1
|
Navalkissoor S, Grossman A. Somatostatin receptor-linked α-particle therapy in neuroendocrine tumours. J Neuroendocrinol 2025; 37:e13463. [PMID: 39529416 DOI: 10.1111/jne.13463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/19/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
The incidence and prevalence of neuroendocrine tumours (NETs) are on the rise, but to date, only complete surgical resection is curative. Among the various therapeutic options for metastatic disease, peptide receptor radionuclide therapy (PRRT), linking a radioactive moiety to an octreotide derivative, has been shown to be highly efficacious and a well-tolerated therapy, improving progression-free survival and prolonging overall survival. Nevertheless, complete responses are rare, and the current β-particle emitters have non-optimal radiobiological properties. A new generation of α-particle-emitting radionuclides is being developed, with the advantages of very high energy and a short path length. We survey the most recent developments in this field, summarising the result of currently performed studies in this potentially ground-breaking novel form of therapy for NETs.
Collapse
Affiliation(s)
- Shaunak Navalkissoor
- Department of Nuclear Medicine, Royal Free London NHS Foundation Trust, London, UK
| | - Ashley Grossman
- NET UNIT, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|
2
|
Zhao X, Jakobsson V, Tao Y, Zhao T, Wang J, Khong PL, Chen X, Zhang J. Targeted Radionuclide Therapy in Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39042829 DOI: 10.1021/acsami.4c07850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Despite the development of various novel therapies, glioblastoma (GBM) remains a devastating disease, with a median survival of less than 15 months. Recently, targeted radionuclide therapy has shown significant progress in treating solid tumors, with the approval of Lutathera for neuroendocrine tumors and Pluvicto for prostate cancer by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA). This achievement has shed light on the potential of targeted radionuclide therapy for other solid tumors, including GBM. This review presents the current status of targeted radionuclide therapy in GBM, highlighting the commonly used therapeutic radionuclides emitting alpha, beta particles, and Auger electrons that could induce potent molecular and cellular damage to treat GBM. We then explore a range of targeting vectors, including small molecules, peptides, and antibodies, which selectively target antigen-expressing tumor cells with minimal or no binding to healthy tissues. Considering that radiopharmaceuticals for GBM are often administered locoregionally to bypass the blood-brain barrier (BBB), we review prominent delivery methods such as convection-enhanced delivery, local implantation, and stereotactic injections. Finally, we address the challenges of this therapeutic approach for GBM and propose potential solutions.
Collapse
Affiliation(s)
- Xiaobin Zhao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Vivianne Jakobsson
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yucen Tao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Tianzhi Zhao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jingyan Wang
- Xiamen University, School of Public Health, Xiang'an South Road, Xiamen 361102, China
| | - Pek-Lan Khong
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Departments of Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
3
|
Roncali L, Marionneau-Lambot S, Roy C, Eychenne R, Gouard S, Avril S, Chouin N, Riou J, Allard M, Rousseau A, Guérard F, Hindré F, Chérel M, Garcion E. Brain intratumoural astatine-211 radiotherapy targeting syndecan-1 leads to durable glioblastoma remission and immune memory in female mice. EBioMedicine 2024; 105:105202. [PMID: 38905749 PMCID: PMC11246004 DOI: 10.1016/j.ebiom.2024.105202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Glioblastoma (GB), the most aggressive brain cancer, remains a critical clinical challenge due to its resistance to conventional treatments. Here, we introduce a locoregional targeted-α-therapy (TAT) with the rat monoclonal antibody 9E7.4 targeting murine syndecan-1 (SDC1) coupled to the α-emitter radionuclide astatine-211 (211At-9E7.4). METHODS We orthotopically transplanted 50,000 GL261 cells of murine GB into the right striatum of syngeneic female C57BL/6JRj mice using stereotaxis. After MRI validation of tumour presence at day 11, TAT was injected at the same coordinates. Biodistribution, efficacy, toxicity, local and systemic responses were assessed following application of this protocol. The 9E7.4 monoclonal antibody was labelled with iodine-125 (125I) for biodistribution and with astatine-211 (211At) for the other experiments. FINDINGS The 211At-9E7.4 TAT demonstrated robust efficacy in reducing orthotopic tumours and achieved improved survival rates in the C57BL/6JRj model, reaching up to 70% with a minimal activity of 100 kBq. Targeting SDC1 ensured the cerebral retention of 211At over an optimal time window, enabling low-activity administration with a minimal toxicity profile. Moreover, TAT substantially reduced the occurrence of secondary tumours and provided resistance to new tumour development after contralateral rechallenge, mediated through the activation of central and effector memory T cells. INTERPRETATION The locoregional 211At-9E7.4 TAT stands as one of the most efficient TAT across all preclinical GB models. This study validates SDC1 as a pertinent therapeutic target for GB and underscores 211At-9E7.4 TAT as a promising advancement to improve the treatment and quality of life for patients with GB. FUNDING This work was funded by the French National Agency for Research (ANR) "France 2030 Investment Plan" Labex Iron [ANR-11-LABX-18-01], The SIRIC ILIAD [INCa-DGOS-INSERM-18011], the French program "Infrastructure d'Avenir en Biologie-Santé" (France Life Imaging) [ANR-11-INBS-0006], the PIA3 of the ANR, integrated to the "France 2030 Investment Plan" [ANR-21-RHUS-0012], and support from Inviscan SAS (Strasbourg, France). It was also related to: the ANR under the frame of EuroNanoMed III (project GLIOSILK) [ANR-19-ENM3-0003-01]; the "Région Pays-de-la-Loire" under the frame of the Target'In project; the "Ligue Nationale contre le Cancer" and the "Comité Départemental de Maine-et-Loire de la Ligue contre le Cancer" (CD49) under the frame of the FusTarG project and the "Tumour targeting, imaging and radio-therapies network" of the "Cancéropôle Grand-Ouest" (France). This work was also funded by the Institut National de la Santé et de la Recherche Médicale (INSERM), the University of Nantes, and the University of Angers.
