1
|
Shen L, Chen M, Su Y, Bi Y, Shu G, Chen W, Lu C, Zhao Z, Lv L, Zou J, Chen X, Ji J. NIR-II Imaging for Tracking the Spatiotemporal Immune Microenvironment in Atherosclerotic Plaques. ACS NANO 2024; 18:34171-34185. [PMID: 39630481 DOI: 10.1021/acsnano.4c10739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The inflammatory immune microenvironment is responsible for atherosclerotic plaque erosion and rupture. Near-infrared-II (NIR-II) fluorescence imaging has the potential to continuously monitor the spatiotemporal changes in the plaque immune microenvironment. Herein, we constructed three different NIR-II probes based on benzo[1,2-c;4,5-c']bis[1,2,5]thiadiazole-4,7-bis(9,9-dioctyl-9H-fluoren-2-yl)thiophene (denoted as BBT-2FT): VHPK/BBT-2FT NPs, where VHPK is a specific peptide targeting vascular cell adhesion molecule-1; iNOS/BBT-2FT NPs for modulating the polarization of M1 macrophages by inducible NO synthase (iNOS) antibodies; and Arg-1/BBT-2FT for counterbalancing the inflammatory responses of M1 macrophages. These tracers enable precise tracking of atherosclerotic plaques and M1 and M2 macrophages through NIR-II imaging. VHPK/BBT-2FT NPs can accurately trace atherosclerotic plaques at various stages. Arg-1/BBT-2FT NPs precisely located M2 macrophages in the early plaque microenvironment with upregulation of peroxisome proliferator-activated receptor γ (PPAR-γ), signal transducer and activator of transcription (STAT) 6, and ATP-binding cassette transporter A1 (ABCA1), indicating that M2 macrophage polarization is crucial for early plaque lipid clearance. Meanwhile, iNOS/BBT-2FT NPs accurately tracked M1 macrophages in the advanced plaque microenvironment. The results showed that M1 macrophage polarization induces the formation of an inflammatory microenvironment through anaerobic glycolytic metabolism and pyroptosis in the advanced hypoxic plaque microenvironment, as indicated by the upregulation of hypoxia-inducible factor 1 alpha (HIF-1α), STAT1, NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3), pyruvate dehydrogenase kinase 1 (PDK1), and glucose transporter 1 (GLUT-1). Combining immunological approaches with NIR-II imaging has revealed that hypoxia-induced metabolic reprogramming of macrophages is a key factor in dynamic changes in the immune microenvironment of atherosclerotic plaques. Furthermore, our strategy shows the potential for real-time diagnosis and clinical prevention of unstable plaque rupture in atherosclerosis.
Collapse
Affiliation(s)
- Lin Shen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui 323000, China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui 323000, China
| | - Yanping Su
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui 323000, China
| | - Yanran Bi
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui 323000, China
| | - Gaofeng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui 323000, China
| | - Weiqian Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui 323000, China
| | - Chenying Lu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui 323000, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui 323000, China
| | - Lingchun Lv
- Department of Cardiovascular Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Jianhua Zou
- Departments of Diagnostic Radiology Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios 138667, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios 138667, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Lower Kent Ridge Road, 4 Science Drive 2, Singapore 117544, Singapore
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui 323000, China
| |
Collapse
|
2
|
Yang Y, Pan J, Wang A, Ma Y, Liu Y, Jiang W. A novel method for the diagnosis of atherosclerosis based on nanotechnology. J Mater Chem B 2024; 12:9144-9154. [PMID: 39177217 DOI: 10.1039/d4tb00900b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Cardiovascular disease (CVD) is a global health concern, presenting significant risks to human health. Atherosclerosis is among the most prevalent CVD, impacting the medium and large arteries in the kidneys, brain, heart, and other vital organs, as well as the lower limbs. As the disease progresses, arterial obstruction can result in heart attacks and strokes. Therefore, patients with atherosclerosis should receive accurate diagnosis and timely therapeutic intervention. With the advancements in nanomedicine, researchers have proposed new research strategies and methods for atherosclerosis imaging. This paper summarizes some current research findings on the use of nanomaterials in diagnosing atherosclerosis and offers insights for optimizing the imaging applications of nanomaterials in the future.
