclear Medicine and Molecular Imaging created the Value Initiative in 2017 as a major component of its strategic plan to further demonstrate the value of molecular imaging and molecularly targeted radiopharmaceutical therapy to patients, physicians, payers, and funding agencies. The research and discovery domain, 1 of 5 under the Value Initiative, has a goal of advancing the research and development of diagnostic and therapeutic nuclear medicine. Research and discovery efforts and achievements are essential to ensure a bright future for NM and to translate science to practice. Given the remarkable progress in the field, leaders from the research and discovery domain and society councils identified 5 broad areas of opportunity with potential for substantive growth and clinical impact. This article discusses these 5 growth areas, identifying specific areas of particularly high importance for future study and development. As there was an understanding that goals should be both visionary yet achievable, this effort was called the Mars shot for nuclear medicine.
Collapse
Affiliation(s)
- Richard L Wahl
- Mallinckrodt Institute of Radiology, Washington University St. Louis, Missouri
| | | | - Bonnie Clarke
- Research and Discovery, Society of Nuclear Medicine and Molecular Imaging, Reston, Virginia
| | - Alexander Drzezga
- Department of Nuclear Medicine, University of Cologne, Cologne, Germany, German Center for Neurodegenerative Diseases, Bonn-Cologne, Germany, and Institute of Neuroscience and Medicine, Molecular Organization of the Brain, Forschungszentrum Jülich, Jülich, Germany
| | - Liza Lindenberg
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Arman Rahmim
- Departments of Radiology and Physics, University of British Columbia, Vancouver, British Columbia, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - James Thackeray
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Gary A Ulaner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, and Molecular Imaging and Therapy, Hoag Cancer Center, Newport Beach, California
| | - Wolfgang Weber
- Department of Nuclear Medicine, Technical University Munich, Munich, Germany
| | - Katherine Zukotynski
- Departments of Medicine and Radiology, McMaster University, Hamilton, Ontario, Canada; and
| | - John Sunderland
- Departments of Radiology and Physics, University of Iowa, Iowa City, Iowa
| |
Collapse
|
16
|
Krohn KA, Vera DR. Concepts for design and analysis of receptor radiopharmaceuticals: The Receptor-Binding Radiotracers series of meetings provided the foundation. Nucl Med Biol 2021; 92:5-23. [PMID: 32331709 PMCID: PMC8049838 DOI: 10.1016/j.nucmedbio.2020.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/08/2020] [Indexed: 12/14/2022]
Abstract
A symposium at George Washington University on Receptor-Binding Radiotracers in 1980 and three follow-up meetings held at University of California, San Diego provided a forum for debating the critical concepts involved in the new field of designing and evaluating radiotracers for imaging receptors and transporters. This review is intended to educate young investigators who may be relatively new to receptor radiopharmaceutical development. Our anticipated audience includes researchers in basic pharmacology, radiochemistry, imaging technology and kinetic data analysis and how these disciplines have worked together to build our understanding of the human biology of transporters and receptor signaling in health and disease. We have chosen to focus on radiochemical design of a useful imaging agent and how design is coupled to analysis of data collected from dynamic imaging with that agent. Some pharmacology may be required for designing the imaging agent and some imaging physics may be important in optimizing the quality of data that is collected. However, the key to a successful imaging agent is matching the radiotracer to the target receptor and to analysis of the time-course data that is used to parse delivery from specific binding and subsequent metabolism or degradation. Properly designed imaging agents are providing critical information about human biology in health and disease as well as pharmacodynamic response to drug interventions. The review emphasizes some of the ideas that were controversial at the 1980 conference and chronicles with literature examples how they have resolved over the four decades of using radiotracers to study transporters and receptors in human subjects. These examples show that there are situations where a very small KD, i.e. high affinity, has the potential to yield an image that reflects blood flow more than receptor density. The examples also show that by combining two studies, one with high specific activity and a second with low specific activity injections one can unravel the pseudo-first order rate B'max into the true second-order rate constant, k3, and the unoccupied receptor density. The final section describes how mathematical methods first presented to the receptor-imaging community in 1980 are now being used to provide confidence in the analysis of kinetic biodistribution studies. Our hope is that by bringing these concepts together in a single review, the next generation of scientists developing receptor imaging agents can be much more efficient than their pioneers in developing useful imaging methods.
Collapse
Affiliation(s)
- Kenneth A Krohn
- Center for Radiochemistry Research, Department of Diagnostic Radiology, Mail Code L104, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States of America.