Collapse
Affiliation(s)
- Loris Roncali
- Université d'Angers, INSERM, CNRS, CRCI(2)NA, F-49000, Angers, France; Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France
| | - Séverine Marionneau-Lambot
- Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France; CHU Nantes, Nantes Université, Service de médecine nucléaire, F-44000, Nantes, France; CIMA (Centre d'Imagerie Multimodale Appliquée), Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France
| | - Charlotte Roy
- Université d'Angers, INSERM, CNRS, CRCI(2)NA, F-49000, Angers, France; PRIMEX (Plateforme de Radiobiologie et d'Imageries Expérimentales), Université d'Angers, SFR 4208, F-49000, Angers, France
| | - Romain Eychenne
- Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France; GIP ARRONAX, F-44160, Saint-Herblain, France
| | - Sébastien Gouard
- Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France; CIMA (Centre d'Imagerie Multimodale Appliquée), Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France
| | - Sylvie Avril
- Université d'Angers, INSERM, CNRS, CRCI(2)NA, F-49000, Angers, France
| | - Nicolas Chouin
- Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France; ONIRIS, F-44000, Nantes, France
| | - Jérémie Riou
- CHU Angers, Université d'Angers, F-49000, Angers, France
| | - Mathilde Allard
- Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France
| | - Audrey Rousseau
- Université d'Angers, INSERM, CNRS, CRCI(2)NA, F-49000, Angers, France; CHU Angers, Université d'Angers, F-49000, Angers, France
| | - François Guérard
- Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France
| | - François Hindré
- Université d'Angers, INSERM, CNRS, CRCI(2)NA, F-49000, Angers, France; PRIMEX (Plateforme de Radiobiologie et d'Imageries Expérimentales), Université d'Angers, SFR 4208, F-49000, Angers, France
| | - Michel Chérel
- Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France; CIMA (Centre d'Imagerie Multimodale Appliquée), Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France; Institut de Cancérologie de l'Ouest, Service de médecine nucléaire, F-44160, Saint-Herblain, France.
| | - Emmanuel Garcion
- Université d'Angers, INSERM, CNRS, CRCI(2)NA, F-49000, Angers, France; PRIMEX (Plateforme de Radiobiologie et d'Imageries Expérimentales), Université d'Angers, SFR 4208, F-49000, Angers, France; PACEM (Plateforme d'Analyse Cellulaire et Moléculaire), Université d'Angers, SFR 4208, F-49000, Angers, France.
| |
Collapse
|
4
|
Dietsche E, Scaringi J. Inpatient FDG PET/CT: Counterpoint-A Costly Yet Subpar Evaluation That Prolongs Hospital Length of Stay. AJR Am J Roentgenol 2024; 223:e2330655. [PMID: 38197757 DOI: 10.2214/ajr.23.30655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Affiliation(s)
- Eric Dietsche
- Department of Diagnostic Imaging, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 593 Eddy St, Main 327-A, Providence, RI 02903
| | - John Scaringi
- Department of Diagnostic Imaging, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 593 Eddy St, Main 327-A, Providence, RI 02903
| |
Collapse
|
5
|
Sabri ME, Moghaddasi L, Wilson P, Saran F, Bezak E. Targeted Alpha Therapy for Glioblastoma: Review on In Vitro, In Vivo and Clinical Trials. Target Oncol 2024; 19:511-531. [PMID: 38836953 PMCID: PMC11230998 DOI: 10.1007/s11523-024-01071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/06/2024]
Abstract
Glioblastoma (GB), a prevalent and highly malignant primary brain tumour with a very high mortality rate due to its resistance to conventional therapies and invasive nature, resulting in 5-year survival rates of only 4-17%. Despite recent advancements in cancer management, the survival rates for GB patients have not significantly improved over the last 10-20 years. Consequently, there exists a critical unmet need for innovative therapies. One promising approach for GB is Targeted Alpha Therapy (TAT), which aims to selectively deliver potentially therapeutic radiation doses to malignant cells and the tumour microenvironment while minimising radiation exposure to surrounding normal tissue with or without conventional external beam radiation. This approach has shown promise in both pre-clinical and clinical settings. A review was conducted following PRISMA 2020 guidelines across Medline, SCOPUS, and Embase, identifying 34 relevant studies out of 526 initially found. In pre-clinical studies, TAT demonstrated high binding specificity to targeted GB cells, with affinity rates between 60.0% and 84.2%, and minimal binding to non-targeted cells (4.0-5.6%). This specificity significantly enhanced cytotoxic effects and improved biodistribution when delivered intratumorally. Mice treated with TAT showed markedly higher median survival rates compared to control groups. In clinical trials, TAT applied to recurrent GB (rGB) displayed varying success rates in extending overall survival (OS) and progression-free survival. Particularly effective when integrated into treatment regimens for both newly diagnosed and recurrent cases, TAT increased the median OS by 16.1% in newly diagnosed GB and by 36.4% in rGB, compared to current standard therapies. Furthermore, it was generally well tolerated with minimal adverse effects. These findings underscore the potential of TAT as a viable therapeutic option in the management of GB.
Collapse
Affiliation(s)
- Maram El Sabri
- Allied Health and Human Performance, University of South Australia, University of South Australia City East Campus, Adelaide, SA, 5001, Australia.
