1
|
Huang M, Wang W, Wang R, Tian R. The prognostic value of pretreatment [ 18F]FDG PET/CT parameters in esophageal cancer: a meta-analysis. Eur Radiol 2025; 35:3396-3408. [PMID: 39570366 DOI: 10.1007/s00330-024-11207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/19/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024]
Abstract
OBJECTIVES This study aims to evaluate the prognostic implications of pretreatment [18F]FDG-PET metrics in esophageal cancer patients through a meta-analysis of the existing literature. METHODS We carefully searched electronic databases, including PubMed and Embase, from inception to April 1, 2024, to identify studies describing the prognostic value of pretreatment PET metrics for advanced esophageal cancer. Clinical endpoints examined were overall survival (OS), recurrence-free survival (RFS)/disease-free survival (DFS), and progression-free survival (PFS). Hazard ratios (HRs) for PFS and OS were taken directly from the original reports. RESULTS Forty-seven publications, including 5504 patients, were included in our analysis. OS and PFS were analyzed in 31 and nine studies, respectively, and DFS/RFS was analyzed in 16 studies. The comprehensive pooled analysis revealed significant associations between metabolic parameters derived from positron emission tomography (PET) imaging and clinical outcomes. Expressly, the pooled HR indicated that patients with higher SUVmax were significantly associated with poor PFS (HR: 1.06; 95% CI: 1.01-1.12, p = 0.011) and poor RFS/DFS (HR: 1.09; 95% CI: 1.02-1.18, p = 0.019). Patients with higher SUVmean were significantly associated with poorer OS (HR: 1.07; 95% CI: 1.01-1.14, p = 0.025). High MTV was significantly associated with inferior OS (HR: 1.02; 95% CI: 1.00-1.05, p = 0.049). High TLG was significantly associated with poorer RFS/DFS (HR: 2.02; 95% CI: 1.11-3.68, p = 0.022). CONCLUSION This study unveiled pretreatment FDG-derived parameters as valuable prognostic indicators in assessing esophageal cancer outcomes. Specifically, SUVmax is associated with PFS and RFS/DFS. SUVmean and MTV were correlated with OS, and TLG was only associated with RFS/DFS. KEY POINTS Question Inconsistent findings on the prognostic value of pretreatment [18F]FDG PET parameters in esophageal cancer require comprehensive analysis to clarify their role in outcome prediction. Findings Higher pretreatment [18F]FDG-PET metrics (SUVmax, SUVmean, MTV, TLG) are associated with poor survival outcomes, emphasizing their potential value in enhancing prognostic assessments for esophageal cancer. Clinical relevance This study highlights the prognostic significance of pretreatment [18F]FDG-PET metrics in esophageal cancer, providing valuable insights for patient outcome prediction and potentially guiding personalized treatment strategies.
Collapse
Affiliation(s)
- Mingxing Huang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Weichen Wang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rang Wang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
2
|
Cegla P, Hofheinz F, Burchardt E, Czepczyński R, Kubiak A, van den Hoff J, Nikulin P, Bos-Liedke A, Roszak A, Cholewinski W. Asphericity derived from [ 18F]FDG PET as a new prognostic parameter in cervical cancer patients. Sci Rep 2023; 13:8423. [PMID: 37225735 DOI: 10.1038/s41598-023-35191-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/14/2023] [Indexed: 05/26/2023] Open
Abstract
The objective of this study was to assess the prognostic value of asphericity (ASP) and standardized uptake ratio (SUR) in cervical cancer patients. Retrospective analysis was performed on a group of 508 (aged 55 ± 12 years) previously untreated cervical cancer patients. All patients underwent a pretreatment [18F]FDG PET/CT study to assess the severity of the disease. The metabolic tumor volume (MTV) of the cervical cancer was delineated with an adaptive threshold method. For the resulting ROIs the maximum standardized uptake value (SUVmax) was measured. In addition, ASP and SUR were determined as previously described. Univariate Cox regression and Kaplan-Meier analysis with respect to event free survival (EFS), overall survival (OS), freedom from distant metastasis (FFDM) and locoregional control (LRC) was performed. Additionally, a multivariate Cox regression including clinically relevant parameters was performed. In the survival analysis, MTV and ASP were shown to be prognostic factors for all investigated endpoints. Tumor metabolism quantified with the SUVmax was not prognostic for any of the endpoints (p > 0.2). The SUR did not reach statistical significance either (p = 0.1, 0.25, 0.066, 0.053, respectively). In the multivariate analysis, the ASP remained a significant factor for EFS and LRC, while MTV was a significant factor for FFDM, indicating their independent prognostic value for the respective endpoints. The alternative parameter ASP has the potential to improve the prognostic value of [18F]FDG PET/CT for event-free survival and locoregional control in radically treated cervical cancer patients.