Collapse
Affiliation(s)
- Ying Yang
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Department of pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
| | - Jiangpeng Pan
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Department of pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
| | - Aifeng Wang
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Department of pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
| | - Yongcheng Ma
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Department of pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
| | - Ying Liu
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Department of pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
| | - Wei Jiang
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Department of pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
| |
Collapse
|
3
|
Shen L, Bi Y, Yu J, Zhong Y, Chen W, Zhao Z, Ding J, Shu G, Chen M, Lu C, Ji J. The biological applications of near-infrared optical nanomaterials in atherosclerosis. J Nanobiotechnology 2024; 22:478. [PMID: 39135099 PMCID: PMC11320980 DOI: 10.1186/s12951-024-02703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/05/2024] [Indexed: 08/15/2024] Open
Abstract
PURPOSE OF REVIEW Atherosclerosis, a highly pathogenic and lethal disease, is difficult to locate accurately via conventional imaging because of its scattered and deep lesions. However, second near-infrared (NIR-II) nanomaterials show great application potential in the tracing of atherosclerotic plaques due to their excellent penetration and angiographic capabilities. RECENT FINDINGS With the development of nanotechnology, among many nanomaterials available for the visual diagnosis and treatment of cardiovascular diseases, optical nanomaterials provide strong support for various biomedical applications because of their advantages, such as noninvasive, nondestructive and molecular component imaging. Among optical nanomaterials of different wavelengths, NIR-II-range (900 ~ 1700 nm) nanomaterials have been gradually applied in the visual diagnosis and treatment of atherosclerosis and other vascular diseases because of their deep biological tissue penetration and limited background interference. This review explored in detail the prospects and challenges of the biological imaging and clinical application of NIR-II nanomaterials in treating atherosclerosis.
Collapse
Affiliation(s)
- Lin Shen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Yanran Bi
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Junchao Yu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Yi Zhong
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Weiqian Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Jiayi Ding
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Gaofeng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Chenying Lu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China.
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China.
| |
Collapse
|
4
|
Rehman S, Nadeem A, Akram U, Sarwar A, Quraishi A, Siddiqui H, Malik MAJ, Nabi M, Ul Haq I, Cho A, Mazumdar I, Kim M, Chen K, Sepehri S, Wang R, Balar AB, Lakhani DA, Yedavalli VS. Molecular Mechanisms of Ischemic Stroke: A Review Integrating Clinical Imaging and Therapeutic Perspectives. Biomedicines 2024; 12:812. [PMID: 38672167 PMCID: PMC11048412 DOI: 10.3390/biomedicines12040812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Ischemic stroke poses a significant global health challenge, necessitating ongoing exploration of its pathophysiology and treatment strategies. This comprehensive review integrates various aspects of ischemic stroke research, emphasizing crucial mechanisms, therapeutic approaches, and the role of clinical imaging in disease management. It discusses the multifaceted role of Netrin-1, highlighting its potential in promoting neurovascular repair and mitigating post-stroke neurological decline. It also examines the impact of blood-brain barrier permeability on stroke outcomes and explores alternative therapeutic targets such as statins and sphingosine-1-phosphate signaling. Neurocardiology investigations underscore the contribution of cardiac factors to post-stroke mortality, emphasizing the importance of understanding the brain-heart axis for targeted interventions. Additionally, the review advocates for early reperfusion and neuroprotective agents to counter-time-dependent excitotoxicity and inflammation, aiming to preserve tissue viability. Advanced imaging techniques, including DWI, PI, and MR angiography, are discussed for their role in evaluating ischemic penumbra evolution and guiding therapeutic decisions. By integrating molecular insights with imaging modalities, this interdisciplinary approach enhances our understanding of ischemic stroke and offers promising avenues for future research and clinical interventions to improve patient outcomes.
Collapse
Affiliation(s)
- Sana Rehman
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Arsalan Nadeem
- Department of Medicine, Allama Iqbal Medical College, Lahore 54700, Pakistan;
| | - Umar Akram
- Department of Medicine, Allama Iqbal Medical College, Lahore 54700, Pakistan;
| | - Abeer Sarwar
- Department of Medicine, Fatima Memorial Hospital College of Medicine and Dentistry, Lahore 54000, Pakistan; (A.S.); (H.S.)
| | - Ammara Quraishi
- Department of Medicine, Dow University of Health Sciences, Karachi 74200, Pakistan;
| | - Hina Siddiqui
- Department of Medicine, Fatima Memorial Hospital College of Medicine and Dentistry, Lahore 54000, Pakistan; (A.S.); (H.S.)