| | - David R Vera
- UCSD Moores Cancer Center, Department of Radiology, Mail Code 0819, University of California, San Diego, CA 92037, United States of America
| |
Collapse
|
17
|
Katzenellenbogen JA. The quest for improving the management of breast cancer by functional imaging: The discovery and development of 16α-[ 18F]fluoroestradiol (FES), a PET radiotracer for the estrogen receptor, a historical review. Nucl Med Biol 2021; 92:24-37. [PMID: 32229068 PMCID: PMC7442693 DOI: 10.1016/j.nucmedbio.2020.02.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/16/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION 16α-[18F]Fluoroestradiol (FES), a PET radiotracer for the estrogen receptor (ER) in breast cancer, was the first receptor-targeted PET radiotracer for oncology and is continuing to prove its value in clinical research, antiestrogen development, and breast cancer care. The story of its conception, design, evaluation and use in clinical studies parallels the evolution of the whole field of receptor-targeted radiotracers, one greatly influenced by the research and intellectual contributions of William C. Eckelman. METHODS AND RESULTS The development of methods for efficient production of fluorine-18, for conversion of [18F]fluoride ion into chemically reactive form, and for its rapid and efficient incorporation into suitable estrogen precursor molecules at high molar activity, were all methodological underpinnings required for the preparation of FES. FES binds to ER with very high affinity, and its in vivo uptake by ER-dependent target tissues in animal models was efficient and selective, findings that preceded its use for PET imaging in patients with breast cancer. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE Comparisons between ER levels measured by FES-PET imaging of breast tumors with tissue-specimen ER quantification by IHC and other methods show that imaging provided improved prediction of benefit from endocrine therapies. Serial imaging of ER by FES-PET, before and after dosing patients with antiestrogens, is used to determine the efficacious dose for established antiestrogens and to facilitate clinical development of new ER antagonists. Beyond FES imaging, PET-based hormone challenge tests, which evaluate the functional status of ER by monitoring rapid changes in tumor metabolic or transcriptional activity after a brief estrogen challenge, provide highly sensitive and selective predictions of whether or not there will be a favorable response to endocrine therapies. There is sufficient interest in the clinical applications of FES that FDA approval is being sought for its wider use in breast cancer. CONCLUSIONS FES was the first PET probe for a receptor in cancer, and its development and clinical applications in breast cancer parallel the conceptual evolution of the whole field of receptor-binding radiotracers.
Collapse
Affiliation(s)
- John A Katzenellenbogen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America.
| |
Collapse
|
18
|
Heesch A, Maurer J, Stickeler E, Beheshti M, Mottaghy FM, Morgenroth A. Development of Radiotracers for Breast Cancer-The Tumor Microenvironment as an Emerging Target. Cells 2020; 9:cells9102334. [PMID: 33096754 PMCID: PMC7590199 DOI: 10.3390/cells9102334] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
Molecular imaging plays an increasingly important role in the diagnosis and treatment of different malignancies. Radiolabeled probes enable the visualization of the primary tumor as well as the metastases and have been also employed in targeted therapy and theranostic approaches. With breast cancer being the most common malignancy in women worldwide it is of special interest to develop novel targeted treatments. However, tumor microenvironment and escape mechanisms often limit their therapeutic potential. Addressing tumor stroma associated targets provides a promising option to inhibit tumor growth and angiogenesis and to disrupt tumor tissue architecture. This review describes recent developments on radiolabeled probes used in diagnosis and treatment of breast cancer especially in triple negative type with the focus on potential targets offered by the tumor microenvironment, like tumor associated macrophages, cancer associated fibroblasts, and endothelial cells.
Collapse
Affiliation(s)
- Amelie Heesch
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany; (A.H.); (M.B.); (F.M.M.)
| | - Jochen Maurer
- Department of Obstetrics and Gynecology, University Hospital Aachen (UKA), 52074 Aachen, Germany; (J.M.); (E.S.)
| | - Elmar Stickeler
- Department of Obstetrics and Gynecology, University Hospital Aachen (UKA), 52074 Aachen, Germany; (J.M.); (E.S.)
| | - Mohsen Beheshti
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany; (A.H.); (M.B.); (F.M.M.)
- Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Felix M. Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany; (A.H.); (M.B.); (F.M.M.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), 6202 Maastricht, The Netherlands
| | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany; (A.H.); (M.B.); (F.M.M.)
- Correspondence:
| |
Collapse
|
19
|
Katzenellenbogen JA. PET Imaging Agents (FES, FFNP, and FDHT) for Estrogen, Androgen, and Progesterone Receptors to Improve Management of Breast and Prostate Cancers by Functional Imaging. Cancers (Basel) 2020; 12:E2020. [PMID: 32718075 PMCID: PMC7465097 DOI: 10.3390/cancers12082020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/30/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022] Open
Abstract
Many breast and prostate cancers are driven by the action of steroid hormones on their cognate receptors in primary tumors and in metastases, and endocrine therapies that inhibit hormone production or block the action of these receptors provide clinical benefit to many but not all of these cancer patients. Because it is difficult to predict which individuals will be helped by endocrine therapies and which will not, positron emission tomography (PET) imaging of estrogen receptor (ER) and progesterone receptor (PgR) in breast cancer, and androgen receptor (AR) in prostate cancer can provide useful, often functional, information on the likelihood of endocrine therapy response in individual patients. This review covers our development of three PET imaging agents, 16α-[18F]fluoroestradiol (FES) for ER, 21-[18F]fluoro-furanyl-nor-progesterone (FFNP) for PgR, and 16β-[18F]fluoro-5α-dihydrotestosterone (FDHT) for AR, and the evolution of their clinical use. For these agents, the pathway from concept through development tracks with an emerging understanding of critical performance criteria that is needed for successful PET imaging of these low-abundance receptor targets. Progress in the ongoing evaluation of what they can add to the clinical management of breast and prostate cancers reflects our increased understanding of these diseases and of optimal strategies for predicting the success of clinical endocrine therapies.