Collapse
Affiliation(s)
- Paulina Cegla
- Department of Nuclear Medicine, Greater Poland Cancer Centre, Garbary 15, 61-866, Poznan, Poland.
| | - Frank Hofheinz
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Ewa Burchardt
- Department of Electroradiology, Poznan Univeristy of Medical Science, Poznan, Poland
- Department of Radiotherapy and Gynaecological Oncology, Greater Poland Cancer Centre, Poznan, Poland
| | - Rafał Czepczyński
- Department of Endocrinology, Metabolism and Internal Disease, Poznan University of Medical Science, Poznan, Poland
- Department of Nuclear Medicine, Affidea Poznan, Poland
| | - Anna Kubiak
- Greater Poland Cancer Registry, Greater Poland Cancer Centre, Poznan, Poland
| | - Jörg van den Hoff
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Pavel Nikulin
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | | | - Andrzej Roszak
- Department of Electroradiology, Poznan Univeristy of Medical Science, Poznan, Poland
- Department of Radiotherapy and Gynaecological Oncology, Greater Poland Cancer Centre, Poznan, Poland
| | - Witold Cholewinski
- Department of Nuclear Medicine, Greater Poland Cancer Centre, Garbary 15, 61-866, Poznan, Poland
- Department of Electroradiology, Poznan Univeristy of Medical Science, Poznan, Poland
| |
Collapse
|
3
|
Skawran S, Messerli M, Kotasidis F, Trinckauf J, Weyermann C, Kudura K, Ferraro DA, Pitteloud J, Treyer V, Maurer A, Huellner MW, Burger IA. Can Dynamic Whole-Body FDG PET Imaging Differentiate between Malignant and Inflammatory Lesions? Life (Basel) 2022; 12:life12091350. [PMID: 36143386 PMCID: PMC9501027 DOI: 10.3390/life12091350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Investigation of the clinical feasibility of dynamic whole-body (WB) [18F]FDG PET, including standardized uptake value (SUV), rate of irreversible uptake (Ki), and apparent distribution volume (Vd) in physiologic tissues, and comparison between inflammatory/infectious and cancer lesions. Methods: Twenty-four patients were prospectively included to undergo dynamic WB [18F]FDG PET/CT for clinically indicated re-/staging of oncological diseases. Parametric maps of Ki and Vd were generated using Patlak analysis alongside SUV images. Maximum parameter values (SUVmax, Kimax, and Vdmax) were measured in liver parenchyma and in malignant or inflammatory/infectious lesions. Lesion-to-background ratios (LBRs) were calculated by dividing the measurements by their respective mean in the liver tissue. Results: Seventy-seven clinical target lesions were identified, 60 malignant and 17 inflammatory/infectious. Kimax was significantly higher in cancer than in inflammatory/infections lesions (3.0 vs. 2.0, p = 0.002) while LBRs of SUVmax, Kimax, and Vdmax did not differ significantly between the etiologies: LBR (SUVmax) 3.3 vs. 2.9, p = 0.06; LBR (Kimax) 5.0 vs. 4.4, p = 0.05, LBR (Vdmax) 1.1 vs. 1.0, p = 0.18). LBR of inflammatory/infectious and cancer lesions was higher in Kimax than in SUVmax (4.5 vs. 3.2, p < 0.001). LBRs of Kimax and SUVmax showed a strong correlation (Spearman’s rho = 0.83, p < 0.001). Conclusions: Dynamic WB [18F]FDG PET/CT is feasible in a clinical setting. LBRs of Kimax were higher than SUVmax. Kimax was higher in malignant than in inflammatory/infectious lesions but demonstrated a large overlap between the etiologies.
