1
|
Si Z, Tian L, Zhou H, Lin J, Zhou J. In Vivo Interrogation of Cell-Penetrating Peptide Function: Accumulation in Tumors and the Potential as a Specific PET Probe. Bioconjug Chem 2025. [PMID: 40202497 DOI: 10.1021/acs.bioconjchem.5c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
We aimed to evaluate the biodistribution and specificity of 68Ga-DOTA-TAT and RHO-TAT using MGC-803 and HT-29 tumor cells as well as tumor-xenografted nude mice and to demonstrate its application in positron emission tomography (PET) imaging. The in vitro evaluation of 68Ga-DOTA-TAT was assessed in MGC-803 and HT-29 cell lines, and the in vivo evaluation of 68Ga-DOTA-TAT was also performed in mice bearing MGC-803 or HT-29 tumors, respectively. Fluorescence microscopy was also employed to evaluate the specificity of RHO-TAT in vitro in MGC-803 and HT-29 cells as well as ex vivo in tumor slices of the corresponding tumor models. The in vivo imaging differences between 68Ga-DOTA-TAT and 18F-FDG in MGC-803 and HT-29 tumors were also studied. The biodistribution and micro-PET results demonstrated significant uptake of 68Ga-DOTA-TAT in non-FDG-avid MGC-803 tumors, whereas there was negligible uptake in FDG-avid HT-29 tumors. RHO-TAT showed superior fluorescence microscopy imaging effects in MGC-803 cells and tumor slices but not in HT-29 cells and tumor slices, which were consistent with the in vivo results. 68Ga-DOTA-TAT combined with 18F-FDG can be applied noninvasively in cancers with PET imaging for potential patient selection and stratification. We demonstrated a higher binding of 68Ga-DOTA-TAT and RHO-TAT to MGC-803 cells as well as to non-FDG-avid MGC-803 xenografted tumors and a lower binding to HT-29 cells and FDG-avid xenografted tumors. These results suggest that TAT has the potential to be a ligand for targeting certain tumors.
Collapse
Affiliation(s)
- Zhan Si
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China
| | - Lulu Tian
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Hongxin Zhou
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jiasheng Lin
- Department of Nuclear Medicine, Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200237, China
| | - Jun Zhou
- Department of Nuclear Medicine, Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200237, China
| |
Collapse
|
2
|
Kohli M, Poulogiannis G. Harnessing the Power of Metabolomics for Precision Oncology: Current Advances and Future Directions. Cells 2025; 14:402. [PMID: 40136651 PMCID: PMC11940876 DOI: 10.3390/cells14060402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/24/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
Metabolic reprogramming is a hallmark of cancer, with cancer cells acquiring many unique metabolic traits to support malignant growth, and extensive intra- and inter-tumour metabolic heterogeneity. Understanding these metabolic characteristics presents opportunities in precision medicine for both diagnosis and therapy. However, despite its potential, metabolic phenotyping has lagged behind genetic, transcriptomic, and immunohistochemical profiling in clinical applications. This is partly due to the lack of a single experimental technique capable of profiling the entire metabolome, necessitating the use of multiple technologies and approaches to capture the full range of cancer metabolic plasticity. This review examines the repertoire of tools available for profiling cancer metabolism, demonstrating their applications in preclinical and clinical settings. It also presents case studies illustrating how metabolomic profiling has been integrated with other omics technologies to gain insights into tumour biology and guide treatment strategies. This information aims to assist researchers in selecting the most effective tools for their studies and highlights the importance of combining different metabolic profiling techniques to comprehensively understand tumour metabolism.
Collapse
Affiliation(s)
| | - George Poulogiannis
- Signalling and Cancer Metabolism Laboratory, Division of Cell and Molecular Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK;
| |
Collapse
|
3
|
Farooq R, Gendron T, Edwards RS, Witney TH. Compact and cGMP-compliant automated synthesis of [ 18F]FSPG on the Trasis AllinOne™. EJNMMI Radiopharm Chem 2025; 10:2. [PMID: 39821860 PMCID: PMC11748660 DOI: 10.1186/s41181-024-00322-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND (S)-4-(3-18F-Fluoropropyl)-ʟ-glutamic acid ([18F]FSPG) is a positron emission tomography radiotracer used to image system xc-, an antiporter that is upregulated in several cancers. Not only does imaging system xc- with [18F]FSPG identify tumours, but it can also provide an early readout of response and resistance to therapy. Unfortunately, the clinical production of [18F]FSPG has been hampered by a lack of robust, cGMP-compliant methods. Here, we report the automated synthesis of [18F]FSPG on the Trasis AllinOne™, overcoming previous limitations to provide a user-friendly method ready for clinical adoption. RESULTS The optimised method provided [18F]FSPG in 33.5 ± 4.9% radiochemical yield in just 35 min when starting with 18-25 GBq. Importantly, this method could be scaled up to > 100 GBq starting activity with only a modest reduction in radiochemical yield, providing [18F]FSPG with a molar activity of 372 ± 65 GBq/µmol and excellent radiochemical purity (96.8 ± 1.1%). The formulated product was stable when produced with these high starting activities. CONCLUSIONS We have developed the first automated synthesis of [18F]FSPG on the Trasis AllinOne™. The method produces [18F]FSPG with excellent radiochemical purity and in high amounts suitable for large clinical trials and off-site distribution. The method expands the number of synthesis modules capable of producing [18F]FSPG and has been carefully designed for cGMP compliance to simplify regulatory approval for clinical production. The methods developed for the purification of high-activity [18F]FSPG are transferrable and should aid the development of clinical [18F]FSPG productions on other synthesis modules.
Collapse
Affiliation(s)
- Rizwan Farooq
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Thibault Gendron
- GIGA-CRC Human Imaging, Cyclotron Research Centre, University of Liege, Liege, Belgium
| | - Richard S Edwards
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| | - Timothy H Witney
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| |
Collapse
|
4
|
Ayers GD, Cohen AS, Bae SW, Wen X, Pollard A, Sharma S, Claus T, Payne A, Geng L, Zhao P, Tantawy MN, Gammon ST, Manning HC. Reproducibility and repeatability of 18F-(2S, 4R)-4-fluoroglutamine PET imaging in preclinical oncology models. PLoS One 2025; 20:e0313123. [PMID: 39787098 PMCID: PMC11717184 DOI: 10.1371/journal.pone.0313123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/19/2024] [Indexed: 01/12/2025] Open
Abstract
INTRODUCTION Measurement of repeatability and reproducibility (R&R) is necessary to realize the full potential of positron emission tomography (PET). Several studies have evaluated the reproducibility of PET using 18F-FDG, the most common PET tracer used in oncology, but similar studies using other PET tracers are scarce. Even fewer assess agreement and R&R with statistical methods designed explicitly for the task. 18F-(2S, 4R)-4-fluoro-glutamine (18F-Gln) is a PET tracer designed for imaging glutamine uptake and metabolism. This study illustrates high reproducibility and repeatability with 18F-Gln for in vivo research. METHODS Twenty mice bearing colorectal cancer cell line xenografts were injected with ~9 MBq of 18F-Gln and imaged in an Inveon microPET. Three individuals analyzed the tumor uptake of 18F-Gln using the same set of images, the same image analysis software, and the same analysis method. Scans were randomly re-ordered for a second repeatability measurement 6 months later. Statistical analyses were performed using the methods of Bland and Altman (B&A), Gauge Reproducibility and Repeatability (Gauge R&R), and Lin's Concordance Correlation Coefficient. A comprehensive equivalency test, designed to reject a null hypothesis of non-equivalence, was also conducted. RESULTS In a two-way random effects Gauge R&R model, variance among mice and their measurement variance were 0.5717 and 0.024. Reproducibility and repeatability accounted for 31% and 69% of the total measurement error, respectively. B&A repeatability coefficients for analysts 1, 2, and 3 were 0.16, 0.35, and 0.49. One-half B&A agreement limits between analysts 1 and 2, 1 and 3, and 2 and 3 were 0.27, 0.47, and 0.47, respectively. The mean square deviation and total deviation index were lowest for analysts 1 and 2, while coverage probabilities and coefficients of the individual agreement were highest. Finally, the definitive agreement inference hypothesis test for equivalency demonstrated that all three confidence intervals for the average difference of means from repeated measures lie within our a priori limits of equivalence (i.e. ± 0.5%ID/g). CONCLUSIONS Our data indicate high individual analyst and laboratory-level reproducibility and repeatability. The assessment of R&R using the appropriate methods is critical and should be adopted by the broader imaging community.
Collapse
Affiliation(s)
- Gregory D. Ayers
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Allison S. Cohen
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Seong-Woo Bae
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Xiaoxia Wen
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Alyssa Pollard
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Shilpa Sharma
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Trey Claus
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Adria Payne
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Ling Geng
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Ping Zhao
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Mohammed Noor Tantawy
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, Nashville, TN, United States of America
| | - Seth T. Gammon
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - H. Charles Manning
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, Nashville, TN, United States of America
| |
Collapse
|
5
|
Fathi M, Taher HJ, Al-Rubiae SJ, Yaghoobpoor S, Bahrami A, Eshraghi R, Sadri H, Asadi Anar M, Gholamrezanezhad A. Role of molecular imaging in prognosis, diagnosis, and treatment of gastrointestinal cancers: An update on new therapeutic methods. World J Methodol 2024; 14:93461. [PMID: 39712556 PMCID: PMC11287540 DOI: 10.5662/wjm.v14.i4.93461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/31/2024] [Accepted: 07/15/2024] [Indexed: 07/26/2024] Open
Abstract
One of the leading causes of cancer-related death is gastrointestinal cancer, which has a significant morbidity and mortality rate. Although preoperative risk assessment is essential for directing patient care, its biological behavior cannot be accurately predicted by conventional imaging investigations. Potential pathophysiological information in anatomical imaging that cannot be visually identified can now be converted into high-dimensional quantitative image features thanks to the developing discipline of molecular imaging. In order to enable molecular tissue profile in vivo, molecular imaging has most recently been utilized to phenotype the expression of single receptors and targets of biological therapy. It is expected that molecular imaging will become increasingly important in the near future, driven by the expanding range of biological therapies for cancer. With this live molecular fingerprinting, molecular imaging can be utilized to drive expression-tailored customized therapy. The technical aspects of molecular imaging are first briefly discussed in this review, followed by an examination of the most recent research on the diagnosis, prognosis, and potential future clinical methods of molecular imaging for GI tract malignancies.
Collapse
Affiliation(s)
- Mobina Fathi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | | | | | - Shirin Yaghoobpoor
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Ashkan Bahrami
- Faculty of Medicine, Kashan University of Medical Sciences, Kashan 1617768911, Iran
| | - Reza Eshraghi
- Faculty of Medicine, Kashan University of Medical Sciences, Kashan 1617768911, Iran
| | - Hossein Sadri
- Faculty of Medicine, Kashan University of Medical Sciences, Kashan 1617768911, Iran
| | - Mahsa Asadi Anar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| |
Collapse
|
6
|
Hilovsky D, Hartsell J, Young JD, Liu X. Stable Isotope Tracing Analysis in Cancer Research: Advancements and Challenges in Identifying Dysregulated Cancer Metabolism and Treatment Strategies. Metabolites 2024; 14:318. [PMID: 38921453 PMCID: PMC11205609 DOI: 10.3390/metabo14060318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Metabolic reprogramming is a hallmark of cancer, driving the development of therapies targeting cancer metabolism. Stable isotope tracing has emerged as a widely adopted tool for monitoring cancer metabolism both in vitro and in vivo. Advances in instrumentation and the development of new tracers, metabolite databases, and data analysis tools have expanded the scope of cancer metabolism studies across these scales. In this review, we explore the latest advancements in metabolic analysis, spanning from experimental design in stable isotope-labeling metabolomics to sophisticated data analysis techniques. We highlight successful applications in cancer research, particularly focusing on ongoing clinical trials utilizing stable isotope tracing to characterize disease progression, treatment responses, and potential mechanisms of resistance to anticancer therapies. Furthermore, we outline key challenges and discuss potential strategies to address them, aiming to enhance our understanding of the biochemical basis of cancer metabolism.