| | - Leyla Moghaddasi
- Department of Medical Physics, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
| | - Puthenparampil Wilson
- UniSA STEM, University of South Australia, Adelaide, SA, 5001, Australia
- Department of Medical Physics, Royal Adelaide Hospital, Adelaide, Australia
| | - Frank Saran
- Allied Health and Human Performance, University of South Australia, University of South Australia City East Campus, Adelaide, SA, 5001, Australia
- Australian Bragg Centre for Proton Therapy and Research, Adelaide, SA, 5000, Australia
- Department of Radiotherapy, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Eva Bezak
- Allied Health and Human Performance, University of South Australia, University of South Australia City East Campus, Adelaide, SA, 5001, Australia
| |
Collapse
|
6
|
Tora MS, Neill SG, Lakhina Y, Assed H, Zhang M, Nagarajan PP, Federici T, Gutierrez J, Hoang KB, Du Y, Lei K, Boulis NM. Tumor microenvironment in a minipig model of spinal cord glioma. J Transl Med 2023; 21:667. [PMID: 37752585 PMCID: PMC10523785 DOI: 10.1186/s12967-023-04531-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Spinal cord glioma (SCG) is considered an orphan disease that lacks effective treatment options with margins that are surgically inaccessible and an overall paucity of literature on the topic. The tumor microenvironment is a critical factor to consider in treatment and modeling design, especially with respect to the unresectable tumor edge. Recently, our group developed a high-grade spinal cord glioma (SCG) model in Göttingen minipigs. METHODS Immunofluorescence and ELISA were performed to explore the microenvironmental features and inflammation cytokines in this minipig SCG model. Protein carbonyl assay and GSH/GSSG assay were analyzed in the core and edge lesions in the minipig SCG model. The primary core and edge cells proliferation rate were shown in vitro, and the xenograft model in vivo. RESULTS We identified an elevated Ki-67 proliferative index, vascular and pericyte markers, CD31 and desmin in the tumor edge as compared to the tumor core. In addition, we found that the tumor edge demonstrated increased pro-inflammatory and gliomagenic cytokines including TNF-α, IL-1β, and IL-6. Furthermore, the mediation of oxidative stress is upregulated in the tumor edge. Hypoxic markers had statistically significant increased staining in the tumor core, but were notably still present in the tumor edge. The edge cells cultures derived from SCG biopsy also demonstrated an increased proliferative rate compared to core cell cultures in a xenotransplantation model. CONCLUSIONS Our study demonstrates heterogeneity in microenvironmental features in our minipig model of high-grade SCG, with a phenotype at the edge showing increased oxidative stress, proliferation, inflammatory cytokines, neovascularization, and decreased but present staining for hypoxic markers. These findings support the utility of this model as a means for investigating therapeutic approaches targeting the more aggressive and surgically unresectable tumor border.
Collapse
Affiliation(s)
- Muhibullah S Tora
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Stewart G Neill
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yuliya Lakhina
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Hemza Assed
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Michelle Zhang
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Purva P Nagarajan
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Thais Federici
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Juanmarco Gutierrez
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Kimberly B Hoang
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Kecheng Lei
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.
| | - Nicholas M Boulis
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
7
|
Perrin J, Capitao M, Allard M, Chouin N, Gouard S, Marionneau-Lambot S, Louvet C, Donnadieu E, Bruchertseifer F, Morgenstern A, Chérel M, Gaschet J, Guilloux Y. Targeted alpha particle therapy remodels the tumor microenvironment and improves efficacy of immunotherapy. Int J Radiat Oncol Biol Phys 2021; 112:790-801. [PMID: 34699930 DOI: 10.1016/j.ijrobp.2021.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/01/2021] [Accepted: 10/15/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE Tumor microenvironment (TME) can severely impair immunotherapy efficacy by repressing the immune system. In a Multiple Myeloma (MM) murine model, we investigated the impact of Targeted alpha-particle therapy (TAT) on the immune TME. TAT was combined with an adoptive cell transfer of CD8 T-cells (ACT), and the mechanisms of action of this combination were assessed at the tumor site. METHODS This combination treatment was conducted in a syngeneic MM murine model grafted subcutaneously. TAT was delivered by i.v. injection of a bismuth-213 radiolabelled anti-CD138 antibody. To strengthen anti-tumor immune response, TAT was combined with an ACT of tumor specific CD8+ OT-1 T-cells. The tumors were collected and the immune TME analyzed by flow cytometry, immunohistochemistry and ex vivo T-cell motility assay on tumor slices. The chemokine and cytokine productions were also assessed by RT-qPCR. RESULTS Tumor specific CD8+ OT-1 T-cells infiltrated the tumors after ACT. However only treatment with TAT resulted in regulatory CD4 T-cell drop and transient increased production of IL-2, CCL-5 and IFNγ within the tumor. Moreover, OT-1 T-cell recruitment and motility were increased on tumor slices from TAT-treated mice as observed by ex vivo time lapse, contributing to a more homogeneous distribution of OT-1 T-cells in the tumor. Subsequently, the tumor cells increased PD-L1 expression, anti-tumor cytokine production decreased and OT-1 T-cells overexpressed exhaustion markers, suggesting an exhaustion of the immune response. CONCLUSION Combining TAT and ACT seems to transiently remodel the cold TME, improving ACT efficiency. The immune response then leads to the establishment of other tumor cell resistance mechanisms.
Collapse
Affiliation(s)
- Justine Perrin
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| | - Marisa Capitao
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| | - Mathilde Allard
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| | - Nicolas Chouin
- CRCINA, INSERM, CNRS, ONIRIS, Université de Nantes, Université d'Angers, Nantes, France
| | - Sebastien Gouard
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| | | | - Cédric Louvet
- Centre de Recherche en Transplantation et Immunologie, INSERM, Université de Nantes, Nantes, France
| | - Emmanuel Donnadieu
- INSERM, U1016, Institut Cochin, CNRS, UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | | | - Michel Chérel
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France; Nuclear Medicine Unit, ICO Cancer Center Gauducheau, Saint Herblain, France
| | - Joëlle Gaschet
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| | - Yannick Guilloux
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France.
| |
Collapse
|
8
|
Corroyer-Dulmont A, Jaudet C, Frelin AM, Fantin J, Weyts K, Vallis KA, Falzone N, Sibson NR, Chérel M, Kraeber-Bodéré F, Batalla A, Bardet S, Bernaudin M, Valable S. Radioimmunotherapy for Brain Metastases: The Potential for Inflammation as a Target of Choice. Front Oncol 2021; 11:714514. [PMID: 34504791 PMCID: PMC8423367 DOI: 10.3389/fonc.2021.714514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/03/2021] [Indexed: 11/18/2022] Open
Abstract
Brain metastases (BM) are frequently detected during the follow-up of patients with malignant tumors, particularly in those with advanced disease. Despite a major progress in systemic anti-cancer treatments, the average overall survival of these patients remains limited (6 months from diagnosis). Also, cognitive decline is regularly reported especially in patients treated with whole brain external beam radiotherapy (WBRT), due to the absorbed radiation dose in healthy brain tissue. New targeted therapies, for an earlier and/or more specific treatment of the tumor and its microenvironment, are needed. Radioimmunotherapy (RIT), a combination of a radionuclide to a specific antibody, appears to be a promising tool. Inflammation, which is involved in multiple steps, including the early phase, of BM development is attractive as a relevant target for RIT. This review will focus on the (1) early biomarkers of inflammation in BM pertinent for RIT, (2) state of the art studies on RIT for BM, and (3) the importance of dosimetry to RIT in BM. These two last points will be addressed in comparison to the conventional EBRT treatment, particularly with respect to the balance between tumor control and healthy tissue complications. Finally, because new diagnostic imaging techniques show a potential for the detection of BM at an early stage of the disease, we focus particularly on this therapeutic window.