Collapse
Affiliation(s)
- Stephan Skawran
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Michael Messerli
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | | | - Josephine Trinckauf
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Corina Weyermann
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Ken Kudura
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
- Claraspital, 4058 Basel, Switzerland
| | - Daniela A. Ferraro
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Janique Pitteloud
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Alexander Maurer
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Martin W. Huellner
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Irene A. Burger
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
- Department of Nuclear Medicine, Kantonsspital Baden, 5404 Baden, Switzerland
- Correspondence:
| |
Collapse
|
4
|
Impact of Blood Parameters and Normal Tissue Dose on Treatment Outcome in Esophageal Cancer Patients Undergoing Neoadjuvant Radiochemotherapy. Cancers (Basel) 2022; 14:cancers14143504. [PMID: 35884564 PMCID: PMC9320742 DOI: 10.3390/cancers14143504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Despite technological advances, normal tissue sparing in photon beam irradiation is still challenging. Since in esophageal cancer this may inflict damage on the lungs, heart and bone marrow, possibly impacting on outcome, the aim of this study was to investigate the association of normal tissue dose and blood parameters on the survival of patients having undergone neoadjuvant radiochemotherapy (RCTx) followed by surgery. This retrospective study included 125 patients irradiated to 40−41.4 Gy with photons or protons combined with concurrent chemotherapy. On initial and restaging 18F-FDG-PET/CT, the lungs and heart were contoured as organs at risk for which standardized uptake values (SUV) were evaluated. The mean radiation dose (Dmean) to the lungs and heart, the volume of the lungs receiving at least 20 Gy (V20Gy_lung) and various pre- and per-treatment blood parameters were included in the Cox regression analyses. Results: The median follow-up time was 19.8 months and median overall survival 37 months (95% confidence interval: 16−58.9 months). In multivariate analysis, higher radiation doses to the lungs and heart were statistically significantly associated with decreased overall survival (Dmean_lung: p < 0.001; V20Gy_lung: p < 0.002; Dmean_heart: p = 0.005). Neither the 18F-FDG-PET nor blood parameters were predictive for overall survival. In patients with locally advanced esophageal cancer treated with RCTx, the radiation dose to the heart and lungs was significantly associated with overall survival.
Collapse
|
5
|
Zschaeck S, Weingärtner J, Lombardo E, Marschner S, Hajiyianni M, Beck M, Zips D, Li Y, Lin Q, Amthauer H, Troost EGC, van den Hoff J, Budach V, Kotzerke J, Ferentinos K, Karagiannis E, Kaul D, Gregoire V, Holzgreve A, Albert NL, Nikulin P, Bachmann M, Kopka K, Krause M, Baumann M, Kazmierska J, Cegla P, Cholewinski W, Strouthos I, Zöphel K, Majchrzak E, Landry G, Belka C, Stromberger C, Hofheinz F. 18F-Fluorodeoxyglucose Positron Emission Tomography of Head and Neck Cancer: Location and HPV Specific Parameters for Potential Treatment Individualization. Front Oncol 2022; 12:870319. [PMID: 35756665 PMCID: PMC9213669 DOI: 10.3389/fonc.2022.870319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) is utilized for staging and treatment planning of head and neck squamous cell carcinomas (HNSCC). Some older publications on the prognostic relevance showed inconclusive results, most probably due to small study sizes. This study evaluates the prognostic and potentially predictive value of FDG-PET in a large multi-center analysis. Methods Original analysis of individual FDG-PET and patient data from 16 international centers (8 institutional datasets, 8 public repositories) with 1104 patients. All patients received curative intent radiotherapy/chemoradiation (CRT) and pre-treatment FDG-PET imaging. Primary tumors were semi-automatically delineated for calculation of SUVmax, SUVmean, metabolic tumor volume (MTV) and total lesion glycolysis (TLG). Cox regression analyses were performed for event-free survival (EFS), overall survival (OS), loco-regional control (LRC) and freedom from distant metastases (FFDM). Results FDG-PET parameters were associated with patient outcome in the whole cohort regarding clinical endpoints (EFS, OS, LRC, FFDM), in uni- and multivariate Cox regression analyses. Several previously published cut-off values were successfully validated. Subgroup analyses identified tumor- and human papillomavirus (HPV) specific parameters. In HPV positive oropharynx cancer (OPC) SUVmax was well suited to identify patients with excellent LRC for organ preservation. Patients with SUVmax of 14 or less were unlikely to develop loco-regional recurrence after definitive CRT. In contrast FDG PET parameters deliver only limited prognostic information in laryngeal cancer. Conclusion FDG-PET parameters bear considerable prognostic value in HNSCC and potential predictive value in subgroups of patients, especially regarding treatment de-intensification and organ-preservation. The potential predictive value needs further validation in appropriate control groups. Further research on advanced imaging approaches including radiomics or artificial intelligence methods should implement the identified cut-off values as benchmark routine imaging parameters.