Collapse
Affiliation(s)
- Dalton Hilovsky
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA; (D.H.); (J.H.)
| | - Joshua Hartsell
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA; (D.H.); (J.H.)
| | - Jamey D. Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37212, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37212, USA
| | - Xiaojing Liu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA; (D.H.); (J.H.)
| |
Collapse
|
7
|
Liu Y, Suhail Y, Novin A, Afzal J, Pant A, Kshitiz. Lactate in breast cancer cells is associated with evasion of hypoxia-induced cell cycle arrest and adverse patient outcome. Hum Cell 2024; 37:768-781. [PMID: 38478356 PMCID: PMC11256967 DOI: 10.1007/s13577-024-01046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/14/2024] [Indexed: 04/15/2024]
Abstract
Tumor hypoxia is a common microenvironmental factor in breast cancers, resulting in stabilization of Hypoxia-Inducible Factor 1 (HIF-1), the master regulator of hypoxic response in cells. Metabolic adaptation by HIF-1 results in inhibition of citric acid cycle, causing accumulation of lactate in large concentrations in hypoxic cancers. Lactate can therefore serve as a secondary microenvironmental factor influencing cellular response to hypoxia. Presence of lactate can alter the hypoxic response of breast cancers in many ways, sometimes in opposite manners. Lactate stabilizes HIF-1 in oxidative condition, as well as destabilizes HIF-1 in hypoxia, increases cellular acidification, and mitigates HIF-1-driven inhibition of cellular respiration. We therefore tested the effect of lactate in MDA-MB-231 under hypoxia, finding that lactate can activate pathways associated with DNA replication, and cell cycling, as well as tissue morphogenesis associated with invasive processes. Using a bioengineered nano-patterned stromal invasion assay, we also confirmed that high lactate and induced HIF-1α gene overexpression can synergistically promote MDA-MB-231 dissemination and stromal trespass. Furthermore, using The Cancer Genome Atlas, we also surprisingly found that lactate in hypoxia promotes gene expression signatures prognosticating low survival in breast cancer patients. Our work documents that lactate accumulation contributes to increased heterogeneity in breast cancer gene expression promoting cancer growth and reducing patient survival.
Collapse
Affiliation(s)
- Yamin Liu
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
| | - Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
- Center for Cell Analysis and Modeling, University of Connecticut Health, Farmington, CT, USA
| | - Ashkan Novin
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
| | - Junaid Afzal
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Aditya Pant
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
- NEAG Comprehensive Cancer Center, University of Connecticut Health, Farmington, CT, USA
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA.
- Center for Cell Analysis and Modeling, University of Connecticut Health, Farmington, CT, USA.
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
- NEAG Comprehensive Cancer Center, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
8
|
Lai YC, Hsieh CY, Juan YH, Lu KY, Lee HJ, Ng SH, Wan YL, Lin G. Hyperpolarized Carbon-13 Magnetic Resonance Imaging: Technical Considerations and Clinical Applications. Korean J Radiol 2024; 25:459-472. [PMID: 38685736 PMCID: PMC11058429 DOI: 10.3348/kjr.2024.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/17/2024] [Accepted: 02/27/2024] [Indexed: 05/02/2024] Open
Abstract
Hyperpolarized (HP) carbon-13 (13C) MRI represents an innovative approach for noninvasive, real-time assessment of dynamic metabolic flux, with potential integration into routine clinical MRI. The use of [1-13C]pyruvate as a probe and its conversion to [1-13C]lactate constitute an extensively explored metabolic pathway. This review comprehensively outlines the establishment of HP 13C-MRI, covering multidisciplinary team collaboration, hardware prerequisites, probe preparation, hyperpolarization techniques, imaging acquisition, and data analysis. This article discusses the clinical applications of HP 13C-MRI across various anatomical domains, including the brain, heart, skeletal muscle, breast, liver, kidney, pancreas, and prostate. Each section highlights the specific applications and findings pertinent to these regions, emphasizing the potential versatility of HP 13C-MRI in diverse clinical contexts. This review serves as a comprehensive update, bridging technical aspects with clinical applications and offering insights into the ongoing advancements in HP 13C-MRI.
Collapse
Affiliation(s)
- Ying-Chieh Lai
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ching-Yi Hsieh
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Hsiang Juan
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Kuan-Ying Lu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hsien-Ju Lee
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shu-Hang Ng
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yung-Liang Wan
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Gigin Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
9
|
Wu Y, Zou Q, Jiang P, Gao Q. Tumor-Host Cometabolism Collaborates to Shape Cancer Immunity. Cancer Discov 2024; 14:653-657. [PMID: 38571418 DOI: 10.1158/2159-8290.cd-23-1509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
SUMMARY Nutrients are essential for supporting tumor growth and immune cell function in the tumor microenvironment, but emerging evidence reveals a paradoxical competition and collaboration between the metabolic demands of proliferating cancer cells and immune cell activation. Dietary interventions and metabolic immunoengineering offer promise to selectively modulate cancer and immune cell metabolism by targeting metabolic sensing processes rather than pathways directly, moving beyond conventional ideas and heralding an exciting new era of immunometabolism discovery and translation.
Collapse
Affiliation(s)
- Yingcheng Wu
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang Zou
- Shanghai Institute of Immunology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Jiang
- School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Wang B, Pei J, Xu S, Liu J, Yu J. A glutamine tug-of-war between cancer and immune cells: recent advances in unraveling the ongoing battle. J Exp Clin Cancer Res 2024; 43:74. [PMID: 38459595 PMCID: PMC10921613 DOI: 10.1186/s13046-024-02994-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/22/2024] [Indexed: 03/10/2024] Open
Abstract
Glutamine metabolism plays a pivotal role in cancer progression, immune cell function, and the modulation of the tumor microenvironment. Dysregulated glutamine metabolism has been implicated in cancer development and immune responses, supported by mounting evidence. Cancer cells heavily rely on glutamine as a critical nutrient for survival and proliferation, while immune cells require glutamine for activation and proliferation during immune reactions. This metabolic competition creates a dynamic tug-of-war between cancer and immune cells. Targeting glutamine transporters and downstream enzymes involved in glutamine metabolism holds significant promise in enhancing anti-tumor immunity. A comprehensive understanding of the intricate molecular mechanisms underlying this interplay is crucial for developing innovative therapeutic approaches that improve anti-tumor immunity and patient outcomes. In this review, we provide a comprehensive overview of recent advances in unraveling the tug-of-war of glutamine metabolism between cancer and immune cells and explore potential applications of basic science discoveries in the clinical setting. Further investigations into the regulation of glutamine metabolism in cancer and immune cells are expected to yield valuable insights, paving the way for future therapeutic interventions.
Collapse
Affiliation(s)
- Bolin Wang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinli Pei
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Shengnan Xu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Jie Liu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
11
|
Lei L, Yang F, Meng X, Xu L, Liang P, Ma Y, Dong Z, Wang Y, Zhang XB, Song G. Noninvasive Imaging of Tumor Glycolysis and Chemotherapeutic Resistance via De Novo Design of Molecular Afterglow Scaffold. J Am Chem Soc 2023; 145:24386-24400. [PMID: 37883689 DOI: 10.1021/jacs.3c09473] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Chemotherapeutic resistance poses a significant challenge in cancer treatment, resulting in the reduced efficacy of standard chemotherapeutic agents. Abnormal metabolism, particularly increased anaerobic glycolysis, has been identified as a major contributing factor to chemotherapeutic resistance. To address this issue, noninvasive imaging techniques capable of visualizing tumor glycolysis are crucial. However, the currently available methods (such as PET, MRI, and fluorescence) possess limitations in terms of sensitivity, safety, dynamic imaging capability, and autofluorescence. Here, we present the de novo design of a unique afterglow molecular scaffold based on hemicyanine and rhodamine dyes, which holds promise for low-background optical imaging. In contrast to previous designs, this scaffold exhibits responsive "OFF-ON" afterglow signals through spirocyclization, thus enabling simultaneous control of photodynamic effects and luminescence efficacy. This leads to a larger dynamic range, broader detection range, higher signal enhancement ratio, and higher sensitivity. Furthermore, the integration of multiple functionalities simplifies probe design, eliminates the need for spectral overlap, and enhances reliability. Moreover, we have expanded the applications of this afterglow molecular scaffold by developing various probes for different molecular targets. Notably, we developed a water-soluble pH-responsive afterglow nanoprobe for visualizing glycolysis in living mice. This nanoprobe monitors the effects of glycolytic inhibitors or oxidative phosphorylation inhibitors on tumor glycolysis, providing a valuable tool for evaluating the tumor cell sensitivity to these inhibitors. Therefore, the new afterglow molecular scaffold presents a promising approach for understanding tumor metabolism, monitoring chemotherapeutic resistance, and guiding precision medicine in the future.
Collapse
Affiliation(s)
- Lingling Lei
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Fengrui Yang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xin Meng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Li Xu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Peng Liang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yuan Ma
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Zhe Dong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Youjuan Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Guosheng Song
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
12
|
Panneerselvan P, Vasanthakumar K, Muthuswamy K, Krishnan V, Subramaniam S. Insights on the functional dualism of nitric oxide in the hallmarks of cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:189001. [PMID: 37858621 DOI: 10.1016/j.bbcan.2023.189001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Nitric oxide (NO), a gaseous radical, governs a variety of physiological and pathological processes, including cancer, pro-inflammatory signalling, and vasodilation. The family of nitric oxide synthases (NOS), which comprises the constitutive forms, nNOS and eNOS, and the inducible form, iNOS, produces NO enzymatically. Additionally, NO can be generated non-enzymatically from the nitrate-nitrite-NO pathway. The anti- and pro-oxidant properties of NO and its functional dualism in cancer is due to its highly reactive nature. Numerous malignancies have NOS expression, which interferes with the tumour microenvironment to modulate the tumour's growth in both favourable and unfavourable ways. NO regulates a number of mechanisms in the tumour microenvironment, including metabolism, cell cycle, DNA repair, angiogenesis, and apoptosis/necrosis, depending on its concentration and spatiotemporal profile. This review focuses on the bi-modal impact of nitric oxide on the alteration of a few cancer hallmarks.
Collapse
Affiliation(s)
- Prabha Panneerselvan
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Keerthana Vasanthakumar
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Karthi Muthuswamy
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Vasanth Krishnan
- Molecular Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Selvakumar Subramaniam
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu 641046, India.
| |
Collapse
|
13
|
Xie L, Zhang L, Hu K, Hanyu M, Zhang Y, Fujinaga M, Minegishi K, Ohkubo T, Nagatsu K, Jiang C, Shimokawa T, Ashisuke K, Okonogi N, Yamada S, Wang F, Wang R, Zhang MR. A 211At-labelled mGluR1 inhibitor induces cancer senescence to elicit long-lasting anti-tumor efficacy. Cell Rep Med 2023; 4:100960. [PMID: 37003259 PMCID: PMC10140459 DOI: 10.1016/j.xcrm.2023.100960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/01/2022] [Accepted: 02/09/2023] [Indexed: 04/03/2023]
Abstract
Metabotropic glutamate receptor 1 (mGluR1), a key mediator of glutamatergic signaling, is frequently overexpressed in tumor cells and is an attractive drug target for most cancers. Here, we present a targeted radiopharmaceutical therapy strategy that antagonistically recognizes mGluR1 and eradicates mGluR1+ human tumors by harnessing a small-molecule alpha (α)-emitting radiopharmaceutical, 211At-AITM. A single dose of 211At-AITM (2.96 MBq) in mGluR1+ cancers exhibits long-lasting in vivo antitumor efficacy across seven subtypes of four of the most common tumors, namely, breast cancer, pancreatic cancer, melanoma, and colon cancers, with little toxicity. Moreover, complete regression of mGluR1+ breast cancer and pancreatic cancer is observed in approximate 50% of tumor-bearing mice. Mechanistically, the functions of 211At-AITM are uncovered in downregulating mGluR1 oncoprotein and inducing senescence of tumor cells with a reprogrammed senescence-associated secretory phenotype. Our findings suggest α-radiopharmaceutical therapy with 211At-AITM can be a useful strategy for mGluR1+ pan-cancers, regardless of their tissue of origin.