| | | | - Mehreen Nabi
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Ihtisham Ul Haq
- Department of Medicine, Amna Inayat Medical College, Sheikhupura 54300, Pakistan;
| | - Andrew Cho
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Ishan Mazumdar
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Minsoo Kim
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Kevin Chen
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Sadra Sepehri
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Richard Wang
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Aneri B. Balar
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Dhairya A. Lakhani
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Vivek S. Yedavalli
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| |
Collapse
|
5
|
Bengel FM, Di Carli MF. The Evolution of Cardiac Nuclear Imaging. J Nucl Med 2023; 64:1S-2S. [PMID: 37918847 DOI: 10.2967/jnumed.123.266845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023] Open
Affiliation(s)
- Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany; and
| | - Marcelo F Di Carli
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Yu Q, Li J, Zhang X, Yang S, Zhou P, Xia J, Deng T, Yu C. Dual-Emission ZAISe/ZnS Quantum Dots for Multi-level Bio-Imaging: Foam Cells and Atherosclerotic Plaque Imaging. J Colloid Interface Sci 2022; 629:399-408. [DOI: 10.1016/j.jcis.2022.08.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/02/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022]
|
7
|
Noninvasive photoacoustic computed tomography/ultrasound imaging to identify high-risk atherosclerotic plaques. Eur J Nucl Med Mol Imaging 2022; 49:4601-4615. [DOI: 10.1007/s00259-022-05911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/07/2022] [Indexed: 11/04/2022]
|
8
|
Abstract
Major advances in biomedical imaging have occurred over the last 2 decades and now allow many physiological, cellular, and molecular processes to be imaged noninvasively in small animal models of cardiovascular disease. Many of these techniques can be also used in humans, providing pathophysiological context and helping to define the clinical relevance of the model. Ultrasound remains the most widely used approach, and dedicated high-frequency systems can obtain extremely detailed images in mice. Likewise, dedicated small animal tomographic systems have been developed for magnetic resonance, positron emission tomography, fluorescence imaging, and computed tomography in mice. In this article, we review the use of ultrasound and positron emission tomography in small animal models, as well as emerging contrast mechanisms in magnetic resonance such as diffusion tensor imaging, hyperpolarized magnetic resonance, chemical exchange saturation transfer imaging, magnetic resonance elastography and strain, arterial spin labeling, and molecular imaging.
Collapse
Affiliation(s)
- David E Sosnovik
- Cardiology Division, Cardiovascular Research Center (D.E.S.), Massachusetts General Hospital and Harvard Medical School, Boston.,A.A. Martinos Center for Biomedical Imaging (D.E.S.), Massachusetts General Hospital and Harvard Medical School, Boston.,Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Cambridge (D.E.S.)
| | - Marielle Scherrer-Crosbie
- Cardiology Division, Hospital of the University of Pennsylvania and Perelman School of Medicine, Philadelphia (M.S.-C)
| |
Collapse
|
9
|
Lauwerends LJ, Abbasi H, Bakker Schut TC, Van Driel PBAA, Hardillo JAU, Santos IP, Barroso EM, Koljenović S, Vahrmeijer AL, Baatenburg de Jong RJ, Puppels GJ, Keereweer S. The complementary value of intraoperative fluorescence imaging and Raman spectroscopy for cancer surgery: combining the incompatibles. Eur J Nucl Med Mol Imaging 2022; 49:2364-2376. [PMID: 35102436 PMCID: PMC9165240 DOI: 10.1007/s00259-022-05705-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/23/2022] [Indexed: 01/09/2023]
Abstract
A clear margin is an important prognostic factor for most solid tumours treated by surgery. Intraoperative fluorescence imaging using exogenous tumour-specific fluorescent agents has shown particular benefit in improving complete resection of tumour tissue. However, signal processing for fluorescence imaging is complex, and fluorescence signal intensity does not always perfectly correlate with tumour location. Raman spectroscopy has the capacity to accurately differentiate between malignant and healthy tissue based on their molecular composition. In Raman spectroscopy, specificity is uniquely high, but signal intensity is weak and Raman measurements are mainly performed in a point-wise manner on microscopic tissue volumes, making whole-field assessment temporally unfeasible. In this review, we describe the state-of-the-art of both optical techniques, paying special attention to the combined intraoperative application of fluorescence imaging and Raman spectroscopy in current clinical research. We demonstrate how these techniques are complementary and address the technical challenges that have traditionally led them to be considered mutually exclusive for clinical implementation. Finally, we present a novel strategy that exploits the optimal characteristics of both modalities to facilitate resection with clear surgical margins.
Collapse
Affiliation(s)
- L J Lauwerends
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - H Abbasi
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands
- Center for Optical Diagnostics and Therapy, Department of Dermatology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - T C Bakker Schut
- Center for Optical Diagnostics and Therapy, Department of Dermatology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - P B A A Van Driel
- Department of Orthopedic Surgery, Isala Hospital, Zwolle, Netherlands
| | - J A U Hardillo
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - I P Santos
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | | | - S Koljenović
- Department of Pathology, Antwerp University Hospital/Antwerp University, Antwerp, Belgium
| | - A L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - R J Baatenburg de Jong
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - G J Puppels
- Center for Optical Diagnostics and Therapy, Department of Dermatology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - S Keereweer
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands.