Collapse
Affiliation(s)
- Aurélien Corroyer-Dulmont
- Medical Physics Department, CLCC François Baclesse, Caen, France
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, Caen, France
| | - Cyril Jaudet
- Medical Physics Department, CLCC François Baclesse, Caen, France
| | - Anne-Marie Frelin
- Grand accélérateur National d’Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Caen, France
| | - Jade Fantin
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, Caen, France
| | - Kathleen Weyts
- Nuclear Medicine Department, CLCC François Baclesse, Caen, France
| | - Katherine A. Vallis
- Medical Research Council, Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Nicola R. Sibson
- Medical Research Council, Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Michel Chérel
- Team 13-Nuclear Oncology, CRCINA, INSERM, CNRS, Nantes University, Nantes, France
| | - Françoise Kraeber-Bodéré
- Team 13-Nuclear Oncology, CRCINA, INSERM, CNRS, Nantes University, Nantes, France
- Nuclear Medicine Department, University Hospital, Nantes, France
| | - Alain Batalla
- Medical Physics Department, CLCC François Baclesse, Caen, France
| | - Stéphane Bardet
- Nuclear Medicine Department, CLCC François Baclesse, Caen, France
| | - Myriam Bernaudin
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, Caen, France
| | - Samuel Valable
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, Caen, France
| |
Collapse
|
9
|
Kanikarla Marie P, Fowlkes NW, Afshar-Kharghan V, Martch SL, Sorokin A, Shen JP, Morris VK, Dasari A, You N, Sood AK, Overman MJ, Kopetz S, Menter DG. The Provocative Roles of Platelets in Liver Disease and Cancer. Front Oncol 2021; 11:643815. [PMID: 34367949 PMCID: PMC8335590 DOI: 10.3389/fonc.2021.643815] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Both platelets and the liver play important roles in the processes of coagulation and innate immunity. Platelet responses at the site of an injury are rapid; their immediate activation and structural changes minimize the loss of blood. The majority of coagulation proteins are produced by the liver—a multifunctional organ that also plays a critical role in many processes: removal of toxins and metabolism of fats, proteins, carbohydrates, and drugs. Chronic inflammation, trauma, or other causes of irreversible damage to the liver can dysregulate these pathways leading to organ and systemic abnormalities. In some cases, platelet-to-lymphocyte ratios can also be a predictor of disease outcome. An example is cirrhosis, which increases the risk of bleeding and prothrombotic events followed by activation of platelets. Along with a triggered coagulation cascade, the platelets increase the risk of pro-thrombotic events and contribute to cancer progression and metastasis. This progression and the resulting tissue destruction is physiologically comparable to a persistent, chronic wound. Various cancers, including colorectal cancer, have been associated with increased thrombocytosis, platelet activation, platelet-storage granule release, and thrombosis; anti-platelet agents can reduce cancer risk and progression. However, in cancer patients with pre-existing liver disease who are undergoing chemotherapy, the risk of thrombotic events becomes challenging to manage due to their inherent risk for bleeding. Chemotherapy, also known to induce damage to the liver, further increases the frequency of thrombotic events. Depending on individual patient risks, these factors acting together can disrupt the fragile balance between pro- and anti-coagulant processes, heightening liver thrombogenesis, and possibly providing a niche for circulating tumor cells to adhere to—thus promoting both liver metastasis and cancer-cell survival following treatment (that is, with minimal residual disease in the liver).
Collapse
Affiliation(s)
- Preeti Kanikarla Marie
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Natalie W Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vahid Afshar-Kharghan
- Division of Internal Medicine, Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stephanie L Martch
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alexey Sorokin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Van K Morris
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Arvind Dasari
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nancy You
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - David George Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
10
|
Hatcher-Lamarre JL, Sanders VA, Rahman M, Cutler CS, Francesconi LC. Alpha emitting nuclides for targeted therapy. Nucl Med Biol 2021; 92:228-240. [PMID: 33558017 PMCID: PMC8363053 DOI: 10.1016/j.nucmedbio.2020.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Targeted alpha therapy (TAT) is an area of research with rapidly increasing importance as the emitted alpha particle has a significant effect on inducing cytotoxic effects on tumor cells while mitigating dose to normal tissues. Two significant isotopes of interest within the area of TAT are thorium-227 and actinium-225 due to their nuclear characteristics. Both isotopes have physical half-lives suitable for coordination with larger biomolecules, and additionally actinium-225 has potential to serve as an in vivo generator. In this review, the authors will discuss the production, purification, labeling reactions, and biological studies of actinium-225 and thorium-227 complexes and clinical studies.