Collapse
Affiliation(s)
- Lin Xie
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan.
| | - Lulu Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Kuan Hu
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Masayuki Hanyu
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Yiding Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Masayuki Fujinaga
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Katsuyuki Minegishi
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Takayuki Ohkubo
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Kotaro Nagatsu
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Cuiping Jiang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Takashi Shimokawa
- Department of Charged Particle Therapy Research, Quantum Life and Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Kazuma Ashisuke
- Department of Charged Particle Therapy Research, Quantum Life and Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Noriyuki Okonogi
- Department of Charged Particle Therapy Research, Quantum Life and Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Shigeru Yamada
- Department of Charged Particle Therapy Research, Quantum Life and Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan.
| |
Collapse
|
14
|
Nascentes Melo LM, Lesner NP, Sabatier M, Ubellacker JM, Tasdogan A. Emerging metabolomic tools to study cancer metastasis. Trends Cancer 2022; 8:988-1001. [PMID: 35909026 DOI: 10.1016/j.trecan.2022.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022]
Abstract
Metastasis is responsible for 90% of deaths in patients with cancer. Understanding the role of metabolism during metastasis has been limited by the development of robust and sensitive technologies that capture metabolic processes in metastasizing cancer cells. We discuss the current technologies available to study (i) metabolism in primary and metastatic cancer cells and (ii) metabolic interactions between cancer cells and the tumor microenvironment (TME) at different stages of the metastatic cascade. We identify advantages and disadvantages of each method and discuss how these tools and technologies will further improve our understanding of metastasis. Studies investigating the complex metabolic rewiring of different cells using state-of-the-art metabolomic technologies have the potential to reveal novel biological processes and therapeutic interventions for human cancers.
Collapse
Affiliation(s)
| | - Nicholas P Lesner
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marie Sabatier
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jessalyn M Ubellacker
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Partner Site, Essen, Germany.
| |
Collapse
|
15
|
Anne-Leen D, Machaba S, Alex M, Bart DS, Laurence B, Mike S, Hans P, Van de Wiele C. Principal component analysis of texture features derived from FDG PET images of melanoma lesions. EJNMMI Phys 2022; 9:64. [PMID: 36107331 PMCID: PMC9478000 DOI: 10.1186/s40658-022-00491-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The clinical utility of radiomics is hampered by a high correlation between the large number of features analysed which may result in the "bouncing beta" phenomenon which could in part explain why in a similar patient population texture features identified and/or cut-off values of prognostic significance differ from one study to another. Principal component analysis (PCA) is a technique for reducing the dimensionality of large datasets containing highly correlated variables, such as texture feature datasets derived from FDG PET images, increasing data interpretability whilst at the same time minimizing information loss by creating new uncorrelated variables that successively maximize variance. Here, we report on PCA of a texture feature dataset derived from 123 malignant melanoma lesions with a significant range in lesion size using the freely available LIFEx software. RESULTS Thirty-eight features were derived from all lesions. All features were standardized. The statistical assumptions for carrying out PCA analysis were met. Seven principal components with an eigenvalue > 1 were identified. Based on the "elbow sign" of the Scree plot, only the first five were retained. The contribution to the total variance of these components derived using Varimax rotation was, respectively, 30.6%, 23.6%, 16.1%, 7.4% and 4.1%. The components provided summarized information on the locoregional FDG distribution with an emphasis on high FDG uptake regions, contrast in FDG uptake values (steepness), tumour volume, locoregional FDG distribution with an emphasis on low FDG uptake regions and on the rapidity of changes in SUV intensity between different regions. CONCLUSIONS PCA allowed to reduce the dataset of 38 features to a set of 5 uncorrelated new variables explaining approximately 82% of the total variance contained within the dataset. These principal components may prove more useful for multiple regression analysis considering the relatively low numbers of patients usually included in clinical trials on FDG PET texture analysis. Studies assessing the superior differential diagnostic, predictive or prognostic value of principal components derived using PCA as opposed to the initial texture features in clinical relevant settings are warranted.
Collapse
Affiliation(s)
- DeLeu Anne-Leen
- Department of Nuclear Medicine, AZ Groeninge, President Kennedylaan 4, 8500, Kortrijk, Belgium
| | - Sathekge Machaba
- Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa
| | - Maes Alex
- Department of Nuclear Medicine, AZ Groeninge, President Kennedylaan 4, 8500, Kortrijk, Belgium
- Department of Morphology and Functional Imaging, University Hospital Leuven, Leuven, Belgium
| | - De Spiegeleer Bart
- Laboratory of Drug Quality and Registration, University Ghent, Ghent, Belgium
| | - Beels Laurence
- Department of Nuclear Medicine, AZ Groeninge, President Kennedylaan 4, 8500, Kortrijk, Belgium
| | - Sathekge Mike
- Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa
| | - Pottel Hans
- Department of Public Health and Primary Care, KU Leuven Campus KULAK Kortrtijk, Kortrijk, Belgium
| | - Christophe Van de Wiele
- Department of Nuclear Medicine, AZ Groeninge, President Kennedylaan 4, 8500, Kortrijk, Belgium.
- Department of Diagnostic Sciences, University Ghent, Ghent, Belgium.
| |
Collapse
|
16
|
[18F]-(2S,4R)4-Fluoroglutamine PET Imaging of Glutamine Metabolism in Murine Models of Hepatocellular Carcinoma (HCC). Mol Imaging 2022; 2022:5185951. [PMID: 35967756 PMCID: PMC9351703 DOI: 10.1155/2022/5185951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose Quantitative in vivo [18F]-(2S,4R)4-fluoroglutamine ([18F]4-FGln or more simply [18F]FGln) metabolic kinetic parameters are compared with activity levels of glutamine metabolism in different types of hepatocellular carcinoma (HCC). Methods For this study, we used two transgenic mouse models of HCC induced by protooncogenes, MYC, and MET. Biochemical data have shown that tumors induced by MYC have increased levels of glutamine metabolism compared to those induced by MET. One-hour dynamic [18F]FGln PET data were acquired and reconstructed for fasted MYC mice (n = 11 tumors from 7 animals), fasted MET mice (n = 8 tumors from 6 animals), fasted FVBN controls (n = 8 normal liver regions from 6 animals), nonfasted MYC mice (n = 16 tumors from 6 animals), and nonfasted FVBN controls (n = 8 normal liver regions from 3 animals). The influx rate constants (K1) using the one-tissue compartment model were derived for each tumor with the left ventricular blood pool input function. Results Influx rate constants were significantly higher for MYC tumors (K1 = 0.374 ± 0.133) than for MET tumors (K1 = 0.141 ± 0.058) under fasting conditions (P = 0.0002). Rate constants were also significantly lower for MET tumors (K1 = 0.141 ± 0.135) than normal livers (K1 = 0.332 ± 0.179) under fasting conditions (P = 0.0123). Fasting conditions tested for MYC tumors and normal livers did not result in any significant difference with P values > 0.005. Conclusion Higher influx rate constants corresponded to elevated levels of glutamine metabolism as determined by biochemical assays. The data showed that there is a distinctive difference in glutamine metabolism between MYC and MET tumors. Our study has demonstrated the potential of [18F]FGln PET imaging as a tool to assess glutamine metabolism in HCC tumors in vivo with a caution that it may not be able to clearly distinguish HCC tumors from normal liver tissue.
Collapse
|
17
|
Edmonds CE, O'Brien SR, Mankoff DA, Pantel AR. Novel applications of molecular imaging to guide breast cancer therapy. Cancer Imaging 2022; 22:31. [PMID: 35729608 PMCID: PMC9210593 DOI: 10.1186/s40644-022-00468-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
The goals of precision oncology are to provide targeted drug therapy based on each individual’s specific tumor biology, and to enable the prediction and early assessment of treatment response to allow treatment modification when necessary. Thus, precision oncology aims to maximize treatment success while minimizing the side effects of inadequate or suboptimal therapies. Molecular imaging, through noninvasive assessment of clinically relevant tumor biomarkers across the entire disease burden, has the potential to revolutionize clinical oncology, including breast oncology. In this article, we review breast cancer positron emission tomography (PET) imaging biomarkers for providing early response assessment and predicting treatment outcomes. For 2-18fluoro-2-deoxy-D-glucose (FDG), a marker of cellular glucose metabolism that is well established for staging multiple types of malignancies including breast cancer, we highlight novel applications for early response assessment. We then review current and future applications of novel PET biomarkers for imaging the steroid receptors, including the estrogen and progesterone receptors, the HER2 receptor, cellular proliferation, and amino acid metabolism.
Collapse
Affiliation(s)
- Christine E Edmonds
- Department of Radiology, Hospital of the University if Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Sophia R O'Brien
- Department of Radiology, Hospital of the University if Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - David A Mankoff
- Department of Radiology, Hospital of the University if Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Austin R Pantel
- Department of Radiology, Hospital of the University if Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
18
|
Liu M, Liu N, Wang J, Fu S, Wang X, Chen D. Acetyl-CoA Synthetase 2 as a Therapeutic Target in Tumor Metabolism. Cancers (Basel) 2022; 14:cancers14122896. [PMID: 35740562 PMCID: PMC9221533 DOI: 10.3390/cancers14122896] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Acetyl-CoA Synthetase 2 (ACSS2) is highly expressed in a variety of tumors, which is very important for tumor growth, proliferation, invasion, and metastasis in the nutritional stress microenvironment. Studies have proven that ACSS2 inhibitors can be effective in halting cancer growth and can be combined with other antineoplastic drugs to reduce drug resistance. This article mainly reviews the mechanism of ACSS2-promoting tumor growth from many aspects and the prospect of clinical application of targeted inhibitors. Abstract Acetyl-CoA Synthetase 2 (ACSS2) belongs to a member of the acyl-CoA short-chain synthase family, which can convert acetate in the cytoplasm and nucleus into acetyl-CoA. It has been proven that ACSS2 is highly expressed in glioblastoma, breast cancer, liver cancer, prostate cancer, bladder cancer, renal cancer, and other tumors, and is closely related to tumor stage and the overall survival rate of patients. Accumulating studies show that hypoxia and a low serum level induce ACSS2 expression to help tumor cells cope with this nutrient-poor environment. The potential mechanisms are associated with the ability of ACSS2 to promote the synthesis of lipids in the cytoplasm, induce the acetylation of histones in the nucleus, and facilitate the expression of autophagy genes. Novel-specific inhibitors of ACSS2 are developed and confirmed to the effectiveness in pre-clinical tumor models. Targeting ACSS2 may provide novel approaches for tumor treatment. This review summarizes the biological function of ACSS2, its relation to survival and prognosis in different tumors, and how ACSS2 mediates different pathways to promote tumor metastasis, invasion, and drug resistance.
Collapse
Affiliation(s)
| | | | | | | | - Xu Wang
- Correspondence: (X.W.); (D.C.)
| | | |
Collapse
|
19
|
O’Brien SR, Edmonds CE, Katz D, Mankoff DA, Pantel AR. 18F-Fluoroestradiol (FES) PET/CT: review of current practice and future directions. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Conversion of Hyperpolarized [1- 13C]Pyruvate in Breast Cancer Cells Depends on Their Malignancy, Metabolic Program and Nutrient Microenvironment. Cancers (Basel) 2022; 14:cancers14071845. [PMID: 35406616 PMCID: PMC8997828 DOI: 10.3390/cancers14071845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022] Open
Abstract
Hyperpolarized magnetic resonance spectroscopy (MRS) is a technology for characterizing tumors in vivo based on their metabolic activities. The conversion rates (kpl) of hyperpolarized [1-13C]pyruvate to [1-13C]lactate depend on monocarboxylate transporters (MCT) and lactate dehydrogenase (LDH); these are also indicators of tumor malignancy. An unresolved issue is how glucose and glutamine availability in the tumor microenvironment affects metabolic characteristics of the cancer and how this relates to kpl-values. Two breast cancer cells of different malignancy (MCF-7, MDA-MB-231) were cultured in media containing defined combinations of low glucose (1 mM; 2.5 mM) and glutamine (0.1 mM; 1 mM) and analyzed for pyruvate uptake, intracellular metabolite levels, LDH and pyruvate kinase activities, and 13C6-glucose-derived metabolomics. The results show variability of kpl with the different glucose/glutamine conditions, congruent with glycolytic activity, but not with LDH activity or the Warburg effect; this suggests metabolic compartmentation. Remarkably, kpl-values were almost two-fold higher in MCF-7 than in the more malignant MDA-MB-231 cells, the latter showing a higher flux of 13C-glucose-derived pyruvate to the TCA-cycle metabolites 13C2-citrate and 13C3-malate, i.e., pyruvate decarboxylation and carboxylation, respectively. Thus, MRS with hyperpolarized [1-13C-pyruvate] is sensitive to both the metabolic program and the nutritional state of cancer cells.