| |
Collapse
|
10
|
Kaneko K, Baba S, Isoda T, Ishioka H. Compared to conventional PET/CT scanners, silicon-photomultiplier-based PET/CT scanners show higher arterial 18F-FDG uptake in whole-body 18F-FDG-PET/CT. Nucl Med Commun 2021; 42:1361-1368. [PMID: 34347656 DOI: 10.1097/mnm.0000000000001468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES To clarify differences in arterial 18F-FDG (fluorodeoxyglucose) uptake between silicon photomultiplier (SiPM)-based and conventional PET/CT scanners, and to compare clinical and phantom results. PATIENTS AND METHODS Twenty-six patients with lung tumours underwent serial SiPM-based and conventional PET/CT scans on the same day. We compared the target-to-background ratios [TBRsi (SiPM), TBRc (conventional)] and the percentage difference between TBRsi and TBRc (ΔTBR) in the carotid artery, aorta and peripheral arteries. The correlation between ΔTBR and vessel size was also investigated. In the carotid artery, active segment analyses were performed with the threshold (TBR ≥1.6), and we compared each scanner's ratio of active segments and TBR values. We compared the clinical results with the recovery coefficients (RCs). RESULTS The TBRsi was significantly higher than the TBRc in the carotid artery, aorta and peripheral arteries (1.63 ± 0.22 vs. 1.43 ± 0.22, 1.65 ± 0.19 vs. 1.53 ± 0.15 and 1.37 ± 0.31 vs. 1.11 ± 0.27, mean ± SD, P ≤ 0.0001 for all), and the peripheral arteries showed the highest ΔTBR (24.4 ± 16.8%). The small (10-15 mm) vessels (26.9 ± 15.9%) showed significantly higher ΔTBRs than the larger vessels (7.3 ± 8.5% for 15-20 mm, 8.0 ± 12.8% for ≥20 mm, P < 0.0001 for both). The carotid artery showed significantly higher ratios of active segment (54.5 vs. 20.5%, P < 0.0001) and TBR values (1.85 ± 0.25 vs. 1.76 ± 0.15, P = 0.0006) for TBRsi vs. TBRc. The differences in RCs were similar to those of ΔTBR for each vessel size. CONCLUSIONS SiPM-based PET/CT scanners showed higher arterial 18F-FDG uptake (especially in vessels <15 mm) than conventional scanners, and the threshold TBR ≥1.6 is not applicable for the carotid artery for SiPM-based PET/CT systems.
Collapse
Affiliation(s)
- Koichiro Kaneko
- Department of Radiology, Fukuoka Memorial PET Imaging and Medical Checkup Center
| | - Shingo Baba
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University
| | - Takuro Isoda
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University
| | - Hisakazu Ishioka
- Department of Radiology, Fukuoka Memorial Hospital, Fukuoka, Japan
| |
Collapse
|
11
|
Shuang P, Yang J, Li C, Zang Y, Ma J, Chen F, Luo Y, Zhang D. Effect of BMI on Central Arterial Reflected Wave Augmentation Index, Toe-Brachial Index, Brachial-Ankle Pulse Wave Velocity and Ankle-Brachial Index in Chinese Elderly Hypertensive Patients with Hemorrhagic Stroke. J Stroke Cerebrovasc Dis 2021; 30:105945. [PMID: 34192617 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/26/2021] [Accepted: 06/06/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Hypertensive cerebral hemorrhage seriously endangers the health of the elderly. However, the relationship between obesity and arterial elasticity in hypertensive cerebral hemorrhage remains to be clarified. The purpose of our study is to explore the associations between body mass index (BMI) and central arterial reflected wave augmentation index (cAIx), toe-brachial index (TBI), brachial-ankle pulse wave velocity (baPWV), and ankle-brachial index (ABI) in the elderly hypertensive patients with hemorrhagic stroke. MATERIALS AND METHODS A total of 502 elderly hypertensive patients with hemorrhagic stroke and 100 healthy controls were collected. According to the BMI, patients were divided into normal BMI, overweight, obesity, and obese groups. The multivariate logistic regression model was used to establish a risk model for elderly hypertensive hemorrhagic stroke. RESULTS Compared with the normal BMI group, systolic blood pressure (SBP), diastolic blood pressure (DBP), cAIx, and baPWV in the abnormal BMI group were significantly increased (P < 0.05), while TBI and ABI were significantly decreased (P < 0.05). Logistic regression showed that BMI (OR = 1.031, 95%CI: 1.009-1.262), cAIx (OR = 1.214, 95%CI: 1.105-1.964), TBI (OR = 0.913, 95%CI: 0.885-0.967), baPWV (OR = 1.344, 95%CI: 1.142-2.147), and ABI (OR = 0.896, 95%CI: 0.811-0.989) are important factors for the occurrence of hemorrhagic stroke in the elderly hypertensive patients. ROC curve analysis showed that the AUC of cAIx, TBI, baPWV, ABI, and BMI were 0.914, 0.797, 0.934, 0.833, and 0.608, respectively. The final prediction model of hemorrhagic stroke elderly hypertensive patients was Y(P)= 65.424 + 0.307(cAIx) - 13.831(TBI) + 0.012(baPWV) - 0.110(ABI) + 0.339(BMI). CONCLUSIONS Obesity is associated with decreased arterial elasticity. Therefore, reasonable weight management of the elderly may be of great significance for reducing the risk of hemorrhagic stroke in patients with hypertension.