Collapse
Affiliation(s)
| | - Vanessa A Sanders
- Collider Accelerator Department, Brookhaven National Laboratory, USA
| | - Mohammed Rahman
- Chemistry Department, Hunter College of the City University of New York, USA
| | - Cathy S Cutler
- Collider Accelerator Department, Brookhaven National Laboratory, USA
| | - Lynn C Francesconi
- Chemistry Department, Hunter College of the City University of New York, USA; Chemistry Department, Graduate Center of the City University of New York, USA.
| |
Collapse
|
11
|
Lakes AL, An DD, Gauny SS, Ansoborlo C, Liang BH, Rees JA, McKnight KD, Karsunky H, Abergel RJ. Evaluating 225Ac and 177Lu Radioimmunoconjugates against Antibody-Drug Conjugates for Small-Cell Lung Cancer. Mol Pharm 2020; 17:4270-4279. [PMID: 33044830 DOI: 10.1021/acs.molpharmaceut.0c00703] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Interest in the use of 225Ac for targeted alpha therapies has increased dramatically over the past few years, resulting in a multitude of new isotope production and translational research efforts. However, 225Ac radioimmunoconjugate (RIC) research is still in its infancy, with most prior experience in hematologic malignancies and only one reported preclinical solid tumor study using 225Ac RICs. In an effort to compare 225Ac RICs to other current antibody conjugates, a variety of RICs are tested against intractable small-cell lung cancer (SCLC). We directly compare, in vitro and in vivo, two promising candidates of each α or β- category, 225Ac and 177Lu, versus pyrrolobenzodiazepine (PBD) nonradioactive benchmarks. The monoclonal antibody constructs are targeted to either delta like 3 protein (DLL3), a recently discovered SCLC target, or CD46 as a positive control. An immunocompromised maximum tolerated dose assay is performed on NOD SCID mice, along with tumor efficacy proof-of-concept studies in vivo. We overview the conjugation techniques required to create serum-stable RICs and characterize and compare in vitro cell killing with RICs conjugated to nonspecific antibodies (huIgG1) with either native or site-specific thiol loci against tumor antigen DLL3-expressing and nonexpressing cell lines. Using patient-derived xenografts of SCLC onto NOD SCID mice, solid tumor growth was controlled throughout 3 weeks before growth appeared, in comparison to PBD conjugate controls. NOD SCID mice showed lengthened survival using 225Ac compared to 177Lu RICs, and PBD dimers showed full tumor suppression with nine out of ten mice. The exploration of RICs on a variety of antibody-antigen systems is necessary to direct efforts in cancer research toward promising candidates. However, the anti-DLL3-RIC system with 225Ac and 177Lu appears to be not as effective as the anti-DLL3-PBD counterpart in SCLC therapy with matched antibodies and portrays the challenges in both SCLC therapy as well as the specialized utility of RICs in cancer treatment.
Collapse
Affiliation(s)
- Andrew L Lakes
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Dahlia D An
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stacey S Gauny
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Camille Ansoborlo
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Benjamin H Liang
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Julian A Rees
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - Holger Karsunky
- AbbVie-Stemcentrx, South San Francisco, California 94080, United States
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Nuclear Engineering, University of California Berkeley, Berkeley, California 94709, United States
| |
Collapse
|
12
|
Urbanska AM, Khanin R, Alidori S, Wong S, Mello BP, Almeida BA, Chen F, Ma K, Turker MZ, Korontsvit T, Scheinberg DA, Zanzonico PB, Wiesner U, Bradbury MS, Quinn TP, McDevitt MR. A Genomic Profile of Local Immunity in the Melanoma Microenvironment Following Treatment with α Particle-Emitting Ultrasmall Silica Nanoparticles. Cancer Biother Radiopharm 2020; 35:459-473. [PMID: 32013538 PMCID: PMC7462037 DOI: 10.1089/cbr.2019.3150] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
An α particle-emitting nanodrug that is a potent and specific antitumor agent and also prompts significant remodeling of local immunity in the tumor microenvironment (TME) has been developed and may impact the treatment of melanoma. Biocompatible ultrasmall fluorescent core-shell silica nanoparticles (C' dots, diameter ∼6.0 nm) have been engineered to target the melanocortin-1 receptor expressed on melanoma through α melanocyte-stimulating hormone peptides attached to the C' dot surface. Actinium-225 is also bound to the nanoparticle to deliver a densely ionizing dose of high-energy α particles to cancer. Nanodrug pharmacokinetic properties are optimal for targeted radionuclide therapy as they exhibit rapid blood clearance, tumor-specific accumulation, minimal off-target localization, and renal elimination. Potent and specific tumor control, arising from the α particles, was observed in a syngeneic animal model of melanoma. Surprisingly, the C' dot component of this drug initiates a favorable pseudopathogenic response in the TME generating distinct changes in the fractions of naive and activated CD8 T cells, Th1 and regulatory T cells, immature dendritic cells, monocytes, MΦ and M1 macrophages, and activated natural killer cells. Concomitant upregulation of the inflammatory cytokine genome and adaptive immune pathways each describes a macrophage-initiated pseudoresponse to a viral-shaped pathogen. This study suggests that therapeutic α-particle irradiation of melanoma using ultrasmall functionalized core-shell silica nanoparticles potently kills tumor cells, and at the same time initiates a distinct immune response in the TME.