Collapse
|
21
|
Pantel AR, Viswanath V, Muzi M, Doot RK, Mankoff DA. Principles of Tracer Kinetic Analysis in Oncology, Part I: Principles and Overview of Methodology. J Nucl Med 2022; 63:342-352. [PMID: 35232879 DOI: 10.2967/jnumed.121.263518] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Learning Objectives: On successful completion of this activity, participants should be able to describe (1) describe principles of PET tracer kinetic analysis for oncologic applications; (2) list methods used for PET kinetic analysis for oncology; and (3) discuss application of kinetic modeling for cancer-specific diagnostic needs.Financial Disclosure: This work was supported by KL2 TR001879, R01 CA211337, R01 CA113941, R33 CA225310, Komen SAC130060, R50 CA211270, and K01 DA040023. Dr. Pantel is a consultant or advisor for Progenics and Blue Earth Diagnostics and is a meeting participant or lecturer for Blue Earth Diagnostics. Dr. Mankoff is on the scientific advisory boards of GE Healthcare, Philips Healthcare, Reflexion, and ImaginAb and is the owner of Trevarx; his wife is the chief executive officer of Trevarx. The authors of this article have indicated no other relevant relationships that could be perceived as a real or apparent conflict of interest.CME Credit: SNMMI is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to sponsor continuing education for physicians. SNMMI designates each JNM continuing education article for a maximum of 2.0 AMA PRA Category 1 Credits. Physicians should claim only credit commensurate with the extent of their participation in the activity. For CE credit, SAM, and other credit types, participants can access this activity through the SNMMI website (http://www.snmmilearningcenter.org) through March 2025PET enables noninvasive imaging of regional in vivo cancer biology. By engineering a radiotracer to target specific biologic processes of relevance to cancer (e.g., cancer metabolism, blood flow, proliferation, and tumor receptor expression or ligand binding), PET can detect cancer spread, characterize the cancer phenotype, and assess its response to treatment. For example, imaging of glucose metabolism using the radiolabeled glucose analog 18F-FDG has widespread applications to all 3 of these tasks and plays an important role in cancer care. However, the current clinical practice of imaging at a single time point remote from tracer injection (i.e., static imaging) does not use all the information that PET cancer imaging can provide, especially to address questions beyond cancer detection. Reliance on tracer measures obtained only from static imaging may also lead to misleading results. In this 2-part continuing education paper, we describe the principles of tracer kinetic analysis for oncologic PET (part 1), followed by examples of specific implementations of kinetic analysis for cancer PET imaging that highlight the added benefits over static imaging (part 2). This review is designed to introduce nuclear medicine clinicians to basic concepts of kinetic analysis in oncologic imaging, with a goal of illustrating how kinetic analysis can augment our understanding of in vivo cancer biology, improve our approach to clinical decision making, and guide the interpretation of quantitative measures derived from static images.
Collapse
Affiliation(s)
- Austin R Pantel
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Varsha Viswanath
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Mark Muzi
- Department of Radiology, University of Washington, Seattle, Washington
| | - Robert K Doot
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - David A Mankoff
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| |
Collapse
|
22
|
Cohen AS, Grudzinski J, Smith GT, Peterson TE, Whisenant JG, Hickman TL, Ciombor KK, Cardin D, Eng C, Goff LW, Das S, Coffey RJ, Berlin JD, Manning HC. First-in-Human PET Imaging and Estimated Radiation Dosimetry of l-[5- 11C]-Glutamine in Patients with Metastatic Colorectal Cancer. J Nucl Med 2022; 63:36-43. [PMID: 33931465 PMCID: PMC8717201 DOI: 10.2967/jnumed.120.261594] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/26/2021] [Indexed: 12/23/2022] Open
Abstract
Altered metabolism is a hallmark of cancer. In addition to glucose, glutamine is an important nutrient for cellular growth and proliferation. Noninvasive imaging via PET may help facilitate precision treatment of cancer through patient selection and monitoring of treatment response. l-[5-11C]-glutamine (11C-glutamine) is a PET tracer designed to study glutamine uptake and metabolism. The aim of this first-in-human study was to evaluate the radiologic safety and biodistribution of 11C-glutamine for oncologic PET imaging. Methods: Nine patients with confirmed metastatic colorectal cancer underwent PET/CT imaging. Patients received 337.97 ± 44.08 MBq of 11C-glutamine. Dynamic PET acquisitions that were centered over the abdomen or thorax were initiated simultaneously with intravenous tracer administration. After the dynamic acquisition, a whole-body PET/CT scan was acquired. Volume-of-interest analyses were performed to obtain estimates of organ-based absorbed doses of radiation. Results:11C-glutamine was well tolerated in all patients, with no observed safety concerns. The organs with the highest radiation exposure included the bladder, pancreas, and liver. The estimated effective dose was 4.46E-03 ± 7.67E-04 mSv/MBq. Accumulation of 11C-glutamine was elevated and visualized in lung, brain, bone, and liver metastases, suggesting utility for cancer imaging. Conclusion: PET using 11C-glutamine appears safe for human use and allows noninvasive visualization of metastatic colon cancer lesions in multiple organs. Further studies are needed to elucidate its potential for other cancers and for monitoring response to treatment.
Collapse
Affiliation(s)
- Allison S Cohen
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Gary T Smith
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Section Chief, Nuclear Medicine, Tennessee Valley Healthcare System, Nashville VA Medical Center, Nashville, Tennessee
| | - Todd E Peterson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jennifer G Whisenant
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Tiffany L Hickman
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Kristen K Ciombor
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Dana Cardin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Cathy Eng
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Laura W Goff
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Satya Das
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; and
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Jordan D Berlin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - H Charles Manning
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee;
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; and
| |
Collapse
|
23
|
Tan JL, Djayakarsana D, Wang H, Chan RW, Bailey C, Lau AZ. Deuterium MRS of early treatment-induced changes in tumour lactate in vitro. NMR IN BIOMEDICINE 2021; 34:e4599. [PMID: 34405471 DOI: 10.1002/nbm.4599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Elevated production of lactate is a key characteristic of aberrant tumour cell metabolism and can be non-invasively measured as an early marker of tumour response using deuterium (2 H) MRS. Following treatment, changes in the 2 H-labelled lactate signal could identify tumour cell death or impaired metabolic function, which precede morphological changes conventionally used to assess tumour response. In this work, the association between apoptotic cell death, extracellular lactate concentration, and early treatment-induced changes in the 2 H-labelled lactate signal was established in an in vitro tumour model. Experiments were conducted at 7 T on acute myeloid leukaemia (AML) cells, which had been treated with 10 μg/mL of the chemotherapeutic agent cisplatin. At 24 and 48 h after cisplatin treatment the cells were supplied with 20 mM of [6,6'-2 H2 ]glucose and scanned over 2 h using a two-dimensional 2 H MR spectroscopic imaging sequence. The resulting signals from 2 H-labelled glucose, lactate, and water were quantified using a spectral fitting algorithm implemented on the Oxford Spectroscopy Analysis MATLAB toolbox. After scanning, the cells were processed for histological stains (terminal deoxynucleotidyl transferase UTP nick end labelling and haematoxylin and eosin) to assess apoptotic area fraction and cell morphology respectively, while a colorimetric assay was used to measure extracellular lactate concentrations in the supernatant. Significantly lower levels of 2 H-labelled lactate were observed in the 48 h treated cells compared with the untreated and 24 h treated cells, and these changes were significantly correlated with an increase in apoptotic fraction and a decrease in extracellular lactate. By establishing the biological processes associated with treatment-induced changes in the 2 H-labelled lactate signal, these findings suggest that 2 H MRS of lactate may be valuable in evaluating early tumour response.
Collapse
Affiliation(s)
- Josephine L Tan
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Daniel Djayakarsana
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Hanzhi Wang
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Rachel W Chan
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Colleen Bailey
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Physics, Ryerson University, Toronto, Canada
| | - Angus Z Lau
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| |
Collapse
|
24
|
Lilburn DM, Groves AM. The role of PET in imaging of the tumour microenvironment and response to immunotherapy. Clin Radiol 2021; 76:784.e1-784.e15. [DOI: 10.1016/j.crad.2021.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Pratap T, Jalal MJA, K VA, Raja S. Role of Imaging in a Case of Toxoplasmosis Presenting as Generalized Lymphadenopathy. Indian J Radiol Imaging 2021; 31:445-450. [PMID: 34556929 PMCID: PMC8448221 DOI: 10.1055/s-0041-1734226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Toxoplasmosis is caused by
Toxoplasma gondii
an obligate protozoan intracellular parasite. The disease has variable prevalence globally and is usually asymptomatic. Pregnant and immunocompromised people are at risk of getting infected. Enlarged lymph nodes are the most frequently observed clinical form of
Toxoplasma
in humans, mostly affecting posterior cervical nodes. Other organs usually affected are the brain and eyes. We present a case of toxoplasmosis with generalized lymphadenopathy mimicking metastasis in a lady with a previous history of operated pancreatic neoplasm.
Collapse
Affiliation(s)
- Thara Pratap
- Department of Radiology, VPS Lakeshore Hospital, Kochi, Kerala, India
| | | | - Vishnu A K
- Department of Radiology, VPS Lakeshore Hospital, Kochi, Kerala, India
| | - Senthil Raja
- Department of Nuclear Medicine, VPS Lakeshore Hospital, Kochi, Kerala, India
| |
Collapse
|
26
|
Poteti M, Menegazzi G, Peppicelli S, Tusa I, Cheloni G, Silvano A, Mancini C, Biagioni A, Tubita A, Mazure NM, Lulli M, Rovida E, Dello Sbarba P. Glutamine Availability Controls BCR/Abl Protein Expression and Functional Phenotype of Chronic Myeloid Leukemia Cells Endowed with Stem/Progenitor Cell Potential. Cancers (Basel) 2021; 13:cancers13174372. [PMID: 34503182 PMCID: PMC8430815 DOI: 10.3390/cancers13174372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary In chronic myeloid leukemia (CML), a neoplasm brilliantly taken care of by a molecularly targeted therapeutic approach, the achievement of cure is nevertheless prevented by the maintenance of a small subset of treatment-resistant leukemia stem cells (LSCs), sustaining the so-called minimal residual disease of CML. The phenotypical and functional characterization of this LSC subset is, therefore, crucial to aim at the eradication of disease. Such a characterization includes the acquisition of information relative to the metabolic profile of treatment-resistant LSCs, which is functional to their maintenance in bone marrow. A number of metabolic features of LSCs were shown to determine their sensitivity or resistance to therapy. Glutamine metabolism emerged from this study as a potential target to overcome the persistence of therapy-resistant LSCs. Abstract This study was directed to characterize the role of glutamine in the modulation of the response of chronic myeloid leukemia (CML) cells to low oxygen, a main condition of hematopoietic stem cell niches of bone marrow. Cells were incubated in atmosphere at 0.2% oxygen in the absence or the presence of glutamine. The absence of glutamine markedly delayed glucose consumption, which had previously been shown to drive the suppression of BCR/Abl oncoprotein (but not of the fusion oncogene BCR/abl) in low oxygen. Glutamine availability thus emerged as a key regulator of the balance between the pools of BCR/Abl protein-expressing and -negative CML cells endowed with stem/progenitor cell potential and capable to stand extremely low oxygen. These findings were confirmed by the effects of the inhibitors of glucose or glutamine metabolism. The BCR/Abl-negative cell phenotype is the best candidate to sustain the treatment-resistant minimal residual disease (MRD) of CML because these cells are devoid of the molecular target of the BCR/Abl-active tyrosine kinase inhibitors (TKi) used for CML therapy. Therefore, the treatments capable of interfering with glutamine action may result in the reduction in the BCR/Abl-negative cell subset sustaining MRD and in the concomitant rescue of the TKi sensitivity of CML stem cell potential. The data obtained with glutaminase inhibitors seem to confirm this perspective.
Collapse
Affiliation(s)
- Martina Poteti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy; (M.P.); (G.M.); (S.P.); (I.T.); (G.C.); (A.S.); (C.M.); (A.B.); (A.T.); (M.L.)
| | - Giulio Menegazzi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy; (M.P.); (G.M.); (S.P.); (I.T.); (G.C.); (A.S.); (C.M.); (A.B.); (A.T.); (M.L.)
| | - Silvia Peppicelli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy; (M.P.); (G.M.); (S.P.); (I.T.); (G.C.); (A.S.); (C.M.); (A.B.); (A.T.); (M.L.)
| | - Ignazia Tusa
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy; (M.P.); (G.M.); (S.P.); (I.T.); (G.C.); (A.S.); (C.M.); (A.B.); (A.T.); (M.L.)
| | - Giulia Cheloni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy; (M.P.); (G.M.); (S.P.); (I.T.); (G.C.); (A.S.); (C.M.); (A.B.); (A.T.); (M.L.)