Collapse
Affiliation(s)
- Pengcheng Shuang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, PR China
| | - Jingzhi Yang
- Institute of Medicine, Chinese Academy of Medical, Beijing, PR China
| | - Chuangjun Li
- Institute of Medicine, Chinese Academy of Medical, Beijing, PR China
| | - Yingda Zang
- Institute of Medicine, Chinese Academy of Medical, Beijing, PR China
| | - Jie Ma
- Institute of Medicine, Chinese Academy of Medical, Beijing, PR China
| | - Fangyou Chen
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China
| | - Yongming Luo
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Dongming Zhang
- Institute of Medicine, Chinese Academy of Medical, Beijing, PR China
| |
Collapse
|
12
|
Sultan D, Li W, Detering L, Heo GS, Luehmann HP, Kreisel D, Liu Y. Assessment of ultrasmall nanocluster for early and accurate detection of atherosclerosis using positron emission tomography/computed tomography. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 36:102416. [PMID: 34147662 DOI: 10.1016/j.nano.2021.102416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/17/2021] [Accepted: 04/30/2021] [Indexed: 11/25/2022]
Abstract
The development of atherosclerosis therapy is hampered by the lack of molecular imaging tools to identify the relevant biomarkers and determine the dynamic variation in vivo. Here, we show that a chemokine receptor 2 (CCR2) targeted gold nanocluster conjugated with extracellular loop 1 inverso peptide (AuNC-ECL1i) determines the initiation, progression and regression of atherosclerosis in apolipoprotein E knock-out (ApoE-/-) mouse models. The CCR2 targeted 64Cu-AuNC-ECL1i reveals sensitive detection of early atherosclerotic lesions and progression of plaques in ApoE-/- mice. CCR2 targeting specificity was confirmed by the competitive receptor blocking studies. In a mouse model of aortic arch transplantation, 64Cu-AuNC-ECL1i accurately detects the regression of plaques. Human atherosclerotic tissues show high expression of CCR2 related to the status of the disease. This study confirms CCR2 as a useful marker for atherosclerosis and points to the potential of 64Cu-AuNC-ECL1i as a targeted molecular imaging probe for future clinical translation.
Collapse
Affiliation(s)
- Deborah Sultan
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Wenjun Li
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Lisa Detering
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Gyu Seong Heo
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Hannah P Luehmann
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University, St. Louis, MO, USA.
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA.
| |
Collapse
|
13
|
Kessinger CW, Qi G, Hassan MZO, Henke PK, Tawakol A, Jaffer FA. Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Imaging Predicts Vein Wall Scarring and Statin Benefit in Murine Venous Thrombosis. Circ Cardiovasc Imaging 2021; 14:e011898. [PMID: 33724049 DOI: 10.1161/circimaging.120.011898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The postthrombotic syndrome is a common, often morbid sequela of venous thrombosis (VT) that arises from thrombus persistence and inflammatory scarring of juxtaposed vein walls and valves. Noninvasive 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) imaging can measure neutrophil inflammation in VT. Here, we hypothesized (1) early fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) VT inflammation can predict subsequent vein wall scarring (VWS) and (2) statin therapy can reduce FDG-PET VT inflammation and subsequent VWS. METHODS C57BL/6J mice (n=75) underwent induction of stasis-induced VT of the inferior vena cava or jugular vein. Inferior vena cava VT mice (n=44) were randomized to daily oral rosuvastatin 5 mg/kg or saline starting at day -1. Subgroups of mice then underwent FDG-PET/CT 2 days after VT induction. On day 14, a subset of mice was euthanized, and VWS was assessed via histology. In vitro studies were further performed on bone marrow-derived neutrophils. RESULTS Statin therapy reduced early day 2 FDG-PET VT inflammation, thrombus neutrophil influx, and plasma IL (interleukin)-6 levels. At day 14, statin therapy reduced VWS but did not affect day 2 thrombus mass, cholesterol, or white blood counts, nor reduce day 2 glucose transporter 1 or myeloperoxidase expression in thrombus or in isolated neutrophils. In survival studies, the day 2 FDG-PET VT inflammation signal as measured by mean and maximum standardized uptake values predicted the extent of day 14 VWS (area under the receiver operating characteristic curve =0.82) with a strong correlation coefficient (r) of r=0.73 and r=0.74, respectively. Mediation analyses revealed that 40% of the statin-induced VWS reduction was mediated by reductions in VT inflammation as quantified by FDG-PET. CONCLUSIONS Early noninvasive FDG-PET/CT imaging of VT inflammation predicts the magnitude of subsequent VWS and may provide a new translatable approach to identify individuals at risk for postthrombotic syndrome and to assess anti-inflammatory postthrombotic syndrome therapies, such as statins.