Collapse
Affiliation(s)
- John A Katzenellenbogen
- Department of Chemistry and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
20
|
Xu D, Peng C, Gao F, Guo Z, Zhuang R, Su X, Zhang X. Radioiodinated estradiol dimer for estrogen receptor targeted breast cancer imaging. Chem Biol Drug Des 2020; 96:1332-1340. [PMID: 32603003 DOI: 10.1111/cbdd.13754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/29/2020] [Accepted: 06/14/2020] [Indexed: 11/26/2022]
Abstract
The aim of this study was to develop a 1-(2-(2-(2-(1,2,3-triazol)ethoxy)ethoxy)ethyl)-5-[125/131 I]iodo-1,2,3-triazole-diestradiol ([125/131 I]ITE2), for estrogen receptor (ER)-expressing breast cancer imaging with single-photon emission computed tomography (SPECT). [125/131 I]ITE2 was prepared in good radiochemical yield (94.4 ± 0.4%) with high radiochemical purity (>99%). [125/131 I]ITE2 had good stability in vitro and moderate molar activity (0.3 ± 0.2 GBq/µmol). Higher uptake in ER-positive MCF-7 cells than that of ER-negative MDA-MB-231 cells was observed at all time points. Rats biodistribution showed that [131 I]ITE2 had high uptake in ER-abundant uterine and ovarian (5.7 ± 0.4 and 10.1 ± 1.4%ID/g at 1 hr postinjection) and could be blocked by co-injection of estradiol (2.7 ± 0.1 and 5.5 ± 0.4%ID/g) obviously. In the SPECT/CT imaging study, [125 I]ITE2 showed significant higher uptake in MCF-7 tumor (3.1 ± 0.4%ID/g) than that of MDA-MB-231 (0.9 ± 0.1%ID/g). Furthermore, the specific uptake of [125 I]ITE2 in ER-positive MCF-7 tumor could be blocked effectively by preadministration of fulvestrant (1.2 ± 0.4%ID/g). A novel radioiodinated dimeric estrogen was designed and synthesized with promising ER targeting ability and specificity. It is worthy of further investigation to validate the advantages of the dimer in ER-positive breast cancer diagnosis.
Collapse
Affiliation(s)
- Duo Xu
- State Key Laboratory of Molecular Vaccinology and Molecular, Diahgnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Chenyu Peng
- State Key Laboratory of Molecular Vaccinology and Molecular, Diahgnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Fei Gao
- State Key Laboratory of Molecular Vaccinology and Molecular, Diahgnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular, Diahgnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Rongqiang Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular, Diahgnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Xinhui Su
- Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular, Diahgnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
21
|
Jones EF, Hathi DK, Freimanis R, Mukhtar RA, Chien AJ, Esserman LJ, van’t Veer LJ, Joe BN, Hylton NM. Current Landscape of Breast Cancer Imaging and Potential Quantitative Imaging Markers of Response in ER-Positive Breast Cancers Treated with Neoadjuvant Therapy. Cancers (Basel) 2020; 12:E1511. [PMID: 32527022 PMCID: PMC7352259 DOI: 10.3390/cancers12061511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/24/2022] Open
Abstract
In recent years, neoadjuvant treatment trials have shown that breast cancer subtypes identified on the basis of genomic and/or molecular signatures exhibit different response rates and recurrence outcomes, with the implication that subtype-specific treatment approaches are needed. Estrogen receptor-positive (ER+) breast cancers present a unique set of challenges for determining optimal neoadjuvant treatment approaches. There is increased recognition that not all ER+ breast cancers benefit from chemotherapy, and that there may be a subset of ER+ breast cancers that can be treated effectively using endocrine therapies alone. With this uncertainty, there is a need to improve the assessment and to optimize the treatment of ER+ breast cancers. While pathology-based markers offer a snapshot of tumor response to neoadjuvant therapy, non-invasive imaging of the ER disease in response to treatment would provide broader insights into tumor heterogeneity, ER biology, and the timing of surrogate endpoint measurements. In this review, we provide an overview of the current landscape of breast imaging in neoadjuvant studies and highlight the technological advances in each imaging modality. We then further examine some potential imaging markers for neoadjuvant treatment response in ER+ breast cancers.