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Genetics, Harvard University Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Angela Silvano
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy; (M.P.); (G.M.); (S.P.); (I.T.); (G.C.); (A.S.); (C.M.); (A.B.); (A.T.); (M.L.)
| | - Caterina Mancini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy; (M.P.); (G.M.); (S.P.); (I.T.); (G.C.); (A.S.); (C.M.); (A.B.); (A.T.); (M.L.)
| | - Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy; (M.P.); (G.M.); (S.P.); (I.T.); (G.C.); (A.S.); (C.M.); (A.B.); (A.T.); (M.L.)
| | - Alessandro Tubita
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy; (M.P.); (G.M.); (S.P.); (I.T.); (G.C.); (A.S.); (C.M.); (A.B.); (A.T.); (M.L.)
| | - Nathalie M. Mazure
- Mediterranean Centre for Molecular Medicine-INSERM U1065, University of Nice-Sophia-Antipolis, 151 Route Saint Antoine de Ginestière, 06204 Nice, France;
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy; (M.P.); (G.M.); (S.P.); (I.T.); (G.C.); (A.S.); (C.M.); (A.B.); (A.T.); (M.L.)
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy; (M.P.); (G.M.); (S.P.); (I.T.); (G.C.); (A.S.); (C.M.); (A.B.); (A.T.); (M.L.)
- Correspondence: (E.R.); (P.D.S.)
| | - Persio Dello Sbarba
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy; (M.P.); (G.M.); (S.P.); (I.T.); (G.C.); (A.S.); (C.M.); (A.B.); (A.T.); (M.L.)
- Correspondence: (E.R.); (P.D.S.)
| |
Collapse
|
27
|
Capozza M, Anemone A, Dhakan C, Della Peruta M, Bracesco M, Zullino S, Villano D, Terreno E, Longo DL, Aime S. GlucoCEST MRI for the Evaluation Response to Chemotherapeutic and Metabolic Treatments in a Murine Triple-Negative Breast Cancer: A Comparison with[ 18F]F-FDG-PET. Mol Imaging Biol 2021; 24:126-134. [PMID: 34383241 DOI: 10.1007/s11307-021-01637-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/30/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) patients have usually poor outcome after chemotherapy and early prediction of therapeutic response would be helpful. [18F]F-FDG-PET/CT acquisitions are often carried out to monitor variation in metabolic activity associated with response to the therapy, despite moderate accuracy and radiation exposure limit its application. The glucoCEST technique relies on the use of unlabelled D-glucose to assess glucose uptake with conventional MRI scanners and is currently under active investigations at clinical level. This work aims at validating the potential of MRI-glucoCEST in monitoring the therapeutic responses in a TNBC tumor murine model. PROCEDURES Breast tumor (4T1)-bearing mice were treated with doxorubicin or dichloroacetate for 1 week. PET/CT with [18F]F-FDG and MRI-glucoCEST were performed at baseline and after 3 cycles of treatment. Metabolic changes measured with [18F]F-FDG-PET and glucoCEST were compared and evaluated with changes in tumor volumes. RESULTS Doxorubicin-treated mice showed a significant decrease in tumor growth when compared to the control group. GlucoCEST imaging provided metabolic response after three cycles of treatment. Conversely, no variations were detected in [18F]F-FDG uptake. Dichloroacetate-treated mice did not show any decrease either in tumor volume or in tumor metabolic activity as assessed by both glucoCEST and [18F]F-FDG-PET. CONCLUSIONS Metabolic changes during doxorubicin treatment can be predicted by glucoCEST imaging that appears more sensitive than [18F]F-FDG-PET in reporting on therapeutic response. These findings support the view that glucoCEST may be a sensitive technique for monitoring metabolic response, but future studies are needed to explore the accuracy of this approach in other tumor types and treatments.
Collapse
Affiliation(s)
- Martina Capozza
- Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Annasofia Anemone
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Chetan Dhakan
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, Turin, 10126, Italy
| | - Melania Della Peruta
- Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Martina Bracesco
- Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Sara Zullino
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Daisy Villano
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Enzo Terreno
- Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy.,Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy.,Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, Turin, 10126, Italy
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, Turin, 10126, Italy
| | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy.,Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, Turin, 10126, Italy
| |
Collapse
|
28
|
Viswanath V, Zhou R, Lee H, Li S, Cragin A, Doot RK, Mankoff DA, Pantel AR. Kinetic Modeling of 18F-(2 S,4 R)4-Fluoroglutamine in Mouse Models of Breast Cancer to Estimate Glutamine Pool Size as an Indicator of Tumor Glutamine Metabolism. J Nucl Med 2021; 62:1154-1162. [PMID: 33277391 PMCID: PMC8833875 DOI: 10.2967/jnumed.120.250977] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/19/2020] [Indexed: 02/01/2023] Open
Abstract
The PET radiotracer 18F-(2S,4R)4-fluoroglutamine (18F-Gln) reflects glutamine transport and can be used to infer glutamine metabolism. Mouse xenograft studies have demonstrated that 18F-Gln uptake correlates directly with glutamine pool size and is inversely related to glutamine metabolism through the glutaminase enzyme. To provide a framework for the analysis of 18F-Gln-PET, we have examined 18F-Gln uptake kinetics in mouse models of breast cancer at baseline and after inhibition of glutaminase. We describe results of the preclinical analysis and computer simulations with the goal of model validation and performance assessment in anticipation of human breast cancer patient studies. Methods: Triple-negative breast cancer and receptor-positive xenografts were implanted in athymic mice. PET mouse imaging was performed at baseline and after treatment with a glutaminase inhibitor or a vehicle solution for 4 mouse groups. Dynamic PET images were obtained for 1 h beginning at the time of intravenous injection of 18F-Gln. Kinetic analysis and computer simulations were performed on representative time-activity curves, testing 1- and 2-compartment models to describe kinetics. Results: Dynamic imaging for 1 h captured blood and tumor time-activity curves indicative of largely reversible uptake of 18F-Gln in tumors. Consistent with this observation, a 2-compartment model indicated a relatively low estimate of the rate constant of tracer trapping, suggesting that the 1-compartment model is preferable. Logan plot graphical analysis demonstrated late linearity, supporting reversible kinetics and modeling with a single compartment. Analysis of the mouse data and simulations suggests that estimates of glutamine pool size, specifically the distribution volume (VD) for 18F-Gln, were more reliable using the 1-compartment reversible model than the 2-compartment irreversible model. Tumor-to-blood ratios, a more practical potential proxy of VD, correlated well with volume of distribution from single-compartment models and Logan analyses. Conclusion: Kinetic analysis of dynamic 18F-Gln-PET images demonstrated the ability to measure VD to estimate glutamine pool size, a key indicator of cellular glutamine metabolism, by both a 1-compartment model and Logan analysis. Changes in VD with glutaminase inhibition support the ability to assess response to glutamine metabolism-targeted therapy. Concordance of kinetic measures with tumor-to-blood ratios provides a clinically feasible approach to human imaging.
Collapse
Affiliation(s)
- Varsha Viswanath
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rong Zhou
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hsiaoju Lee
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shihong Li
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Abigail Cragin
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert K Doot
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David A Mankoff
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Austin R Pantel
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
29
|
Edwards R, Greenwood HE, McRobbie G, Khan I, Witney TH. Robust and Facile Automated Radiosynthesis of [ 18F]FSPG on the GE FASTlab. Mol Imaging Biol 2021; 23:854-864. [PMID: 34013395 PMCID: PMC8578107 DOI: 10.1007/s11307-021-01609-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/19/2021] [Accepted: 04/18/2021] [Indexed: 01/18/2023]
Abstract
Purpose (S)-4-(3-18F-Fluoropropyl)-ʟ-Glutamic Acid ([18F]FSPG) is a radiolabeled non-natural amino acid that is used for positron emission tomography (PET) imaging of the glutamate/cystine antiporter, system xC-, whose expression is upregulated in many cancer types. To increase the clinical adoption of this radiotracer, reliable and facile automated procedures for [18F]FSPG production are required. Here, we report a cassette-based method to produce [18F]FSPG at high radioactivity concentrations from low amounts of starting activity. Procedures An automated synthesis and purification of [18F]FSPG was developed using the GE FASTlab. Optimization of the reaction conditions and automated manipulations were performed by measuring the isolated radiochemical yield of [18F]FSPG and by assessing radiochemical purity using radio-HPLC. Purification of [18F]FSPG was conducted by trapping and washing of the radiotracer on Oasis MCX SPE cartridges, followed by a reverse elution of [18F]FSPG in phosphate-buffered saline. Subsequently, the [18F]FSPG obtained from the optimized process was used to image an animal model of non-small cell lung cancer. Results The optimized protocol produced [18F]FSPG in 38.4 ± 2.6 % radiochemical yield and >96 % radiochemical purity with a molar activity of 11.1 ± 7.7 GBq/μmol. Small alterations, including the implementation of a reverse elution and an altered Hypercarb cartridge, led to significant improvements in radiotracer concentration from <10 MBq/ml to >100 MBq/ml. The improved radiotracer concentration allowed for the imaging of up to 20 mice, starting with just 1.5 GBq of [18F]Fluoride. Conclusions We have developed a robust and facile method for [18F]FSPG radiosynthesis in high radiotracer concentration, radiochemical yield, and radiochemical purity. This cassette-based method enabled the production of [18F]FSPG at radioactive concentrations sufficient to facilitate large-scale preclinical experiments with a single prep of starting activity. The use of a cassette-based radiosynthesis on an automated synthesis module routinely used for clinical production makes the method amenable to rapid and widespread clinical translation. Supplementary Information The online version contains supplementary material available at 10.1007/s11307-021-01609-w.
Collapse
Affiliation(s)
- Richard Edwards
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Hannah E Greenwood
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Graeme McRobbie
- Pharmaceutical Diagnostics, Life Sciences, GE Healthcare, Pollards Wood, Nightingales Lane, Chalfont St. Giles, Buckinghamshire, HP8 4SP, UK
| | - Imtiaz Khan
- Pharmaceutical Diagnostics, Life Sciences, GE Healthcare, Pollards Wood, Nightingales Lane, Chalfont St. Giles, Buckinghamshire, HP8 4SP, UK
| | - Timothy H Witney
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK.
| |
Collapse
|
30
|
Laskar RS, Li P, Ecsedi S, Abedi-Ardekani B, Durand G, Robinot N, Hubert JN, Janout V, Zaridze D, Mukeria A, Mates D, Holcatova I, Foretova L, Swiatkowska B, Dzamic Z, Milosavljevic S, Olaso R, Boland A, Deleuze JF, Muller DC, McKay JD, Brennan P, Le Calvez-Kelm F, Scelo G, Chanudet E. Sexual dimorphism in cancer: insights from transcriptional signatures in kidney tissue and renal cell carcinoma. Hum Mol Genet 2021; 30:343-355. [PMID: 33527138 PMCID: PMC8098110 DOI: 10.1093/hmg/ddab031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
Sexual dimorphism in cancer incidence and outcome is widespread. Understanding the underlying mechanisms is fundamental to improve cancer prevention and clinical management. Sex disparities are particularly striking in kidney cancer: across diverse populations, men consistently show unexplained 2-fold increased incidence and worse prognosis. We have characterized genome-wide expression and regulatory networks of 609 renal tumors and 256 non-tumor renal tissues. Normal kidney displayed sex-specific transcriptional signatures, including higher expression of X-linked tumor suppressor genes in women. Sex-dependent genotype-phenotype associations unraveled women-specific immune regulation. Sex differences were markedly expanded in tumors, with male-biased expression of key genes implicated in metabolism, non-malignant diseases with male predominance and carcinogenesis, including markers of tumor infiltrating leukocytes. Analysis of sex-dependent RCC progression and survival uncovered prognostic markers involved in immune response and oxygen homeostasis. In summary, human kidney tissues display remarkable sexual dimorphism at the molecular level. Sex-specific transcriptional signatures further shape renal cancer, with relevance for clinical management.