Collapse
Affiliation(s)
- Sebastian Zschaeck
- Department of Radiation Oncology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ) Heidelberg, Germany, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Julian Weingärtner
- Department of Radiation Oncology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Elia Lombardo
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Sebastian Marschner
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Marina Hajiyianni
- Department of Radiation Oncology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcus Beck
- Department of Radiation Oncology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany, Germany.,Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Yimin Li
- Department of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Qin Lin
- Department of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Holger Amthauer
- Department of Nuclear Medicine, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Esther G C Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ) Heidelberg, Germany, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Jörg van den Hoff
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Volker Budach
- Department of Radiation Oncology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jörg Kotzerke
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ) Heidelberg, Germany, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Dresden, Germany
| | - Konstantinos Ferentinos
- Department of Radiation Oncology, German Oncology Center, European University Cyprus, Limassol, Cyprus
| | - Efstratios Karagiannis
- Department of Radiation Oncology, German Oncology Center, European University Cyprus, Limassol, Cyprus
| | - David Kaul
- Department of Radiation Oncology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Vincent Gregoire
- Radiation Oncology Department, Leon Bérard Cancer Center, Lyon, France
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Germany
| | - Pavel Nikulin
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Klaus Kopka
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Mechthild Krause
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ) Heidelberg, Germany, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Michael Baumann
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ) Heidelberg, Germany, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Joanna Kazmierska
- Electroradiology Department, University of Medical Sciences, Poznan, Poland.,Radiotherapy Department II, Greater Poland Cancer Centre, Poznan, Poland
| | - Paulina Cegla
- Department of Nuclear Medicine, Greater Poland Cancer Centre, Poznan, Poland
| | - Witold Cholewinski
- Electroradiology Department, University of Medical Sciences, Poznan, Poland.,Department of Nuclear Medicine, Greater Poland Cancer Centre, Poznan, Poland
| | - Iosif Strouthos
- Department of Radiation Oncology, German Oncology Center, European University Cyprus, Limassol, Cyprus
| | - Klaus Zöphel
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ) Heidelberg, Germany, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Dresden, Germany.,Department of Nuclear Medicine, Klinikum Chemnitz gGmbH, Chemnitz, Germany
| | - Ewa Majchrzak
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Greater Poland Cancer Centre, Poznan, Poland
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Carmen Stromberger
- Department of Radiation Oncology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frank Hofheinz
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| |
Collapse
|
6
|
Chu F, Liu Y, Liu Q, Li W, Jia Z, Wang C, Wang Z, Lu S, Li P, Zhang Y, Liao Y, Xu M, Yao X, Wang S, Liu C, Zhang H, Wang S, Yan X, Kamel IR, Sun H, Yang G, Zhang Y, Qu J. Development and validation of MRI-based radiomics signatures models for prediction of disease-free survival and overall survival in patients with esophageal squamous cell carcinoma. Eur Radiol 2022; 32:5930-5942. [PMID: 35384460 DOI: 10.1007/s00330-022-08776-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To develop and validate an optimal model based on the 1-mm-isotropic-3D contrast-enhanced StarVIBE MRI sequence combined with clinical risk factors for predicting survival in patients with esophageal squamous cell carcinoma (ESCC). METHODS Patients with ESCC at our institution from 2015 to 2017 participated in this retrospective study based on prospectively acquired data, and were randomly assigned to training and validation groups at a ratio of 7:3. Random survival forest (RSF) and variable hunting methods were used to screen for radiomics features and LASSO-Cox regression analysis was used to build three models, including clinical only, radiomics only and combined clinical and radiomics models, which were evaluated by concordance index (CI) and calibration curve. Nomograms and decision curve analysis (DCA) were used to display intuitive prediction information. RESULTS Seven radiomics features were selected from 434 patients, combined with clinical features that were statistically significant to construct the predictive models of disease-free survival (DFS) and overall survival (OS). The combined model showed the highest performance in both training and validation groups for predicting DFS ([CI], 0.714, 0.729) and OS ([CI], 0.730, 0.712). DCA showed that the net benefit of the combined model and of the clinical model is significantly greater than that of the radiomics model alone at different threshold probabilities. CONCLUSIONS We demonstrated that a combined predictive model based on MR Rad-S and clinical risk factors had better predictive efficacy than the radiomics models alone for patients with ESCC. KEY POINTS • Magnetic resonance-based radiomics features combined with clinical risk factors can predict survival in patients with ESCC. • The radiomics nomogram can be used clinically to predict patient recurrence, DFS, and OS. • Magnetic resonance imaging is highly reproducible in visualizing lesions and contouring the whole tumor.