Collapse
Affiliation(s)
- Ella F. Jones
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94115, USA; (D.K.H.); (R.F.); (B.N.J.); (N.M.H.)
| | - Deep K. Hathi
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94115, USA; (D.K.H.); (R.F.); (B.N.J.); (N.M.H.)
| | - Rita Freimanis
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94115, USA; (D.K.H.); (R.F.); (B.N.J.); (N.M.H.)
| | - Rita A. Mukhtar
- Department of Surgery, University of California, San Francisco, CA 94115, USA;
| | - A. Jo Chien
- School of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA; (A.J.C.); (L.J.v.V.)
| | - Laura J. Esserman
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA;
| | - Laura J. van’t Veer
- School of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA; (A.J.C.); (L.J.v.V.)
| | - Bonnie N. Joe
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94115, USA; (D.K.H.); (R.F.); (B.N.J.); (N.M.H.)
| | - Nola M. Hylton
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94115, USA; (D.K.H.); (R.F.); (B.N.J.); (N.M.H.)
| |
Collapse
|
22
|
Wu R, Liu S, Liu Y, Sun Y, Xiao H, Huang Y, Yang Z, Wu Z. PET probe with Aggregation Induced Emission characteristics for the specific turn-on of aromatase. Talanta 2020; 208:120412. [DOI: 10.1016/j.talanta.2019.120412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/04/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022]
|
23
|
Recent Advances in Nuclear Imaging of Receptor Expression to Guide Targeted Therapies in Breast Cancer. Cancers (Basel) 2019; 11:cancers11101614. [PMID: 31652624 PMCID: PMC6826563 DOI: 10.3390/cancers11101614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022] Open
Abstract
Breast cancer remains the most frequent cancer in women with different patterns of disease progression and response to treatments. The identification of specific biomarkers for different breast cancer subtypes has allowed the development of novel targeting agents for imaging and therapy. To date, patient management depends on immunohistochemistry analysis of receptor status on bioptic samples. This approach is too invasive, and in some cases, not entirely representative of the disease. Nuclear imaging using receptor tracers may provide whole-body information and detect any changes of receptor expression during disease progression. Therefore, imaging is useful to guide clinicians to select the best treatments for each patient and to evaluate early response thus reducing unnecessary therapies. In this review, we focused on the development of novel tracers that are ongoing in preclinical and/or clinical studies as promising tools to lead treatment decisions for breast cancer management.
Collapse
|
24
|
Mankoff DA, Pantel AR, Viswanath V, Karp JS. Advances in PET Diagnostics for Guiding Targeted Cancer Therapy and Studying In Vivo Cancer Biology. CURRENT PATHOBIOLOGY REPORTS 2019; 7:97-108. [PMID: 37092138 PMCID: PMC10117535 DOI: 10.1007/s40139-019-00202-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose of the Review We present an overview of recent advances in positron emission tomography (PET) diagnostics as applied to the study of cancer, specifically as a tool to study in vivo cancer biology and to direct targeted cancer therapy. The review is directed to translational and clinical cancer investigators who may not be familiar with these applications of PET cancer diagnostics, but whose research might benefit from these advancing tools. Recent Findings We highlight recent advances in 3 areas: (1) the translation of PET imaging cancer biomarkers to clinical trials; (2) methods for measuring cancer metabolism in vivo in patients; and (3) advances in PET instrumentation, including total-body PET, that enable new methodologies. We emphasize approaches that have been translated to human studies. Summary PET imaging methodology enables unique in vivo cancer diagnostics that go beyond cancer detection and staging, providing an improved ability to guide cancer treatment and an increased understanding of in vivo human cancer biology.
Collapse
Affiliation(s)
- David A Mankoff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Austin R Pantel
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Varsha Viswanath
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Joel S Karp
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
25
|
Synthesis and biodistribution of 1-[2-(cyclopentadienyltricarbonyltechnetium-99m)-2-oxo-ethoxy-phenyl]-1,2-di- (p-hydroxyphenyl)but-1-ene for tumor imaging. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Mixdorf JC, Sorlin AM, Dick DW, Nguyen HM. Iridium-Catalyzed Radiosynthesis of Branched Allylic [18F]Fluorides. Org Lett 2018; 21:60-64. [DOI: 10.1021/acs.orglett.8b03496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jason C. Mixdorf
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Alexandre M. Sorlin
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - David W. Dick
- University of Iowa Hospitals and Clinics, University of Iowa, Iowa City, Iowa 52242, United States
| | - Hien M. Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
27
|
Tang C, Du Y, Liang Q, Cheng Z, Tian J. A Novel Estrogen Receptor α-Targeted Near-Infrared Fluorescent Probe for in Vivo Detection of Breast Tumor. Mol Pharm 2018; 15:4702-4709. [DOI: 10.1021/acs.molpharmaceut.8b00684] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Chu Tang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100080, China
| | - Qian Liang
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California 94305-5344, United States
| | - Jie Tian
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100080, China
| |
Collapse
|
28
|
Abstract
Molecular imaging using 16α-[18F]fluoro-17β-estradiol (FES) and 18F-fluoro-furanyl-norprogesterone PET can assess in vivo function of steroid hormone receptors in breast cancer. These experimental agents have been tested in many single-center clinical trials and show promise to elucidate prognosis and predict endocrine therapy response. The current multicenter trial of FES-PET imaging will help bring this radiotracer closer to clinical use. There is tremendous potential for these tracers to advance drug development, enhance understanding of estrogen receptor-positive tumor biology, and personalize treatment.