Collapse
Affiliation(s)
- Ruhina S Laskar
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France
| | - Peng Li
- Laboratory of Population Health, Max Planck Institute for Demographic Research, 18057 Rostock, Germany
| | - Szilvia Ecsedi
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France
| | - Behnoush Abedi-Ardekani
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France
| | - Geoffroy Durand
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France
| | - Nivonirina Robinot
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France
| | - Jean-Noël Hubert
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France
| | - Vladimir Janout
- Science and Research Center, Faculty of Health Sciences, Palacky University, 77900 Olomouc, Czech Republic
| | - David Zaridze
- Department of Epidemiology and Prevention, Russian N.N. Blokhin Cancer Research Centre, 115478 Moscow, Russian Federation
| | - Anush Mukeria
- Department of Epidemiology and Prevention, Russian N.N. Blokhin Cancer Research Centre, 115478 Moscow, Russian Federation
| | - Dana Mates
- Department of Environmental Health, National Institute of Public Health, 050463 Bucharest, Romania
| | - Ivana Holcatova
- Department of Public Health and Preventive Medicine, Charles University, Second Faculty of Medicine, 15006 Prague, Czech Republic
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, 60200 Brno, Czech Republic
| | - Beata Swiatkowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland
| | - Zoran Dzamic
- Clinic of Urology, Clinical Center of Serbia (KCS), University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
| | - Sasa Milosavljevic
- International Organisation for Cancer Prevention and Research, 11070 Belgrade, Serbia
| | - Robert Olaso
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057, Evry, France
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057, Evry, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057, Evry, France
| | - David C Muller
- Faculty of Medicine, School of Public Health, Imperial College London, W21NY London, UK
| | - James D McKay
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France
| | - Paul Brennan
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France
| | - Florence Le Calvez-Kelm
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France
| | - Ghislaine Scelo
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France
- Unit of Cancer Epidemiology, Department of Medical Sciences, University of Turin, 8-10124 Turin, Italy
| | - Estelle Chanudet
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France
| |
Collapse
|
31
|
Miller KD, Pniewski K, Perry CE, Papp SB, Shaffer JD, Velasco-Silva JN, Casciano JC, Aramburu TM, Srikanth YVV, Cassel J, Skordalakes E, Kossenkov AV, Salvino JM, Schug ZT. Targeting ACSS2 with a Transition-State Mimetic Inhibits Triple-Negative Breast Cancer Growth. Cancer Res 2021; 81:1252-1264. [PMID: 33414169 PMCID: PMC8026699 DOI: 10.1158/0008-5472.can-20-1847] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/20/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022]
Abstract
Acetyl-CoA is a vitally important and versatile metabolite used for many cellular processes including fatty acid synthesis, ATP production, and protein acetylation. Recent studies have shown that cancer cells upregulate acetyl-CoA synthetase 2 (ACSS2), an enzyme that converts acetate to acetyl-CoA, in response to stresses such as low nutrient availability and hypoxia. Stressed cancer cells use ACSS2 as a means to exploit acetate as an alternative nutrient source. Genetic depletion of ACSS2 in tumors inhibits the growth of a wide variety of cancers. However, there are no studies on the use of an ACSS2 inhibitor to block tumor growth. In this study, we synthesized a small-molecule inhibitor that acts as a transition-state mimetic to block ACSS2 activity in vitro and in vivo. Pharmacologic inhibition of ACSS2 as a single agent impaired breast tumor growth. Collectively, our findings suggest that targeting ACSS2 may be an effective therapeutic approach for the treatment of patients with breast cancer. SIGNIFICANCE: These findings suggest that targeting acetate metabolism through ACSS2 inhibitors has the potential to safely and effectively treat a wide range of patients with cancer.
Collapse
Affiliation(s)
- Katelyn D Miller
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, Pennsylvania
| | - Katherine Pniewski
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, Pennsylvania
| | - Caroline E Perry
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, Pennsylvania
- Cell & Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sara B Papp
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, Pennsylvania
| | - Joshua D Shaffer
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, Pennsylvania
- Cell & Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jesse N Velasco-Silva
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, Pennsylvania
- Biochemistry Department, School of Medicine, University of Utah, Salt Lake City, Utah
| | - Jessica C Casciano
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, Pennsylvania
| | - Tomas M Aramburu
- Gene Expression and Regulation Program, Wistar Institute, Philadelphia, Pennsylvania
| | | | - Joel Cassel
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, Pennsylvania
| | - Emmanuel Skordalakes
- Gene Expression and Regulation Program, Wistar Institute, Philadelphia, Pennsylvania
| | - Andrew V Kossenkov
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, Pennsylvania
| | - Joseph M Salvino
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, Pennsylvania
| | - Zachary T Schug
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
32
|
Hamanaka RB, Mutlu GM. Metabolic requirements of pulmonary fibrosis: role of fibroblast metabolism. FEBS J 2021; 288:6331-6352. [PMID: 33393204 DOI: 10.1111/febs.15693] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/22/2020] [Accepted: 12/31/2020] [Indexed: 12/27/2022]
Abstract
Fibrosis is a pathologic condition characterized by excessive deposition of extracellular matrix and chronic scaring that can affect every organ system. Organ fibrosis is associated with significant morbidity and mortality, contributing to as many as 45% of all deaths in the developed world. In the lung, many chronic lung diseases may lead to fibrosis, the most devastating being idiopathic pulmonary fibrosis (IPF), which affects approximately 3 million people worldwide and has a median survival of 3.8 years. Currently approved therapies for IPF do not significantly extend lifespan, and thus, there is pressing need for novel therapeutic strategies to treat IPF and other fibrotic diseases. At the heart of pulmonary fibrosis are myofibroblasts, contractile cells with characteristics of both fibroblasts and smooth muscle cells, which are the primary cell type responsible for matrix deposition in fibrotic diseases. Much work has centered around targeting the extracellular growth factors and intracellular signaling regulators of myofibroblast differentiation. Recently, metabolic changes associated with myofibroblast differentiation have come to the fore as targetable mechanisms required for myofibroblast function. In this review, we will discuss the metabolic changes associated with myofibroblast differentiation, as well as the mechanisms by which these changes promote myofibroblast function. We will then discuss the potential for this new knowledge to lead to the development of novel therapies for IPF and other fibrotic diseases.
Collapse
Affiliation(s)
- Robert B Hamanaka
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, IL, USA
| | - Gökhan M Mutlu
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, IL, USA
| |
Collapse
|
33
|
Hyperpolarized [1- 13C]pyruvate-to-[1- 13C]lactate conversion is rate-limited by monocarboxylate transporter-1 in the plasma membrane. Proc Natl Acad Sci U S A 2020; 117:22378-22389. [PMID: 32839325 DOI: 10.1073/pnas.2003537117] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hyperpolarized [1-13C]pyruvate magnetic resonance spectroscopic imaging (MRSI) is a noninvasive metabolic-imaging modality that probes carbon flux in tissues and infers the state of metabolic reprograming in tumors. Prevailing models attribute elevated hyperpolarized [1-13C]pyruvate-to-[1-13C]lactate conversion rates in aggressive tumors to enhanced glycolytic flux and lactate dehydrogenase A (LDHA) activity (Warburg effect). By contrast, we find by cross-sectional analysis using genetic and pharmacological tools in mechanistic studies applied to well-defined genetically engineered cell lines and tumors that initial hyperpolarized [1-13C]pyruvate-to-[1-13C]lactate conversion rates as well as global conversion were highly dependent on and critically rate-limited by the transmembrane influx of [1-13C]pyruvate mediated predominately by monocarboxylate transporter-1 (MCT1). Specifically, in a cell-encapsulated alginate bead model, induced short hairpin (shRNA) knockdown or overexpression of MCT1 quantitatively inhibited or enhanced, respectively, unidirectional pyruvate influxes and [1-13C]pyruvate-to-[1-13C]lactate conversion rates, independent of glycolysis or LDHA activity. Similarly, in tumor models in vivo, hyperpolarized [1-13C]pyruvate-to-[1-13C]lactate conversion was highly dependent on and critically rate-limited by the induced transmembrane influx of [1-13C]pyruvate mediated by MCT1. Thus, hyperpolarized [1-13C]pyruvate MRSI measures primarily MCT1-mediated [1-13C]pyruvate transmembrane influx in vivo, not glycolytic flux or LDHA activity, driving a reinterpretation of this maturing new technology during clinical translation. Indeed, Kaplan-Meier survival analysis for patients with pancreatic, renal, lung, and cervical cancers showed that high-level expression of MCT1 correlated with poor overall survival, and only in selected tumors, coincident with LDHA expression. Thus, hyperpolarized [1-13C]pyruvate MRSI provides a noninvasive functional assessment primarily of MCT1 as a clinical biomarker in relevant patient populations.
Collapse
|
34
|
Perkons NR, Kiefer RM, Noji MC, Pourfathi M, Ackerman D, Siddiqui S, Tischfield D, Profka E, Johnson O, Pickup S, Mancuso A, Pantel A, Denburg MR, Nadolski GJ, Hunt SJ, Furth EE, Kadlecek S, Gade TPF. Hyperpolarized Metabolic Imaging Detects Latent Hepatocellular Carcinoma Domains Surviving Locoregional Therapy. Hepatology 2020; 72:140-154. [PMID: 31553806 PMCID: PMC7307779 DOI: 10.1002/hep.30970] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/08/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Advances in cancer treatment have improved survival; however, local recurrence and metastatic disease-the principal causes of cancer mortality-have limited the ability to achieve durable remissions. Local recurrences arise from latent tumor cells that survive therapy and are often not detectable by conventional clinical imaging techniques. Local recurrence after transarterial embolization (TAE) of hepatocellular carcinoma (HCC) provides a compelling clinical correlate of this phenomenon. In response to TAE-induced ischemia, HCC cells adapt their growth program to effect a latent phenotype that precedes local recurrence. APPROACH AND RESULTS In this study, we characterized and leveraged the metabolic reprogramming demonstrated by latent HCC cells in response to TAE-induced ischemia to enable their detection in vivo using dynamic nuclear polarization (DNP) magnetic resonance spectroscopic imaging (MRSI) of 13 carbon-labeled substrates. Under TAE-induced ischemia, latent HCC cells demonstrated reduced metabolism and developed a dependence on glycolytic flux to lactate. Despite the hypometabolic state of these cells, DNP-MRSI of 1-13 C-pyruvate and its downstream metabolites, 1-13 C-lactate and 1-13 C-alanine, predicted histological viability. CONCLUSIONS These studies provide a paradigm for imaging latent, treatment-refractory cancer cells, suggesting that DNP-MRSI provides a technology for this application.
Collapse
Affiliation(s)
- Nicholas R. Perkons
- Penn Image-Guided Interventions Laboratory, Hospital of the University of Pennsylvania, Philadelphia, PA 19104,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
| | - Ryan M. Kiefer
- Penn Image-Guided Interventions Laboratory, Hospital of the University of Pennsylvania, Philadelphia, PA 19104,Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Michael C. Noji
- Penn Image-Guided Interventions Laboratory, Hospital of the University of Pennsylvania, Philadelphia, PA 19104,Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Mehrdad Pourfathi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Daniel Ackerman
- Penn Image-Guided Interventions Laboratory, Hospital of the University of Pennsylvania, Philadelphia, PA 19104,Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Sarmad Siddiqui
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - David Tischfield
- Penn Image-Guided Interventions Laboratory, Hospital of the University of Pennsylvania, Philadelphia, PA 19104,Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Enri Profka
- Penn Image-Guided Interventions Laboratory, Hospital of the University of Pennsylvania, Philadelphia, PA 19104,Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Omar Johnson
- Penn Image-Guided Interventions Laboratory, Hospital of the University of Pennsylvania, Philadelphia, PA 19104,Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Stephen Pickup
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Anthony Mancuso
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Austin Pantel
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Michelle R. Denburg
- Department of Nephrology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Gregory J. Nadolski
- Penn Image-Guided Interventions Laboratory, Hospital of the University of Pennsylvania, Philadelphia, PA 19104,Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Stephen J. Hunt
- Penn Image-Guided Interventions Laboratory, Hospital of the University of Pennsylvania, Philadelphia, PA 19104,Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Emma E. Furth
- Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Stephen Kadlecek
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Terence P. F. Gade
- Penn Image-Guided Interventions Laboratory, Hospital of the University of Pennsylvania, Philadelphia, PA 19104,Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104,Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104,Corresponding author: Terence P. F. Gade, University of Pennsylvania Perelman School of Medicine, 652 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160, Tel: 215-573-9756, Fax: 215-746-5511,
| |
Collapse
|
35
|
Schömel N, Geisslinger G, Wegner MS. Influence of glycosphingolipids on cancer cell energy metabolism. Prog Lipid Res 2020; 79:101050. [PMID: 32592726 DOI: 10.1016/j.plipres.2020.101050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Abstract
A growing number of studies describe a connection between glycosphingolipids (GSLs) and glutamine metabolism, glucose metabolism and mitochondrial dysfunction in cancer cells. Since deregulated cell energy metabolism is one of cancer cells hallmarks, investigating this connection is an important step in the development of anti-cancer therapies. GSL species are often aberrantly regulated in human cancers. They cluster in signaling platforms in the plasma membrane and organelle membranes in so called glycosphingolipid enriched microdomains (GEMs), thereby regulating cell signaling pathways. The most important glutamine transporter for epithelial cells, alanine-serine-cysteine transporter 2 (ASCT2) locates in GEMs and is regulated by GEM composition. The accumulation of glucosylceramide and lactosylceramide in mitochondria associated ER membranes (MAMs) leads to increased oxidative phosphorylation. This increases mitochondrial reactive oxygen species (ROS) levels and influences mitochondrial dynamics. Here, we review current knowledge about deregulated GSL species in cancer, GSL influence on glutamine and glucose metabolism. In addition, the role of GSLs in MAMs, oxidative phosphorylation (OXPHOS) and mitochondrial dynamics with a special focus on mechanistic target of rapamycin (mTOR) signaling is discussed. mTOR seems to play a pivotal role in the connection between GSLs and glutamine metabolism as well as in mitochondrial signaling.