Collapse
MESH Headings
- Actinium/administration & dosage
- Actinium/pharmacokinetics
- Alpha Particles/therapeutic use
- Animals
- Cell Line, Tumor/transplantation
- Computational Biology
- Disease Models, Animal
- Dose-Response Relationship, Radiation
- Drug Carriers/chemistry
- Female
- Gene Expression Regulation, Neoplastic/immunology
- Gene Expression Regulation, Neoplastic/radiation effects
- Humans
- Immunity, Cellular/genetics
- Immunity, Cellular/radiation effects
- Male
- Maximum Tolerated Dose
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/radiotherapy
- Mice
- Molecular Targeted Therapy/methods
- Nanoparticles/chemistry
- RNA-Seq
- Radiopharmaceuticals/administration & dosage
- Radiopharmaceuticals/pharmacokinetics
- Receptor, Melanocortin, Type 1/antagonists & inhibitors
- Receptor, Melanocortin, Type 1/metabolism
- Silicon Dioxide/chemistry
- Skin Neoplasms/genetics
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- Skin Neoplasms/radiotherapy
- Tissue Distribution
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
- Tumor Microenvironment/radiation effects
Collapse
Affiliation(s)
- Aleksandra M. Urbanska
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Raya Khanin
- Bioinformatics Core Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Simone Alidori
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sam Wong
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Chemistry, Hunter College, New York, New York, USA
| | - Barbara P. Mello
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Bryan Aristega Almeida
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Feng Chen
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kai Ma
- Department of Materials Science & Engineering, Cornell University, Ithaca, New York, USA
| | - Melik Z. Turker
- Department of Materials Science & Engineering, Cornell University, Ithaca, New York, USA
| | - Tatyana Korontsvit
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Pharmacology, Weill Cornell Medicine College, New York, New York, USA
| | - Pat B. Zanzonico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ulrich Wiesner
- Department of Materials Science & Engineering, Cornell University, Ithaca, New York, USA
| | - Michelle S. Bradbury
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Thomas P. Quinn
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
- Harry S. Truman Veterans' Hospital, Columbia, Missouri, USA
| | - Michael R. McDevitt
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
13
|
Corroyer-Dulmont A, Valable S, Falzone N, Frelin-Labalme AM, Tietz O, Toutain J, Soto MS, Divoux D, Chazalviel L, Pérès EA, Sibson NR, Vallis KA, Bernaudin M. VCAM-1 targeted alpha-particle therapy for early brain metastases. Neuro Oncol 2020; 22:357-368. [PMID: 31538194 PMCID: PMC7162423 DOI: 10.1093/neuonc/noz169] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Brain metastases (BM) develop frequently in patients with breast cancer. Despite the use of external beam radiotherapy (EBRT), the average overall survival is short (6 months from diagnosis). The therapeutic challenge is to deliver molecularly targeted therapy at an early stage when relatively few metastatic tumor cells have invaded the brain. Vascular cell adhesion molecule 1 (VCAM-1), overexpressed by nearby endothelial cells during the early stages of BM development, is a promising target. The aim of this study was to investigate the therapeutic value of targeted alpha-particle radiotherapy, combining lead-212 (212Pb) with an anti-VCAM-1 antibody (212Pb-αVCAM-1). METHODS Human breast carcinoma cells that metastasize to the brain, MDA-231-Br-GFP, were injected into the left cardiac ventricle of nude mice. Twenty-one days after injection, 212Pb-αVCAM-1 uptake in early BM was determined in a biodistribution study and systemic/brain toxicity was evaluated. Therapeutic efficacy was assessed using MR imaging and histology. Overall survival after 212Pb-αVCAM-1 treatment was compared with that observed after standard EBRT. RESULTS 212Pb-αVCAM-1 was taken up into early BM with a tumor/healthy brain dose deposition ratio of 6 (5.52e108 and 0.92e108) disintegrations per gram of BM and healthy tissue, respectively. MRI analyses showed a statistically significant reduction in metastatic burden after 212Pb-αVCAM-1 treatment compared with EBRT (P < 0.001), translating to an increase in overall survival of 29% at 40 days post prescription (P < 0.01). No major toxicity was observed. CONCLUSIONS The present investigation demonstrates that 212Pb-αVCAM-1 specifically accumulates at sites of early BM causing tumor growth inhibition.
Collapse
Affiliation(s)
- Aurélien Corroyer-Dulmont
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France
- Cancer Research UK and Medical Research Council, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Samuel Valable
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France
| | | | | | - Ole Tietz
- Cancer Research UK and Medical Research Council, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Jérôme Toutain
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France
| | - Manuel Sarmiento Soto
- Cancer Research UK and Medical Research Council, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Didier Divoux
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France
| | - Laurent Chazalviel
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France
| | - Elodie A Pérès
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France
| | - Nicola R Sibson
- Cancer Research UK and Medical Research Council, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Katherine A Vallis
- Cancer Research UK and Medical Research Council, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Myriam Bernaudin
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France
| |
Collapse
|
14
|
Alpha-Emitters and Targeted Alpha Therapy in Oncology: from Basic Science to Clinical Investigations. Target Oncol 2019; 13:189-203. [PMID: 29423595 DOI: 10.1007/s11523-018-0550-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alpha-emitters are radionuclides that decay through the emission of high linear energy transfer α-particles and possess favorable pharmacologic profiles for cancer treatment. When coupled with monoclonal antibodies, peptides, small molecules, or nanoparticles, the excellent cytotoxic capability of α-particle emissions has generated a strong interest in exploring targeted α-therapy in the pre-clinical setting and more recently in clinical trials in oncology. Multiple obstacles have been overcome by researchers and clinicians to accelerate the development of targeted α-therapies, especially with the recent improvement in isotope production and purification, but also with the development of innovative strategies for optimized targeting. Numerous studies have demonstrated the in vitro and in vivo efficacy of the targeted α-therapy. Radium-223 (223Ra) dichloride (Xofigo®) is the first α-emitter to have received FDA approval for the treatment of prostate cancer with metastatic bone lesions. There is a significant increase in the number of clinical trials in oncology using several radionuclides such as Actinium-225 (225Ac), Bismuth-213 (213Bi), Lead-212 (212Pb), Astatine (211At) or Radium-223 (223Ra) assessing their safety and preliminary activity. This review will cover their therapeutic application as well as summarize the investigations that provide the foundation for further clinical development.
Collapse
|
15
|
Puttemans J, Lahoutte T, D'Huyvetter M, Devoogdt N. Beyond the Barrier: Targeted Radionuclide Therapy in Brain Tumors and Metastases. Pharmaceutics 2019; 11:pharmaceutics11080376. [PMID: 31374991 PMCID: PMC6723032 DOI: 10.3390/pharmaceutics11080376] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 01/10/2023] Open
Abstract
Brain tumors are notoriously difficult to treat. The blood-brain barrier provides a sanctuary site where residual and metastatic cancer cells can evade most therapeutic modalities. The delicate nature of the brain further complicates the decision of eliminating as much tumorous tissue as possible while protecting healthy tissue. Despite recent advances in immunotherapy, radiotherapy and systemic treatments, prognosis of newly diagnosed patients remains dismal, and recurrence is still a universal problem. Several strategies are now under preclinical and clinical investigation to optimize delivery and maximize the cytotoxic potential of pharmaceuticals with regards to brain tumors. This review provides an overview of targeted radionuclide therapy approaches for the treatment of primary brain tumors and brain metastases, with an emphasis on biological targeting moieties that specifically target key biomarkers involved in cancer development.