Collapse
Affiliation(s)
- Hannah M Linden
- Department of Medical Oncology, Seattle Cancer Care Alliance, UWMC, 825 Eastlake Avenue East, Valley Building LV-200, Seattle, WA 98109-1023, USA
| | - Lanell M Peterson
- Department of Medical Oncology, Seattle Cancer Care Alliance, UWMC, 825 Eastlake Avenue East, Valley Building LV-200, Seattle, WA 98109-1023, USA.
| | - Amy M Fowler
- Department of Radiology, University of Wisconsin, School of Medicine and Public Health, E3/366 Clinical Science Center, 600 Highland Avenue, Madison, WI 53792-3252, USA
| |
Collapse
|
29
|
Salem K, Kumar M, Kloepping KC, Michel CJ, Yan Y, Fowler AM. Determination of binding affinity of molecular imaging agents for steroid hormone receptors in breast cancer. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2018; 8:119-126. [PMID: 29755845 PMCID: PMC5944827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
16α-[18F]Fluoro-17β-estradiol ([18F]FES) and 21-[18F]-Fluoro-16α,17α-[(R)-(1'-α-furylmethylidene)dioxyl]-19-norpregn-4-ene-3,20-dione ([18F]FFNP) are being investigated as imaging biomarkers for breast cancer patients. Quantitative positron emission tomography (PET) reflects both total receptor content and binding affinity. To study factors that may alter radiopharmaceutical binding and impact PET accuracy, assays that can separate receptor amount from binding affinity are needed. The study purpose was to quantify the binding parameters of [18F]FES and [18F]FFNP in breast cancer. Estrogen receptor-alpha (ER) and progesterone receptor (PR) positive breast cancer cell lines (MCF-7 and T47D) were used to measure [18F]FES and [18F]FFNP binding parameters via saturation and competitive binding curves. The equilibrium dissociation constant (Kd) and total receptor density (Bmax) were determined using nonlinear regression of the saturation binding curves. Half-maximal inhibitory concentration (IC50) was determined using nonlinear regression of the competitive binding curves. Linear correlation between increasing cell number and tracer uptake was observed for both [18F]FES and [18F]FFNP (R2=0.99 and 0.91, respectively). Using [18F]FES, the Kd for ER in MCF-7 cells was 0.13±0.02 nM with a Bmax of 1901±89.3 fmol/mg protein and IC50 of 0.085 nM (95% CI: 0.069-0.104 nM). Using [18F]FFNP, the Kd for PR in T47D cells was 0.41±0.05 nM with a Bmax of 1984±75.6 fmol/mg protein and IC50 of 2.6 nM (95% CI: 2.0-3.4 nM). The ligand binding function of ER and PR can be quantified using [18F]FES and [18F]FFNP and are comparable to previous studies using tritiated radioligands. [18F]FES and [18F]FFNP can be used in cell-based assays to quantify receptor-radioligand binding affinity, which cannot be obtained from a single PET examination.
Collapse
Affiliation(s)
- Kelley Salem
- Department of Radiology, University of Wisconsin School of Medicine and Public Health600 Highland Avenue, Madison, WI 53792, USA
| | - Manoj Kumar
- Department of Radiology, University of Wisconsin School of Medicine and Public Health600 Highland Avenue, Madison, WI 53792, USA
| | - Kyle C Kloepping
- Department of Radiology, University of Wisconsin School of Medicine and Public Health600 Highland Avenue, Madison, WI 53792, USA
- Perkin ElmerWaltham, MA, USA
| | - Ciara J Michel
- Department of Radiology, University of Wisconsin School of Medicine and Public Health600 Highland Avenue, Madison, WI 53792, USA
| | - Yongjun Yan
- Department of Radiology, University of Wisconsin School of Medicine and Public Health600 Highland Avenue, Madison, WI 53792, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health1111 Highland Avenue, Madison, WI 53705, USA
| | - Amy M Fowler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health600 Highland Avenue, Madison, WI 53792, USA
- University of Wisconsin Carbone Cancer Center600 Highland Avenue, Madison, WI 53792, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health1111 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
30
|
Chauhan K, Hernandez-Meza JM, Rodríguez-Hernández AG, Juarez-Moreno K, Sengar P, Vazquez-Duhalt R. Multifunctionalized biocatalytic P22 nanoreactor for combinatory treatment of ER+ breast cancer. J Nanobiotechnology 2018; 16:17. [PMID: 29463260 PMCID: PMC5819296 DOI: 10.1186/s12951-018-0345-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/13/2018] [Indexed: 12/20/2022] Open
Abstract