Collapse
Affiliation(s)
- Nina Schömel
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Gerd Geisslinger
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Marthe-Susanna Wegner
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
36
|
Perkons NR, Johnson O, Pilla G, Profka E, Mercadante M, Ackerman D, Gade TPF. Functional Genetic Screening Enables Theranostic Molecular Imaging in Cancer. Clin Cancer Res 2020; 26:4581-4589. [PMID: 32499234 DOI: 10.1158/1078-0432.ccr-20-0826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/11/2020] [Accepted: 05/29/2020] [Indexed: 12/27/2022]
Abstract
PURPOSE Targeted therapies for cancer have accelerated the need for functional imaging strategies that inform therapeutic efficacy. This study assesses the potential of functional genetic screening to integrate therapeutic target identification with imaging probe selection through a proof-of-principle characterization of a therapy-probe pair using dynamic nuclear polarization (DNP)-enhanced magnetic resonance spectroscopic imaging (MRSI). EXPERIMENTAL DESIGN CRISPR-negative selection screens from a public dataset were used to identify the relative dependence of 625 cancer cell lines on 18,333 genes. Follow-up screening was performed in hepatocellular carcinoma with a focused CRISPR library targeting imaging-related genes. Hyperpolarized [1-13C]-pyruvate was injected before and after lactate dehydrogenase inhibitor (LDHi) administration in male Wistar rats with autochthonous hepatocellular carcinoma. MRSI evaluated intratumoral pyruvate metabolism, while T2-weighted segmentations quantified tumor growth. RESULTS Genetic screening data identified differential metabolic vulnerabilities in 17 unique cancer types that could be imaged with existing probes. Among these, hepatocellular carcinoma required lactate dehydrogenase (LDH) for growth more than the 29 other cancer types in this database. LDH inhibition led to a decrease in lactate generation (P < 0.001) and precipitated dose-dependent growth inhibition (P < 0.01 overall, P < 0.05 for dose dependence). Intratumoral alanine production after inhibition predicted the degree of growth reduction (P < 0.001). CONCLUSIONS These findings demonstrate that DNP-MRSI of LDH activity using hyperpolarized [1-13C]-pyruvate is a theranostic strategy for hepatocellular carcinoma, enabling quantification of intratumoral LDHi pharmacodynamics and therapeutic efficacy prediction. This work lays the foundation for a novel theranostic platform wherein functional genetic screening informs imaging probe selection to quantify therapeutic efficacy on a cancer-by-cancer basis.
Collapse
Affiliation(s)
- Nicholas R Perkons
- Penn Image Guided Interventions Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Omar Johnson
- Penn Image Guided Interventions Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gabrielle Pilla
- Penn Image Guided Interventions Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Enri Profka
- Penn Image Guided Interventions Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael Mercadante
- Penn Image Guided Interventions Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel Ackerman
- Penn Image Guided Interventions Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Terence P F Gade
- Penn Image Guided Interventions Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania. .,Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
37
|
Surti S, Pantel AR, Karp JS. Total Body PET: Why, How, What for? IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020; 4:283-292. [PMID: 33134653 PMCID: PMC7595297 DOI: 10.1109/trpms.2020.2985403] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PET instruments are now available with a long axial field-of-view (LAFOV) to enable imaging the total-body, or at least head and torso, simultaneously and without bed translation. This has two major benefits, a dramatic increase in system sensitivity and the ability to measure kinetics with wider axial coverage so as to include multiple organs. This manuscript presents a review of the technology leading up to the introduction of these new instruments, and explains the benefits of a LAFOV PET-CT instrument. To date there are two platforms developed for TB-PET, an outcome of the EXPLORER Consortium of the University of California at Davis (UC Davis) and the University of Pennsylvania (Penn). The uEXPLORER at UC Davis has an AFOV of 194 cm and was developed by United Imaging Healthcare. The PennPET EXPLORER was developed at Penn and is based on the digital detector from Philips Healthcare. This multi-ring system is scalable and has been tested with 3 rings but is now being expanded to 6 rings for 140 cm. Initial human studies with both EXPLORER systems have demonstrated the successful implementation and benefits of LAFOV scanners for both clinical and research applications. Examples of such studies are described in this manuscript.
Collapse
Affiliation(s)
- Suleman Surti
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Austin R Pantel
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joel S Karp
- Departments of Radiology and Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
38
|
Wildenberg JC, Perkons NR, Pilla G, Kadlecek S, Gade TPF. Computational pipeline for estimation of small-molecule T1 relaxation times. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 314:106733. [PMID: 32339979 PMCID: PMC8826363 DOI: 10.1016/j.jmr.2020.106733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Molecular imaging of biologic molecules and cellular processes is increasingly accessible through hyperpolarization of chemically-equivalent stable isotopes, most commonly 13C. However, many molecules are poor candidates for imaging due to their biophysical properties, particularly short spin-lattice relaxation times (T1). The inability to consistently predict the T1 from molecular structure, lack of experimental data for many biologically-relevant molecules and the high cost of developing probes can limit the development of hyperpolarized probes. We describe an in silico pipeline for modeling the estimated T1 of molecules of interest in order to address this deficiency. Applying a hybrid approach that incorporates molecular dynamics as well as quantum mechanics, this pipeline estimated T1 values that closely matched empirically determined values providing proof-of-principle that this approach may be used to facilitate MR probe development.
Collapse
Affiliation(s)
- Joseph C Wildenberg
- Department of Radiology, Mayo Clinic Health System - Northwest Wisconsin, Eau Claire, WI, United States; Penn Image-Guided Interventions Lab, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States.
| | - Nicholas R Perkons
- Penn Image-Guided Interventions Lab, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States; Functional and Metabolic Imaging Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States; Department of Bioengineering, School of Engineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Gabrielle Pilla
- Penn Image-Guided Interventions Lab, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States; Functional and Metabolic Imaging Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States; Department of Bioengineering, School of Engineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Stephen Kadlecek
- Functional and Metabolic Imaging Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States; Department of Bioengineering, School of Engineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Terence P F Gade
- Penn Image-Guided Interventions Lab, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, United States.
| |
Collapse
|
39
|
Dynamic PET/CT imaging of 18F-(2S, 4R)4-fluoroglutamine in healthy volunteers and oncological patients. Eur J Nucl Med Mol Imaging 2020; 47:2280-2292. [DOI: 10.1007/s00259-019-04543-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023]
|
40
|
Consolino L, Anemone A, Capozza M, Carella A, Irrera P, Corrado A, Dhakan C, Bracesco M, Longo DL. Non-invasive Investigation of Tumor Metabolism and Acidosis by MRI-CEST Imaging. Front Oncol 2020; 10:161. [PMID: 32133295 PMCID: PMC7040491 DOI: 10.3389/fonc.2020.00161] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/29/2020] [Indexed: 12/15/2022] Open
Abstract
Altered metabolism is considered a core hallmark of cancer. By monitoring in vivo metabolites changes or characterizing the tumor microenvironment, non-invasive imaging approaches play a fundamental role in elucidating several aspects of tumor biology. Within the magnetic resonance imaging (MRI) modality, the chemical exchange saturation transfer (CEST) approach has emerged as a new technique that provides high spatial resolution and sensitivity for in vivo imaging of tumor metabolism and acidosis. This mini-review describes CEST-based methods to non-invasively investigate tumor metabolism and important metabolites involved, such as glucose and lactate, as well as measurement of tumor acidosis. Approaches that have been exploited to assess response to anticancer therapies will also be reported for each specific technique.
Collapse
Affiliation(s)
- Lorena Consolino
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany.,Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Turin, Italy
| | - Annasofia Anemone
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Turin, Italy
| | - Martina Capozza
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Turin, Italy
| | - Antonella Carella
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Turin, Italy
| | - Pietro Irrera
- University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessia Corrado
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Turin, Italy
| | - Chetan Dhakan
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Turin, Italy.,University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Martina Bracesco
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Turin, Italy
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Turin, Italy
| |
Collapse
|
41
|
López-Sánchez LM, Aranda E, Rodríguez-Ariza A. Nitric oxide and tumor metabolic reprogramming. Biochem Pharmacol 2019; 176:113769. [PMID: 31862448 DOI: 10.1016/j.bcp.2019.113769] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) has been highlighted as an important agent in tumor processes. However, a complete understanding of the mechanisms by which this simple diatomic molecule contributes in tumorigenesis is lacking. Evidence is rapidly accumulating that metabolic reprogramming is a major new aspect of NO biology and this review is aimed to summarize recent research progress on this novel feature that expands the complex and multifaceted role of NO in cancer. Therefore, we discuss how NO may influence glucose and glutamine utilization by tumor cells, and its participation in the regulation of mitochondrial function and dynamics, that is an important mechanism through which cancer cells reprogram their metabolism to meet the biosynthetic needs of rapid proliferation. Finally, we also discuss the NO-related metabolic rewiring involved in the modification of the tumor microenvironment to support cancer invasion and the escape from immune system-mediated recognition. Protein S-nitrosylation appears as a common mechanism by which NO signaling reprograms metabolism. Hence, future research is needed on dysregulated S-nitrosylation/denitrosylation in cancer to comprehend the NO-induced metabolic changes in tumor cells and the role of NO in the metabolic crosstalk within tumor microenvironment.
Collapse
Affiliation(s)
- Laura M López-Sánchez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Av. Menéndez Pidal s/n, E14004 Córdoba, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, E 28029 Madrid, Spain
| | - Enrique Aranda
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Av. Menéndez Pidal s/n, E14004 Córdoba, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, E 28029 Madrid, Spain; Unidad de Gestión Clínica de Oncología Médica, Hospital Reina Sofía, Universidad de Córdoba, Av. Menéndez Pidal s/n, E14004 Córdoba, Spain
| | - Antonio Rodríguez-Ariza
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Av. Menéndez Pidal s/n, E14004 Córdoba, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, E 28029 Madrid, Spain; Unidad de Gestión Clínica de Oncología Médica, Hospital Reina Sofía, Universidad de Córdoba, Av. Menéndez Pidal s/n, E14004 Córdoba, Spain.
| |
Collapse
|
42
|
Beinat C, Gowrishankar G, Shen B, Alam IS, Robinson E, Haywood T, Patel CB, Azevedo EC, Castillo JB, Ilovich O, Koglin N, Schmitt-Willich H, Berndt M, Mueller A, Zerna M, Srinivasan A, Gambhir SS. The Characterization of 18F-hGTS13 for Molecular Imaging of x C- Transporter Activity with PET. J Nucl Med 2019; 60:1812-1817. [PMID: 31171595 PMCID: PMC12079159 DOI: 10.2967/jnumed.119.225870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was development of an improved PET radiotracer for measuring xC- activity with increased tumor uptake and reduced uptake in inflammatory cells compared with (S)-4-(3-18F-fluoropropyl)-l-glutamate (18F-FSPG). Methods: A racemic glutamate derivative, 18F-hGTS13, was evaluated in cell culture and animal tumor models. 18F-hGTS13 was separated into C5 epimers, and the corresponding 18F-hGTS13-isomer1 and 18F-hGTS13-isomer2 were evaluated in H460 tumor-bearing rats. Preliminary studies investigated the cellular uptake of 18F-hGTS13-isomer2 in multiple immune cell populations and states. Results:18F-hGTS13 demonstrated excellent H460 tumor visualization with high tumor-to-background ratios, confirmed by ex vivo biodistribution studies. Tumor-associated radioactivity was significantly higher for 18F-hGTS13 (7.5 ± 0.9 percentage injected dose [%ID]/g, n = 3) than for 18F-FSPG (4.6 ± 0.7 %ID/g, n = 3, P = 0.01). 18F-hGTS13-isomer2 exhibited excellent H460 tumor visualization (6.3 ± 1.1 %ID/g, n = 3) and significantly reduced uptake in multiple immune cell populations relative to 18F-FSPG. 18F-hGTS13-isomer2 exhibited increased liver uptake relative to 18F-FSPG (4.6 ± 0.8 vs. 0.7 ± 0.01 %ID/g), limiting its application in hepatocellular carcinoma. Conclusion:18F-hGTS13-isomer2 is a new PET radiotracer for molecular imaging of xC- activity that may provide information on tumor oxidation states. 18F-hGTS13-isomer2 has potential for clinical translation for imaging cancers of the thorax because of the low background signal in healthy tissue.