Collapse
Affiliation(s)
- Chase W Kessinger
- Cardiology Division, Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA (C.W.K., G.Q., F.A.J.).,Department of Cardiovascular Medicine, Masonic Medical Research Institute, Utica, NY (C.W.K.)
| | - Guanming Qi
- Cardiology Division, Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA (C.W.K., G.Q., F.A.J.)
| | - Malek Z O Hassan
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (M.Z.O.H., A.T., F.A.J.)
| | - Peter K Henke
- Conrad Jobst Vascular Research Laboratory, Section of Vascular Surgery, Departments of Surgery and Medicine, University of Michigan Medical School, Ann Arbor (P.K.H.)
| | - Ahmed Tawakol
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (M.Z.O.H., A.T., F.A.J.)
| | - Farouc A Jaffer
- Cardiology Division, Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA (C.W.K., G.Q., F.A.J.).,Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (M.Z.O.H., A.T., F.A.J.)
| |
Collapse
|
14
|
Osborn EA, Albaghdadi M, Libby P, Jaffer FA. Molecular Imaging of Atherosclerosis. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
15
|
Hajhosseiny R, Prieto C, Qi H, Phinikaridou A, Botnar RM. Thrombosis and Embolism. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
16
|
Molecular imaging of inflammation - Current and emerging technologies for diagnosis and treatment. Pharmacol Ther 2020; 211:107550. [PMID: 32325067 DOI: 10.1016/j.pharmthera.2020.107550] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022]
Abstract
Inflammation is a key factor in multiple diseases including primary immune-mediated inflammatory diseases e.g. rheumatoid arthritis but also, less obviously, in many other common conditions, e.g. cardiovascular disease and diabetes. Together, chronic inflammatory diseases contribute to the majority of global morbidity and mortality. However, our understanding of the underlying processes by which the immune response is activated and sustained is limited by a lack of cellular and molecular information obtained in situ. Molecular imaging is the visualization, detection and quantification of molecules in the body. The ability to reveal information on inflammatory biomarkers, pathways and cells can improve disease diagnosis, guide and monitor therapeutic intervention and identify new targets for research. The optimum molecular imaging modality will possess high sensitivity and high resolution and be capable of non-invasive quantitative imaging of multiple disease biomarkers while maintaining an acceptable safety profile. The mainstays of current clinical imaging are computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US) and nuclear imaging such as positron emission tomography (PET). However, none of these have yet progressed to routine clinical use in the molecular imaging of inflammation, therefore new approaches are required to meet this goal. This review sets out the respective merits and limitations of both established and emerging imaging modalities as clinically useful molecular imaging tools in addition to potential theranostic applications.
Collapse
|
17
|
Li S, Gou T, Wang Q, Chen M, Chen Z, Xu M, Wang Y, Han D, Cao R, Liu J, Liang P, Dai Z, Cao F. Ultrasound/Optical Dual-Modality Imaging for Evaluation of Vulnerable Atherosclerotic Plaques with Osteopontin Targeted Nanoparticles. Macromol Biosci 2019; 20:e1900279. [PMID: 31885210 DOI: 10.1002/mabi.201900279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/26/2019] [Indexed: 11/10/2022]
Abstract
Because of the high mortality of coronary atherosclerotic heart diseases, it is necessary to develop novel early detection methods for vulnerable atherosclerotic plaques. Phenotype transformation of vascular smooth muscle cells (VSMCs) plays a vital role in progressed atherosclerotic plaques. Osteopontin (OPN) is one of the biomarkers for phenotypic conversion of VSMCs. Significant higher OPN expression is found in foam cells along with the aggravating capacity of macrophage recruitment due to its arginine-glycine-aspartate sequence and interaction with CD44. Herein, a dual-modality imaging probe, OPN targeted nanoparticles (Cy5.5-anti-OPN-PEG-PLA-PFOB, denoted as COP-NPs), is constructed to identify the molecular characteristics of high-risk atherosclerosis by ultrasound and optical imaging. Characterization, biocompatibility, good binding sensibility, and specificity are evaluated in vitro. For in vivo study, apolipoprotein E deficien (ApoE-/- ) mice fed with high fat diet for 20-24 weeks are used as atherosclerotic model. Ultrasound and optical imaging reveal that the nanoparticles are accumulated in the vulnerable atherosclerotic plaques. OPN targeted nanoparticles are demonstrated to be a good contrast agent in molecular imaging of synthetic VSMCs and foam cells, which can be a promising tool to identify the vulnerable atherosclerotic plaques.