Background Tamoxifen is the standard endocrine therapy for breast cancers, which require metabolic activation by cytochrome P450 enzymes (CYP). However, the lower and variable concentrations of CYP activity at the tumor remain major bottlenecks for the efficient treatment, causing severe side-effects. Combination nanotherapy has gained much recent attention for cancer treatment as it reduces the drug-associated toxicity without affecting the therapeutic response. Results Here we show the modular design of P22 bacteriophage virus-like particles for nanoscale integration of virus-driven enzyme prodrug therapy and photodynamic therapy. These virus capsids carrying CYP activity at the core are decorated with photosensitizer and targeting moiety at the surface for effective combinatory treatment. The estradiol-functionalized nanoparticles are recognized and internalized into ER+ breast tumor cells increasing the intracellular CYP activity and showing the ability to produce reactive oxygen species (ROS) upon UV365 nm irradiation. The generated ROS in synergy with enzymatic activity drastically enhanced the tamoxifen sensitivity in vitro, strongly inhibiting tumor cells. Conclusions This work clearly demonstrated that the targeted combinatory treatment using multifunctional biocatalytic P22 represents the effective nanotherapeutics for ER+ breast cancer. Electronic supplementary material The online version of this article (10.1186/s12951-018-0345-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kanchan Chauhan
- Department of Bionanotechnology, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km. 107 carretera Tijuana-Ensenada, 22860, Ensenada, Baja California, Mexico
| | - Juan M Hernandez-Meza
- Department of Bionanotechnology, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km. 107 carretera Tijuana-Ensenada, 22860, Ensenada, Baja California, Mexico
| | - Ana G Rodríguez-Hernández
- Department of Bionanotechnology, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km. 107 carretera Tijuana-Ensenada, 22860, Ensenada, Baja California, Mexico
| | - Karla Juarez-Moreno
- Department of Bionanotechnology, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km. 107 carretera Tijuana-Ensenada, 22860, Ensenada, Baja California, Mexico
| | - Prakhar Sengar
- Department of Bionanotechnology, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km. 107 carretera Tijuana-Ensenada, 22860, Ensenada, Baja California, Mexico
| | - Rafael Vazquez-Duhalt
- Department of Bionanotechnology, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km. 107 carretera Tijuana-Ensenada, 22860, Ensenada, Baja California, Mexico.
| |
Collapse
|
31
|
18F-labeled estradiol derivative for targeting estrogen receptor-expressing breast cancer. Nucl Med Biol 2018; 59:48-55. [PMID: 29466767 DOI: 10.1016/j.nucmedbio.2018.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/25/2017] [Accepted: 01/22/2018] [Indexed: 01/01/2023]
Abstract
INTRODUCTION A novel radiotracer 1‑(2‑(2‑(2‑[18F]fluoroethoxy)ethoxy)ethyl)‑1H‑1,2,3‑triazole‑estradiol ([18F]FETE) was successfully synthesized, characterized and evaluated in mice for estrogen receptor (ER)-positive breast cancer targeting with positron emission tomography (PET) imaging. METHODS The tosylate precursor 3 was radiolabeled with 18F and then reacted with 17α‑ethinyl‑estradiol to produce the final [18F]FETE. The physicochemical properties of [18F]FETE were tested in vitro, including determination of the octanol/water partition coefficient, stability and cellular uptake in MCF-7 (ER-positive) and MDA-MB-231 (ER-negative) cells. An ex vivo biodistribution study was performed in normal Sprague Dawley rats, and in vivo microPET imaging was performed on MCF-7 and MDA-MB-231 tumor-bearing mice. The results of biodistribution and PET imaging of [18F]FETE were compared with that of known 16α‑[18F]fuoro‑17β‑estradiol ([18F]FES). Radiation dose estimates for [18F]FETE were also analyzed. RESULTS [18F]FETE was obtained in high radiochemical yield (46.59 ± 8.06%) with high radiochemical purity (>99%) after HPLC purification and high molar activity (15.45 ± 3.15 GBq/μmol). [18F]FETE is a moderate lipophilic compound with good in vitro stability and the total synthesis time was 55 to 65 min. In biodistribution studies, [18F]FETE showed high uptake in the ER-abundant uterine tissue of normal immature SD rats (8.55 ± 1.21 and 6.83 ± 1.70%ID/g at 1 h after intravenous and intraperitoneal injection, respectively), and could be blocked with estradiol effectively (the uterus uptake was decreased to 0.63 ± 0.35%ID/g at 1 h after iv injection). MicroPET imaging of tumor-bearing mice with [18F]FETE at 1 h after iv injection revealed considerable uptake in ER-positive MCF-7 tumors (4.63 ± 0.73%ID/g) that could be inhibited (1.47 ± 0.29%ID/g) and low uptake in ER-negative MDA-MB-231 tumors (1.97 ± 0.36%ID/g). [18F]FES has relatively low uptake in ER-positive tumor (0.24 ± 0.19%ID/g) when compared with [18F]FETE. The adult female effective radiation dose of [18F]FETE in mice was estimated as 0.0022 mSv/MBq. CONCLUSIONS A novel 17α‑ethinyl‑estradiol-based ER probe [18F]FETE was developed with high molar activity and good in vitro stability. Based on the results of bio-evaluation in normal immature rats and tumor-bearing mice, it might be a promising candidate for specific PET imaging of ER-positive breast cancer.