Collapse
Affiliation(s)
- Funing Chu
- Department of Radiology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Yun Liu
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China
| | - Qiuping Liu
- Department of Radiology, the First Affiliated Hospital with Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Weijia Li
- Henan Province Institute for Medical Equipment Testing, Zhengzhou, Henan, 450000, People's Republic of China
| | - Zhengyan Jia
- Department of Radiology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Chenglong Wang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China
| | - Zhaoqi Wang
- Department of Radiology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Shuang Lu
- Department of Radiology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Ping Li
- Department of Radiology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Yuanli Zhang
- Department of Radiology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Yubo Liao
- Department of Radiology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Mingzhe Xu
- Department of Radiology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Xiaoqiang Yao
- Department of Radiology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Shuting Wang
- Department of Radiology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Cuicui Liu
- Department of Radiology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Hongkai Zhang
- Department of Radiology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Shaoyu Wang
- MR Scientific Marketing, Siemens Healthineers, Xi'an, 710065, China
| | - Xu Yan
- MR Scientific Marketing, Siemens Healthineers, Shanghai, 201318, China
| | - Ihab R Kamel
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205-2196, USA
| | - Haibo Sun
- Department of Thoracic surgery, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, Henan, China
| | - Guang Yang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China
| | - Yudong Zhang
- Department of Radiology, the First Affiliated Hospital with Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Jinrong Qu
- Department of Radiology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, 450008, Henan, China.
| |
Collapse
|
7
|
Beckford-Vera DR, Flavell RR, Seo Y, Martinez-Ortiz E, Aslam M, Thanh C, Fehrman E, Pardons M, Kumar S, Deitchman AN, Ravanfar V, Schulte B, Wu IWK, Pan T, Reeves JD, Nixon CC, Iyer NS, Torres L, Munter SE, Hyunh T, Petropoulos CJ, Hoh R, Franc BL, Gama L, Koup RA, Mascola JR, Chomont N, Deeks SG, VanBrocklin HF, Henrich TJ. First-in-human immunoPET imaging of HIV-1 infection using 89Zr-labeled VRC01 broadly neutralizing antibody. Nat Commun 2022; 13:1219. [PMID: 35264559 PMCID: PMC8907355 DOI: 10.1038/s41467-022-28727-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 02/01/2022] [Indexed: 11/09/2022] Open
Abstract
A major obstacle to achieving long-term antiretroviral (ART) free remission or functional cure of HIV infection is the presence of persistently infected cells that establish a long-lived viral reservoir. HIV largely resides in anatomical regions that are inaccessible to routine sampling, however, and non-invasive methods to understand the longitudinal tissue-wide burden of HIV persistence are urgently needed. Positron emission tomography (PET) imaging is a promising strategy to identify and characterize the tissue-wide burden of HIV. Here, we assess the efficacy of using immunoPET imaging to characterize HIV reservoirs and identify anatomical foci of persistent viral transcriptional activity using a radiolabeled HIV Env-specific broadly neutralizing antibody, 89Zr-VRC01, in HIV-infected individuals with detectable viremia and on suppressive ART compared to uninfected controls (NCT03729752). We also assess the relationship between PET tracer uptake in tissues and timing of ART initiation and direct HIV protein expression in CD4 T cells obtained from lymph node biopsies. We observe significant increases in 89Zr-VRC01 uptake in various tissues (including lymph nodes and gut) in HIV-infected individuals with detectable viremia (N = 5) and on suppressive ART (N = 5) compared to uninfected controls (N = 5). Importantly, PET tracer uptake in inguinal lymph nodes in viremic and ART-suppressed participants significantly and positively correlates with HIV protein expression measured directly in tissue. Our strategy may allow non-invasive longitudinal characterization of residual HIV infection and lays the framework for the development of immunoPET imaging in a variety of other infectious diseases.