Collapse
Affiliation(s)
- Corinne Beinat
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California
| | - Gayatri Gowrishankar
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California
| | - Bin Shen
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California
| | - Israt S Alam
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California
| | - Elise Robinson
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California
| | - Tom Haywood
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California
| | - Chirag B Patel
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Emily Carmen Azevedo
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California
| | - Jessa B Castillo
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California
| | - Ohad Ilovich
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California
| | - Norman Koglin
- Life Molecular Imaging GmbH (formerly Piramal Imaging) GmbH, Berlin, Germany; and
| | | | - Mathias Berndt
- Life Molecular Imaging GmbH (formerly Piramal Imaging) GmbH, Berlin, Germany; and
| | - Andre Mueller
- Life Molecular Imaging GmbH (formerly Piramal Imaging) GmbH, Berlin, Germany; and
| | - Marion Zerna
- Life Molecular Imaging GmbH (formerly Piramal Imaging) GmbH, Berlin, Germany; and
| | - Ananth Srinivasan
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California
| | - Sanjiv Sam Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California
- Departments of Bioengineering and Materials Science and Engineering, Bio-X, Stanford University, Stanford, California
| |
Collapse
|
43
|
Wappler J, Arts M, Röth A, Heeren RMA, Peter Neumann U, Olde Damink SW, Soons Z, Cramer T. Glutamine deprivation counteracts hypoxia-induced chemoresistance. Neoplasia 2019; 22:22-32. [PMID: 31765939 PMCID: PMC6883317 DOI: 10.1016/j.neo.2019.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 12/29/2022] Open
Abstract
The microenvironment of solid tumors is a key determinant of therapy efficacy. The co-occurrence of oxygen and nutrient deprivation is a common phenomenon of the tumor microenvironment and associated with treatment resistance. Cholangiocarcinoma (CCA) is characterized by a very poor prognosis and pronounced chemoresistance. A better understanding of the underlying molecular mechanisms is urgently needed to improve therapy strategies against CCA. We sought to investigate the importance of the conditionally essential amino acid glutamine, a centrally important nutrient for a variety of solid tumors, for CCA. Glutamine levels were strongly decreased in CCA samples and the growth of established human CCA cell lines was highly dependent on glutamine. Using gradual reduction of external glutamine, we generated derivatives of CCA cell lines which were able to grow without external glutamine (termed glutamine-depleted (GD)). To analyze the effects of coincident oxygen and glutamine deprivation, GD cells were treated with cisplatin or gemcitabine under normoxia and hypoxia. Strikingly, the well-established phenomenon of hypoxia-induced chemoresistance was completely reversed in GD cells. In order to better understand the underlying mechanisms, we focused on the oncogene c-Myc. The combination of cisplatin and hypoxia led to sustained c-Myc protein expression in wildtype cells. In contrast, c-Myc expression was reduced in response to the combinatorial treatment in GD cells, suggesting a functional importance of c-Myc in the process of hypoxia-induced chemoresistance. In summary, these findings indicate that the mechanisms driving adaption to tumor microenvironmental changes and their relevance for the response to therapy are more complex than expected.
Collapse
Affiliation(s)
- Jessica Wappler
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Martijn Arts
- Department of Surgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Anjali Röth
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany; ESCAM - European Surgery Center Aachen Maastricht, Aachen, Germany; ESCAM - European Surgery Center Aachen Maastricht, Maastricht, the Netherlands
| | - Ron M A Heeren
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands
| | - Ulf Peter Neumann
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany; Department of Surgery, Maastricht University Medical Center, Maastricht, the Netherlands; ESCAM - European Surgery Center Aachen Maastricht, Aachen, Germany; ESCAM - European Surgery Center Aachen Maastricht, Maastricht, the Netherlands
| | - Steven W Olde Damink
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany; Department of Surgery, Maastricht University Medical Center, Maastricht, the Netherlands; ESCAM - European Surgery Center Aachen Maastricht, Aachen, Germany; ESCAM - European Surgery Center Aachen Maastricht, Maastricht, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Zita Soons
- Department of Surgery, Maastricht University Medical Center, Maastricht, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Thorsten Cramer
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany; Department of Surgery, Maastricht University Medical Center, Maastricht, the Netherlands; ESCAM - European Surgery Center Aachen Maastricht, Aachen, Germany; ESCAM - European Surgery Center Aachen Maastricht, Maastricht, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
44
|
Lee HS, Pantel AR, Zhou R, Mankoff DA. A PET Glutamate Analogue to Measure Cancer Cell Redox State and Oxidative Stress: Promise and Paradox. Cancer Res 2019; 79:701-703. [PMID: 30770365 DOI: 10.1158/0008-5472.can-18-4034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 11/16/2022]
Abstract
[18F]FSPG was shown to provide an indirect measure of the cellular redox state and may be used as an early indicator of therapy response to cancer therapies that cause oxidative stress. A somewhat paradoxical finding was that reduced [18F]FSPG cellular uptake was associated with either lower cellular concentrations of cystine or glutamate, despite opposing the transport of these substances in the Xc- antiporter, for which [18F]FSPG is also a substrate. Further studies of the kinetics of [18F]FSPG will help elucidate the factors mediating a decline in [18F]FSPG with oxidative stress.See related article by McCormick et al, p. 853.
Collapse
Affiliation(s)
- Hsiaoju S Lee
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Austin R Pantel
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rong Zhou
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David A Mankoff
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
45
|
Wong YKE, Lam KW, Ho KY, Yu CSA, Cho WCS, Tsang HF, Chu MKM, Ng PWL, Tai CSW, Chan LWC, Wong EYL, Wong SCC. The applications of big data in molecular diagnostics. Expert Rev Mol Diagn 2019; 19:905-917. [PMID: 31422710 DOI: 10.1080/14737159.2019.1657834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 08/16/2019] [Indexed: 12/30/2022]
Abstract
Introduction: Big Data technologies instilled an informational perspective to our understanding of the world. However, fundamental issues such as the management and storage of data can create privacy concerns. Heterogeneous types of data pose challenges in reproducibility and standardization. It is now an opportunity for us to help the health-care professionals, educators, and policy-makers understand the impact of Big Data, and steer the development roadmap to positively impact the molecular diagnostic industry. Area covered: In this review, we discuss the latest trends in applying Big Data to several key areas of molecular diagnostics: metagenomics, Mendelian disease screening, personalized medicine, and metabolomics. The limitations of utilizing bioinformatics and Big Data analytic tools are also summarized. We further propose an action plan on how to prepare a new generation of health-care professionals to step into the age of Big Data through a tailor-made bioinformatics training program. Expert opinion: In order to cope with the development of these powerful technologies, issues of ethics, regulations, and data format standardization are urgently needed. Besides, a long-term planning to train medical scientists, pathologists, and specialists on bioinformatics is necessary. It is an appropriate time to review all these issues before implementing these tests for patients' diagnosis, prognosis and treatment efficacy.
Collapse
Affiliation(s)
- Yin Kwan Evelyn Wong
- Department of Health Technology and Informatics, Hong Kong Polytechnic University , Hong Kong Special Administrative Region
| | - Ka Wai Lam
- Department of Health Technology and Informatics, Hong Kong Polytechnic University , Hong Kong Special Administrative Region
| | - Ka Yi Ho
- Department of Health Technology and Informatics, Hong Kong Polytechnic University , Hong Kong Special Administrative Region
| | | | - William Chi-Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital , Hong Kong Special Administrative Region
| | - Hin Fung Tsang
- Department of Health Technology and Informatics, Hong Kong Polytechnic University , Hong Kong Special Administrative Region
| | - Man Kee Maggie Chu
- Department of Life Science, The Hong Kong University of Science and Technology , Hong Kong Special Administrative Region
| | - Po Wah Lawrence Ng
- Department of Pathology, Queen Elizabeth Hospital , Hong Kong Special Administrative Region
| | - Chi Shing William Tai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University , Hong Kong Special Administrative Region
| | - Lawrence Wing Chi Chan
- Department of Health Technology and Informatics, Hong Kong Polytechnic University , Hong Kong Special Administrative Region
| | - Elaine Yue Ling Wong
- Department of Health Technology and Informatics, Hong Kong Polytechnic University , Hong Kong Special Administrative Region
| | - Sze Chuen Cesar Wong
- Department of Health Technology and Informatics, Hong Kong Polytechnic University , Hong Kong Special Administrative Region
| |
Collapse
|
46
|
Mankoff DA, Pantel AR, Viswanath V, Karp JS. Advances in PET Diagnostics for Guiding Targeted Cancer Therapy and Studying In Vivo Cancer Biology. CURRENT PATHOBIOLOGY REPORTS 2019; 7:97-108. [PMID: 37092138 PMCID: PMC10117535 DOI: 10.1007/s40139-019-00202-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose of the Review We present an overview of recent advances in positron emission tomography (PET) diagnostics as applied to the study of cancer, specifically as a tool to study in vivo cancer biology and to direct targeted cancer therapy. The review is directed to translational and clinical cancer investigators who may not be familiar with these applications of PET cancer diagnostics, but whose research might benefit from these advancing tools. Recent Findings We highlight recent advances in 3 areas: (1) the translation of PET imaging cancer biomarkers to clinical trials; (2) methods for measuring cancer metabolism in vivo in patients; and (3) advances in PET instrumentation, including total-body PET, that enable new methodologies. We emphasize approaches that have been translated to human studies. Summary PET imaging methodology enables unique in vivo cancer diagnostics that go beyond cancer detection and staging, providing an improved ability to guide cancer treatment and an increased understanding of in vivo human cancer biology.
Collapse
Affiliation(s)
- David A Mankoff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Austin R Pantel
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Varsha Viswanath
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Joel S Karp
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
47
|
Zhang Y, Zhang L, Yang J, Wu Z, Ploessl K, Zha Z, Liu F, Xu X, Zhu H, Yang Z, Zhu L, Kung HF. Initial experience in synthesis of (2S,4R)-4-[ 18 F]fluoroglutamine for clinical application. J Labelled Comp Radiopharm 2019; 62:209-214. [PMID: 30861162 DOI: 10.1002/jlcr.3719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/12/2019] [Accepted: 03/05/2019] [Indexed: 01/12/2023]
Abstract
We report initial experience in synthesis of (2S,4R)-4-[18 F]fluoroglutamine, [18 F]FGln, which has been used as a tool for monitoring glutamine metabolism in cancer patients. [18 F]FGln was prepared by a fully automated PET-MF-2V-IT-I synthesizer under GMP-compliant conditions for routine clinical studies. The total radiosynthesis time was about 65 minutes, the decay-corrected radiochemical yield was 18.0 ± 4.2% (n = 59; failure n = 15), and the radiochemical purity was greater than 90%. In some situations, the yields were low (less than 5%), and the most likely cause of this problem is the initial fluorination step; the fluoride ion might not have been fully activated. In other occasions, low final radiochemical purity was often associated with the failure of the second step-removal of protection groups by anhydrous trifluoroacetic acid. A trace amount of water led to production of undesired 4-[18 F]fluoroglutamic acid. Knowledge learned from the successes and failures of synthesis may be helpful to identify critical steps and pitfalls for preparation of this clinically useful metabolic probe, [18 F]FGln, for imaging glutamine utilization in tumor of cancer patients.
Collapse
Affiliation(s)
- Yan Zhang
- College of Chemistry, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, China
| | - Lifang Zhang
- College of Chemistry, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, China
| | - Jianhua Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zehui Wu
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Karl Ploessl
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zhihao Zha
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Fei Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaoxia Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lin Zhu
- College of Chemistry, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, China.,Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Hank F Kung
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|