Collapse
|
32
|
Clark PM, Ebiana VA, Gosa L, Cloughesy TF, Nathanson DA. Harnessing Preclinical Molecular Imaging to Inform Advances in Personalized Cancer Medicine. J Nucl Med 2017; 58:689-696. [PMID: 28385796 PMCID: PMC12079153 DOI: 10.2967/jnumed.116.181693] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/27/2017] [Indexed: 12/11/2022] Open
Abstract
Comprehensive molecular analysis of individual tumors provides great potential for personalized cancer therapy. However, the presence of a particular genetic alteration is often insufficient to predict therapeutic efficacy. Drugs with distinct mechanisms of action can affect the biology of tumors in specific and unique ways. Therefore, assays that can measure drug-induced perturbations of defined functional tumor properties can be highly complementary to genomic analysis. PET provides the capacity to noninvasively measure the dynamics of various tumor biologic processes in vivo. Here, we review the underlying biochemical and biologic basis for a variety of PET tracers and how they may be used to better optimize cancer therapy.
Collapse
Affiliation(s)
- Peter M Clark
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, California
- Crump Institute for Molecular Imaging, David Geffen UCLA School of Medicine, Los Angeles, California
| | - Victoria A Ebiana
- Department of Neurology, David Geffen UCLA School of Medicine, Los Angeles, California; and
| | - Laura Gosa
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, California
- Ahmanson Translational Imaging Division, David Geffen UCLA School of Medicine, Los Angeles, California
| | - Timothy F Cloughesy
- Department of Neurology, David Geffen UCLA School of Medicine, Los Angeles, California; and
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, California
- Ahmanson Translational Imaging Division, David Geffen UCLA School of Medicine, Los Angeles, California
| |
Collapse
|
33
|
Lin FI, Gonzalez EM, Kummar S, Do K, Shih J, Adler S, Kurdziel KA, Ton A, Turkbey B, Jacobs PM, Bhattacharyya S, Chen AP, Collins JM, Doroshow JH, Choyke PL, Lindenberg ML. Utility of 18F-fluoroestradiol ( 18F-FES) PET/CT imaging as a pharmacodynamic marker in patients with refractory estrogen receptor-positive solid tumors receiving Z-endoxifen therapy. Eur J Nucl Med Mol Imaging 2017; 44:500-508. [PMID: 27872957 PMCID: PMC7886184 DOI: 10.1007/s00259-016-3561-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/25/2016] [Indexed: 01/13/2023]
Abstract
BACKGROUND Z-endoxifen is the most potent of the metabolites of tamoxifen, and has the potential to be more effective than tamoxifen because it bypasses potential drug resistance mechanisms attributable to patient variability in the expression of the hepatic microsomal enzyme CYP2D6. 18F-FES is a positron emission tomography (PET) imaging agent which selectively binds to estrogen receptor alpha (ER-α) and has been used for non-invasive in vivo assessment of ER activity in tumors. This study utilizes 18F-FES PET imaging as a pharmacodynamic biomarker in patients with ER+ tumors treated with Z-endoxifen. METHODS Fifteen patients were recruited from a parent therapeutic trial of Z-endoxifen and underwent imaging with 18F-FES PET at baseline. Eight had positive lesions on the baseline scan and underwent follow-up imaging with 18F-FES 1-5 days post administration of Z-endoxifen. RESULTS Statistically significant changes (p = 0.0078) in standard uptake value (SUV)-Max were observed between the baseline and follow-up scans as early as 1 day post drug administration. CONCLUSION F-FES PET imaging could serve as a pharmacodynamic biomarker for patients treated with ER-directed therapy.
Collapse
Affiliation(s)
- Frank I Lin
- Cancer Imaging Program, National Cancer Institute, NIH, Bethesda, MD, USA.
- Molecular Imaging Program, National Cancer Institute, Bethesda, MD, USA.
| | - E M Gonzalez
- Molecular Imaging Program, National Cancer Institute, Bethesda, MD, USA
| | - S Kummar
- Division of Cancer Treatment and Diagnosis and Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - K Do
- Division of Cancer Treatment and Diagnosis and Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - J Shih
- Biometric Research Program, National Cancer Institute, NIH, Bethesda, MD, USA
| | - S Adler
- Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Inc., NCI Campus at Frederick, Frederick, MD, 21702, USA
| | - K A Kurdziel
- Molecular Imaging Program, National Cancer Institute, Bethesda, MD, USA
| | - A Ton
- Molecular Imaging Program, National Cancer Institute, Bethesda, MD, USA
| | - B Turkbey
- Molecular Imaging Program, National Cancer Institute, Bethesda, MD, USA
| | - P M Jacobs
- Cancer Imaging Program, National Cancer Institute, NIH, Bethesda, MD, USA
| | - S Bhattacharyya
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, USA
| | - A P Chen
- Early Clinical Trials Development Program, DCTD, National Cancer Institute, Bethesda, MD, USA
| | - J M Collins
- Division of Cancer Treatment and Diagnosis and Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - J H Doroshow
- Division of Cancer Treatment and Diagnosis and Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - P L Choyke
- Molecular Imaging Program, National Cancer Institute, Bethesda, MD, USA
| | - M L Lindenberg
- Molecular Imaging Program, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
34
|
Review: Receptor Targeted Nuclear Imaging of Breast Cancer. Int J Mol Sci 2017; 18:ijms18020260. [PMID: 28134770 PMCID: PMC5343796 DOI: 10.3390/ijms18020260] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/17/2017] [Accepted: 01/20/2017] [Indexed: 12/21/2022] Open
Abstract
Receptor targeted nuclear imaging directed against molecular markers overexpressed on breast cancer (BC) cells offers a sensitive and specific method for BC imaging. Currently, a few targets such as estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), somatostatin receptor (SSTR), and the gastrin releasing peptide receptor (GRPR) are being investigated for this purpose. Expression of these targets is BC subtype dependent and information that can be gained from lesion visualization is dependent on the target; ER-targeting radiotracers, e.g., can be used to monitor response to anti-estrogen treatment. Here we give an overview of the studies currently under investigation for receptor targeted nuclear imaging of BC. Main findings of imaging studies are summarized and (potential) purposes of lesion visualization by targeting these molecular markers are discussed. Since BC is a very heterogeneous disease and molecular target expression can vary per subtype, but also during disease progression or under influence of treatment, radiotracers for selected imaging purposes should be chosen carefully.