Collapse
Affiliation(s)
- Sulei Li
- Medical School of Chinese PLA and National Clinical Research Center of Geriatric Disease, Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Tiantian Gou
- Medical School of Chinese PLA and National Clinical Research Center of Geriatric Disease, Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qi Wang
- Medical School of Chinese PLA and National Clinical Research Center of Geriatric Disease, Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Min Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Ze Chen
- Medical School of Chinese PLA and National Clinical Research Center of Geriatric Disease, Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Mengqi Xu
- Medical School of Chinese PLA and National Clinical Research Center of Geriatric Disease, Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yabin Wang
- Medical School of Chinese PLA and National Clinical Research Center of Geriatric Disease, Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Dong Han
- Medical School of Chinese PLA and National Clinical Research Center of Geriatric Disease, Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ruihua Cao
- Medical School of Chinese PLA and National Clinical Research Center of Geriatric Disease, Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Junsong Liu
- Medical School of Chinese PLA and National Clinical Research Center of Geriatric Disease, Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ping Liang
- Department of Interventional Ultrasound, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Feng Cao
- Medical School of Chinese PLA and National Clinical Research Center of Geriatric Disease, Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
18
|
Abstract
Molecular imaging is an emerging technology that enables the noninvasive visualization, characterization, and quantification of molecular events within living subjects. Positron emission tomography (PET) is a clinically available molecular imaging tool with significant potential to study pathogenesis of infections in humans. Molecular imaging is an emerging technology that enables the noninvasive visualization, characterization, and quantification of molecular events within living subjects. Positron emission tomography (PET) is a clinically available molecular imaging tool with significant potential to study pathogenesis of infections in humans. PET enables dynamic assessment of infectious processes within the same subject with high temporal and spatial resolution and obviates the need for invasive tissue sampling, which is difficult in patients and generally limited to a single time point, even in animal models. This review presents current state-of-the-art concepts on the application of molecular imaging for infectious diseases and details how PET imaging can facilitate novel insights into infectious processes, ongoing development of pathogen-specific imaging, and simultaneous in situ measurements of intralesional antimicrobial pharmacokinetics in multiple compartments, including privileged sites. Finally, the potential clinical applications of this promising technology are also discussed.
Collapse
|
19
|
|
20
|
Strauss HW, Nakahara T, Narula N, Narula J. Vascular Calcification: The Evolving Relationship of Vascular Calcification to Major Acute Coronary Events. J Nucl Med 2019; 60:1207-1212. [PMID: 31350320 DOI: 10.2967/jnumed.119.230276] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Calcification in a coronary artery is accepted as definite evidence of coronary atherosclerosis. The extent and density of calcification, as combined in the Agatston score, is associated with the risk of a patient experiencing a major acute coronary event. Atherosclerosis occurs because damaged endothelial cells allow low-density lipoprotein cholesterol (LDLc) to leak into subintimal tissue. Proteoglycans in subendothelial collagen have a high affinity for LDLc, retaining the lipoprotein cholesterol complex. As the endothelial damage is repaired, the subintimal LDLc is trapped. Retained LDLc induces an inflammatory response in the overlying endothelium, causing the endothelium to express chemotactic peptides. Chemotactic peptides attract circulating monocytes, which follow the concentration gradient, enter the tissue, and become tissue macrophages to phagocytize and digest the irritating LDLc in the atheroma. In the process of digesting LDLc, enzymes in the macrophages oxidize the LDLc complex. Oxidized LDL is toxic to macrophages; when present in sufficient quantity, it may cause death of macrophages, contributing to inflammation in the atheroma. In a necrotic inflammatory lesion, the regulatory mechanisms that control tissue concentrations of calcium and phosphorus are lost, allowing the solubility product of calcium phosphate to be exceeded, resulting in the formation of microscopic calcium-phosphate crystals. With ongoing inflammation, additional calcium-phosphate crystals are formed, which may aggregate. When these aggregated calcium phosphate crystals exceed 1 mm, the lesions become visible on clinical CT as coronary calcifications. Serial gated CT scans of the heart have demonstrated that once formed, CT-visible calcifications do not decrease significantly in size but may increase.
Collapse
Affiliation(s)
- H William Strauss
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Takehiro Nakahara
- Department of Diagnostic Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Navneet Narula
- Department of Pathology, New York University School of Medicine, New York, New York; and
| | - Jagat Narula
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
21
|
New Molecular Imaging Strategies to Detect Inflammation in the Vulnerable Plaque. CURRENT CARDIOVASCULAR IMAGING REPORTS 2019. [DOI: 10.1007/s12410-019-9499-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Ntziachristos V, Pleitez MA, Aime S, Brindle KM. Emerging Technologies to Image Tissue Metabolism. Cell Metab 2019; 29:518-538. [PMID: 30269982 DOI: 10.1016/j.cmet.2018.09.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/24/2018] [Accepted: 09/02/2018] [Indexed: 12/19/2022]
Abstract
Due to the implication of altered metabolism in a large spectrum of tissue function and disease, assessment of metabolic processes becomes essential in managing health. In this regard, imaging can play a critical role in allowing observation of biochemical and physiological processes. Nuclear imaging methods, in particular positron emission tomography, have been widely employed for imaging metabolism but are mainly limited by the use of ionizing radiation and the sensing of only one parameter at each scanning session. Observations in healthy individuals or longitudinal studies of disease could markedly benefit from non-ionizing, multi-parameter imaging methods. We therefore focus this review on progress with the non-ionizing radiation methods of MRI, hyperpolarized magnetic resonance and magnetic resonance spectroscopy, chemical exchange saturation transfer, and emerging optoacoustic (photoacoustic) imaging. We also briefly discuss the role of nuclear and optical imaging methods for research and clinical protocols.