Collapse
Affiliation(s)
- Janik Puttemans
- In Vivo Cellular and Molecular Imaging Lab, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Tony Lahoutte
- In Vivo Cellular and Molecular Imaging Lab, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
- Nuclear Medicine Department, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Matthias D'Huyvetter
- In Vivo Cellular and Molecular Imaging Lab, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Lab, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
16
|
Bailly C, Vidal A, Bonnemaire C, Kraeber-Bodéré F, Chérel M, Pallardy A, Rousseau C, Garcion E, Lacoeuille F, Hindré F, Valable S, Bernaudin M, Bodet-Milin C, Bourgeois M. Potential for Nuclear Medicine Therapy for Glioblastoma Treatment. Front Pharmacol 2019; 10:772. [PMID: 31354487 PMCID: PMC6637301 DOI: 10.3389/fphar.2019.00772] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma is the most common malignant adult brain tumor and has a very poor patient prognosis. The mean survival for highly proliferative glioblastoma is only 10 to 14 months despite an aggressive current therapeutic approach known as Stupp's protocol, which consists of debulking surgery followed by radiotherapy and chemotherapy. Despite several clinical trials using anti-angiogenic targeted therapies, glioblastoma medical care remains without major progress in the last decade. Recent progress in nuclear medicine, has been mainly driven by advances in biotechnologies such as radioimmunotherapy, radiopeptide therapy, and radionanoparticles, and these bring a new promising arsenal for glioblastoma therapy. For therapeutic purposes, nuclear medicine practitioners classically use β- particle emitters like 131I, 90Y, 186/188Re, or 177Lu. In the glioblastoma field, these radioisotopes are coupled with nanoparticles, monoclonal antibodies, or peptides. These radiopharmaceutical compounds have resulted in a stabilization and/or improvement of the neurological status with only transient side effects. In nuclear medicine, the glioblastoma-localized and targeted internal radiotherapy proof-of-concept stage has been successfully demonstrated using β- emitting isotopes. Similarly, α particle emitters like 213Bi, 211At, or 225Ac appear to be an innovative and interesting alternative. Indeed, α particles deliver a high proportion of their energy inside or at close proximity to the targeted cells (within a few micrometers from the emission point versus several millimeters for β- particles). This physical property is based on particle-matter interaction differences and results in α particles being highly efficient in killing tumor cells with minimal irradiation of healthy tissues and permits targeting of isolated tumor cells. The first clinical trials confirmed this idea and showed good therapeutic efficacy and less side effects, thus opening a new and promising era for glioblastoma medical care using α therapy. The objective of this literature review is focused on the developing field of nuclear medicine and aims to describe the various parameters such as targets, vectors, isotopes, or injection route (systemic and local) in relation to the clinical and preclinical results in glioblastoma pathology.
Collapse
Affiliation(s)
- Clément Bailly
- Nuclear Medicine, Centre Hospitalier Universitaire (CHU) de Nantes, Nantes, France.,CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | | | | | - Françoise Kraeber-Bodéré
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Nuclear Medecine, Centre Hospitalier Universitaire (CHU) de Nantes, Nantes, France
| | - Michel Chérel
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Institut de Cancérologie de l'Ouest (ICO), Angers, France
| | - Amandine Pallardy
- Nuclear Medicine, Centre Hospitalier Universitaire (CHU) de Nantes, Nantes, France
| | | | - Emmanuel Garcion
- Team 17-Design and Application of Innovative Local Treatments in Glioblastoma, INSERM U1232 Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Nantes, France
| | - Franck Lacoeuille
- Team 17-Design and Application of Innovative Local Treatments in Glioblastoma, INSERM U1232 Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Nantes, France.,Nuclear Medicine, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - François Hindré
- Team 17-Design and Application of Innovative Local Treatments in Glioblastoma, INSERM U1232 Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Nantes, France
| | | | | | - Caroline Bodet-Milin
- Nuclear Medicine, Centre Hospitalier Universitaire (CHU) de Nantes, Nantes, France.,CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Mickaël Bourgeois
- Nuclear Medicine, Centre Hospitalier Universitaire (CHU) de Nantes, Nantes, France.,CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Arronax, Saint-Herblain, France
| |
Collapse
|
17
|
Poty S, Carter LM, Mandleywala K, Membreno R, Abdel-Atti D, Ragupathi A, Scholz WW, Zeglis BM, Lewis JS. Leveraging Bioorthogonal Click Chemistry to Improve 225Ac-Radioimmunotherapy of Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2019; 25:868-880. [PMID: 30352909 PMCID: PMC6343144 DOI: 10.1158/1078-0432.ccr-18-1650] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/28/2018] [Accepted: 10/18/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE Interest in targeted alpha-therapy has surged due to α-particles' high cytotoxicity. However, the widespread clinical use of this approach could be limited by on-/off-target toxicities. Here, we investigated the inverse electron-demand Diels-Alder ligation between an 225Ac-labeled tetrazine radioligand and a trans-cyclooctene-bearing anti-CA19.9 antibody (5B1) for pretargeted α-radioimmunotherapy (PRIT) of pancreatic ductal adenocarcinoma (PDAC). This alternative strategy is expected to reduce nonspecific toxicities as compared with conventional radioimmunotherapy (RIT).Experimental Design: A side-by-side comparison of 225Ac-PRIT and conventional RIT using a directly 225Ac-radiolabeled immunoconjugate evaluates the therapeutic efficacy and toxicity of both methodologies in PDAC murine models. RESULTS A comparative biodistribution study of the PRIT versus RIT methodology underscored the improved pharmacokinetic properties (e.g., prolonged tumor uptake and increased tumor-to-tissue ratios) of the PRIT approach. Cerenkov imaging coupled to PRIT confirmed the in vivo biodistribution of 225Ac-radioimmunoconjugate but-importantly-further allowed for the ex vivo monitoring of 225Ac's radioactive daughters' redistribution. Human dosimetry was extrapolated from the mouse biodistribution and confirms the clinical translatability of 225Ac-PRIT. Furthermore, longitudinal therapy studies performed in subcutaneous and orthotopic PDAC models confirm the therapeutic efficacy of 225Ac-PRIT with the observation of prolonged median survival compared with control cohorts. Finally, a comparison with conventional RIT highlighted the potential of 225Ac-PRIT to reduce hematotoxicity while maintaining therapeutic effectiveness. CONCLUSIONS The ability of 225Ac-PRIT to deliver a radiotherapeutic payload while simultaneously reducing the off-target toxicity normally associated with RIT suggests that the clinical translation of this approach will have a profound impact on PDAC therapy.