Collapse
|
35
|
Abstract
Precision medicine, basing treatment approaches on patient traits and specific molecular features of disease processes, has an important role in the management of patients with breast cancer as targeted therapies continue to improve. PET imaging offers noninvasive information that is complementary to traditional tissue biomarkers, including information about tumor burden, tumor metabolism, receptor status, and proliferation. Several PET agents that image breast cancer receptors can visually demonstrate the extent and heterogeneity of receptor-positive disease and help predict which tumors are likely to respond to targeted treatments. This review presents applications of PET imaging in the targeted treatment of breast cancer.
Collapse
Affiliation(s)
- Amy V Chudgar
- Division of Nuclear Medicine, Department of Radiology, Hospital of the University of Pennsylvania, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - David A Mankoff
- Division of Nuclear Medicine, Department of Radiology, Hospital of the University of Pennsylvania, University of Pennsylvania, Donner 116, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
36
|
Pais A, Degani H. Estrogen Receptor-Targeted Contrast Agents for Molecular Magnetic Resonance Imaging of Breast Cancer Hormonal Status. Front Oncol 2016; 6:100. [PMID: 27200289 PMCID: PMC4846659 DOI: 10.3389/fonc.2016.00100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/11/2016] [Indexed: 12/26/2022] Open
Abstract
The estrogen receptor (ER) α is overexpressed in most breast cancers, and its level serves as a major prognostic factor. It is important to develop quantitative molecular imaging methods that specifically detect ER in vivo and assess its function throughout the entire primary breast cancer and in metastatic breast cancer lesions. This study presents the biochemical and molecular features, as well as the magnetic resonance imaging (MRI) effects of two novel ER-targeted contrast agents (CAs), based on pyridine-tetra-acetate-Gd(III) chelate conjugated to 17β-estradiol (EPTA-Gd) or to tamoxifen (TPTA-Gd). The experiments were conducted in solution, in human breast cancer cells, and in severe combined immunodeficient mice implanted with transfected ER-positive and ER-negative MDA-MB-231 human breast cancer xenografts. Binding studies with ER in solution and in human breast cancer cells indicated affinities in the micromolar range of both CAs. Biochemical and molecular studies in breast cancer cell cultures showed that both CAs exhibit estrogen-like agonistic activity, enhancing cell proliferation, as well as upregulating cMyc oncogene and downregulating ER expression levels. The MRI longitudinal relaxivity was significantly augmented by EPTA-Gd in ER-positive cells as compared to ER-negative cells. Dynamic contrast-enhanced studies with EPTA-Gd in vivo indicated specific augmentation of the MRI water signal in the ER-positive versus ER-negative xenografts, confirming EPTA-Gd-specific interaction with ER. In contrast, TPTA-Gd did not show increased enhancement in ER-positive tumors and did not appear to interact in vivo with the tumors’ ER. However, TPTA-Gd was found to interact strongly with muscle tissue, enhancing muscle signal intensity in a mechanism independent of the presence of ER. The specificity of EPTA-Gd interaction with ER in vivo was further verified by acute and chronic competition with tamoxifen. The chronic tamoxifen treatment also revealed that this drug increases the microvascular permeability of breast cancer xenograft in an ER-independent manner. In conclusion, EPTA-Gd has been shown to serve as an efficient molecular imaging probe for specific assessment of breast cancer ER in vivo.
Collapse
Affiliation(s)
- Adi Pais
- Department of Biological Regulation, Weizmann Institute of Science , Rehovot , Israel
| | - Hadassa Degani
- Department of Biological Regulation, Weizmann Institute of Science , Rehovot , Israel
| |
Collapse
|
37
|
Czernin J, Mankoff D. Introduction and Overview. J Nucl Med 2016; 57 Suppl 1:1S-2S. [PMID: 26834097 DOI: 10.2967/jnumed.115.157818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Johannes Czernin
- Department of Nuclear Medicine, UCLA School of Medicine, Los Angeles, California; and
| | - David Mankoff
- Division of Nuclear Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|