Collapse
Affiliation(s)
- Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg 85764, Germany; Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Ismaningerstr. 22, Munich 81675, Germany.
| | - Miguel A Pleitez
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg 85764, Germany; Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Ismaningerstr. 22, Munich 81675, Germany
| | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin 10126, Italy
| | - Kevin M Brindle
- Department of Biochemistry, University of Cambridge, Old Addenbrooke's Site, Cambridge CB2 1GA, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
23
|
Al-Enezi MS, Abdo RA, Mokeddem MY, Slimani FAA, Khalil A, Fulop T, Turcotte E, Bentourkia M. Assessment of artery calcification in atherosclerosis with dynamic 18F-FDG-PET/CT imaging in elderly subjects. Int J Cardiovasc Imaging 2019; 35:947-954. [PMID: 30712152 DOI: 10.1007/s10554-019-01527-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/03/2019] [Indexed: 11/29/2022]
Abstract
Glucose metabolism in atherosclerotic arteries has been shown to be an indicator of inflammation, which might be a precursor of plaque rupture. In this prospective study, we assessed the correlation between artery calcification and glucose metabolism by means of 18F-FDG PET/CT imaging in elderly subjects. Nineteen elderly subjects, with age ranging from 65 to 85 years, underwent CT and dynamic 18F-FDG-PET imaging. The artery calcification was determined with a threshold of 130 Hounsfield units. Intensity of calcification and ratio of calcification area to total artery area were classified in four sequential classes from CT images. The CT artery images were also classified as having single or multi-spot calcifications. Their respective glucose metabolism was assessed with fractional uptake rate (FUR). Factor analysis was used in this study to separate blood images from tissue to extract the blood time activity curves for FUR calculations. The artery images in PET data were corrected for partial volume effect. The total arterial segments analyzed were 1332, with 1085 without calcification (81%), 247 (19%) with calcification, and 94 segments were having multi-spot of calcifications. There was a statistically significant difference in FUR values between non-calcified to calcified segments and between subjects under medication to non-medication when comparing the subjects based on calcification area. No statistically significant differences of FUR were found between single spot as a function of intensity, while in the multi-spots, there was a statistically significant difference for all artery segments. Metabolism activity varies for non-calcified to calcified segments. Based on the metabolic activity represented by FUR, calcifications in multi-spots have different effects than in single spots.
Collapse
Affiliation(s)
- Mamdouh S Al-Enezi
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada.,Department of Diagnostic Radiology, Faculty of Applied Medical Science, University of Hail, Hail, Saudi Arabia
| | - Redha-Alla Abdo
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Mohamed Yazid Mokeddem
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Faiçal A A Slimani
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Abdelouahed Khalil
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Tamas Fulop
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Eric Turcotte
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - M'hamed Bentourkia
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada.
| |
Collapse
|
24
|
Raggi P. Atherosclerosis imaging to refine cardiovascular risk assessment in diabetic patients: Computed tomography and positron emission tomography applications. Atherosclerosis 2018; 271:77-83. [PMID: 29477560 DOI: 10.1016/j.atherosclerosis.2018.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 01/24/2023]
Abstract
The lifetime cardiovascular risk of a diabetic patient is approximately 4-5 times higher than that of an age and sex matched individual without diabetes mellitus. Despite the well-publicized cardiovascular risk equivalence of diabetes mellitus, it has become apparent that not all diabetic patients are equally at high-risk and many patients may have a level of risk similar to that of the general population. Cardiovascular imaging has been employed to address the dilemma of a more accurate risk stratification of diabetic patients. Two randomized clinical trials aiming at uncovering the presence of unknown obstructive coronary artery disease (CAD) gave disappointing results. In fact, the number of patients with inducible myocardial ischemia and/or severe obstructive disease was lower than expected and the overall outcome was not improved after having brought the existence of CAD to light. Other techniques that may help identify a diabetic patient susceptible to suffer future events have therefore being explored. In this review we discuss two imaging tools that provide anatomical and functional information on pre-clinical coronary atherosclerosis: computed tomography for calcium scoring, and plaque characterization and myocardial ischemia detection and positron emission tomography using tracers to identify functionally unstable plaques. Despite the availability of several imaging techniques there remain numerous questions as to the utility of imaging to define risk in diabetes mellitus and an optimal approach has yet to be found.
Collapse
Affiliation(s)
- Paolo Raggi
- Mazankowski Alberta Heart Institute, Canada; University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|