Collapse
Affiliation(s)
- Sophie Poty
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Lukas M Carter
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Komal Mandleywala
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rosemery Membreno
- Department of Chemistry, Hunter College of the City University of New York, New York, New York
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, New York
| | - Dalya Abdel-Atti
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ashwin Ragupathi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Brian M Zeglis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.
- Department of Chemistry, Hunter College of the City University of New York, New York, New York
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, New York
- Departments of Radiology and Department of Pharmacology, Weill Cornell Medical College, New York, New York
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.
- Departments of Radiology and Department of Pharmacology, Weill Cornell Medical College, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
18
|
Sattiraju A, Mintz A. Pericytes in Glioblastomas: Multifaceted Role Within Tumor Microenvironments and Potential for Therapeutic Interventions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:65-91. [PMID: 31147872 DOI: 10.1007/978-3-030-16908-4_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GBM) is an aggressive and lethal disease that often results in a poor prognosis. Unlike most solid tumors, GBM is characterized by diffuse infiltrating margins, extensive angiogenesis, hypoxia, necrosis, and clonal heterogeneity. Recurrent disease is an unavoidable consequence for many patients as standard treatment options such as surgery, radiotherapy, and chemotherapy have proven to be insufficient in causing long-term survival benefits. Systemic delivery of promising drugs is hindered due to the blood-brain barrier and non-uniform perfusion within GBM tissue. In recent years, many investigations have highlighted the role of GBM stem cells (GSCs) and their microenvironment in the initiation and maintenance of tumor tissue. Preclinical and early clinical studies to target GSCs and microenvironmental components are currently underway. Of these strategies, immunotherapy using checkpoint inhibitors and redirected cytotoxic T cells have shown promising results in early investigations. But, GBM microenvironment is heterogenous and recent investigations have shown cell populations within this microenvironment to be plastic. These studies underline the importance of identifying the role of and targeting multiple cell populations within the GBM microenvironment which could have a synergistic effect when combined with novel therapies. Pericytes are multipotent perivascular cells that play a vital role within the GBM microenvironment by assisting in tumor initiation, survival, and progression. Due to their role in regulating the blood-brain barrier permeability, promoting angiogenesis, tumor growth, clearing extracellular matrix for infiltrating GBM cells and in helping GBM cells evade immune surveillance, pericytes could be ideal therapeutic targets for stymieing or exploiting their role within the GBM microenvironment. This chapter will introduce hallmarks of GBM and elaborate on the contributions of pericytes to these hallmarks by examining recent findings. In addition, the chapter also highlights the therapeutic value of targeting pericytes, while discussing conventional and novel GBM therapies and obstacles to their efficacy.
Collapse
Affiliation(s)
- Anirudh Sattiraju
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Akiva Mintz
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
19
|
Kolinko Y, Kralickova M, Tonar Z. The impact of pericytes on the brain and approaches for their morphological analysis. J Chem Neuroanat 2018; 91:35-45. [DOI: 10.1016/j.jchemneu.2018.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/10/2018] [Accepted: 04/15/2018] [Indexed: 12/15/2022]
|
20
|
Poty S, Francesconi LC, McDevitt MR, Morris MJ, Lewis JS. α-Emitters for Radiotherapy: From Basic Radiochemistry to Clinical Studies-Part 1. J Nucl Med 2018; 59:878-884. [PMID: 29545378 DOI: 10.2967/jnumed.116.186338] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/03/2018] [Indexed: 12/11/2022] Open
Abstract
With a short particle range and high linear energy transfer, α-emitting radionuclides demonstrate high cell-killing efficiencies. Even with the existence of numerous radionuclides that decay by α-particle emission, only a few of these can reasonably be exploited for therapeutic purposes. Factors including radioisotope availability and physical characteristics (e.g., half-life) can limit their widespread dissemination. The first part of this review will explore the diversity, basic radiochemistry, restrictions, and hurdles of α-emitters.
Collapse
Affiliation(s)
- Sophie Poty
- Department of Radiology and Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lynn C Francesconi
- Department of Chemistry, Hunter College, New York, New York.,Graduate Center of City University of New York, New York, New York
| | - Michael R McDevitt
- Department of Radiology and Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Michael J Morris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Jason S Lewis
- Department of Radiology and Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York .,Departments of Radiology and Pharmacology, Weill Cornell Medical College, New York, New York
| |
Collapse
|
21
|
Poty S, Francesconi LC, McDevitt MR, Morris MJ, Lewis JS. α-Emitters for Radiotherapy: From Basic Radiochemistry to Clinical Studies-Part 2. J Nucl Med 2018; 59:1020-1027. [PMID: 29496984 DOI: 10.2967/jnumed.117.204651] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/03/2018] [Indexed: 12/30/2022] Open
Abstract
The use of radioactive sources to deliver cytotoxic ionizing radiation to disease sites dates back to the early 20th century, with the discovery of radium and its physiologic effects. α-emitters are of particular interest in the field of clinical oncology for radiotherapy applications. The first part of this review explored the basic radiochemistry, high cell-killing potency, and availability of α-emitting radionuclides, together with hurdles such as radiolabeling methods and daughter redistribution. The second part of this review will give an overview of the most promising and current uses of α-emitters in preclinical and clinical studies.
Collapse
Affiliation(s)
- Sophie Poty
- Department of Radiology and Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lynn C Francesconi
- Department of Chemistry, Hunter College, New York, New York.,Graduate Center of City University of New York, New York, New York
| | - Michael R McDevitt
- Department of Radiology and Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Michael J Morris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Jason S Lewis
- Department of Radiology and Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York .,Departments of Radiology and Pharmacology, Weill Cornell Medical College, New York, New York
| |
Collapse
|