Collapse
Affiliation(s)
- Denis R Beckford-Vera
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Enrique Martinez-Ortiz
- Division of HIV, Infectious Diseases and Global Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Maya Aslam
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Cassandra Thanh
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Emily Fehrman
- Division of HIV, Infectious Diseases and Global Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Marion Pardons
- Department of Microbiology, Infectiology and Immunology, Centre de Recherche du CHUM, Université de Montréal, Montreal, QC, Canada
| | - Shreya Kumar
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Amelia N Deitchman
- Department of Clinical Pharmacy, University of California, San Francisco, USA
| | - Vahid Ravanfar
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Brailee Schulte
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - I-Wei Katherine Wu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Tony Pan
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Jacqueline D Reeves
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Christopher C Nixon
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Nikita S Iyer
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Leonel Torres
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Sadie E Munter
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Tony Hyunh
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Christos J Petropoulos
- Monogram Biosciences, Inc., Laboratory Corporation of America, South San Francisco, San Francisco, USA
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases and Global Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Benjamin L Franc
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Lucio Gama
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicolas Chomont
- Department of Microbiology, Infectiology and Immunology, Centre de Recherche du CHUM, Université de Montréal, Montreal, QC, Canada
| | - Steven G Deeks
- Division of HIV, Infectious Diseases and Global Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
8
|
Li XF, Shi YM, Niu R, Shao XN, Wang JF, Shao XL, Zhang FF, Wang YT. Risk analysis in peripheral clinical T1 non-small cell lung cancer correlations between tumor-to-blood standardized uptake ratio on 18F-FDG PET-CT and primary tumor pathological invasiveness: a real-world observational study. Quant Imaging Med Surg 2022; 12:159-171. [PMID: 34993068 DOI: 10.21037/qims-21-394] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/09/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Sublobar resection is not suitable for patients with pathological invasiveness [including lymph node metastasis (LNM), visceral pleural invasion (VPI), and lymphovascular invasion (LVI)] of peripheral clinical T1 (cT1) non-small cell lung cancer (NSCLC), while primary tumor maximum standardized uptake value (SUVmax) on 18F-FDG PET-CT is related to pathological invasiveness, the significance differed among different institutions is still challenging. This study explored the relationship between the tumor-to-blood standardized uptake ratio (SUR) of 18F-FDG PET-CT and primary tumor pathological invasiveness in peripheral cT1 NSCLC patients. METHODS This retrospective study included 174 patients with suspected lung neoplasms who underwent preoperative 18F-FDG PET-CT. We compared the differences of the clinicopathological variables, metabolic and morphological parameters in the pathological invasiveness and less-invasiveness group. We performed a trend test for these parameters based on the tertiles of SUR. The relationship between SUR and pathological invasiveness was evaluated by univariate and multivariate logistics regression models (included unadjusted, simple adjusted, and fully adjusted models), odds ratios (ORs), and 95% confidence intervals (95% CIs) were calculated. A smooth fitting curve between SUR and pathological invasiveness was produced by the generalized additive model (GAM). RESULTS Thirty-eight point five percent of patients had pathological invasiveness and tended to have a higher SUR value than the less-invasiveness group [6.50 (4.82-11.16) vs. 4.12 (2.04-6.61), P<0.001]. The trend of SUVmax, mean standardized uptake value (SUVmean), metabolic tumor volume (MTV), total lesion glycolysis (TLG), mean CT value (CTmean), size of the primary tumor, neuron-specific enolase (NSE), the incidence of LNM, adenocarcinoma (AC), and poor differentiation in the tertiles of SUR value were statistically significant (P were <0.001, <0.001, 0.010, <0.001, <0.001, 0.002, 0.033, <0.001, 0.002, and <0.001, respectively). Univariate analysis showed that the risk of pathological invasiveness increased significantly with increasing SUR [OR: 1.13 (95% CI: 1.06-1.21), P<0.001], and multivariate analysis demonstrated SUR, as a continuous variable, was still significantly related to pathological invasiveness [OR: 1.09 (95% CI: 1.01-1.18), P=0.032] after adjusting for confounding covariates. GAM revealed that SUR tended to be linearly and positively associated with pathological invasiveness and E-value analysis suggested robustness to unmeasured confounding. CONCLUSIONS SUR is linearly and positively associated with primary tumor pathological invasiveness independent of confounding covariates in peripheral cT1 NSCLC patients and could be used as a supplementary risk maker to assess the risk of pathological invasiveness.
Collapse
Affiliation(s)
- Xiao-Feng Li
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Department of Radiology, Xuzhou Cancer Hospital, Xuzhou, China
| | - Yun-Mei Shi
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Rong Niu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiao-Nan Shao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jian-Feng Wang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiao-Liang Shao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Fei-Fei Zhang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yue-Tao Wang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Changzhou Key Laboratory of Molecular Imaging, Changzhou, China
| |
Collapse
|
9
|
Lapa C, Nestle U, Albert NL, Baues C, Beer A, Buck A, Budach V, Bütof R, Combs SE, Derlin T, Eiber M, Fendler WP, Furth C, Gani C, Gkika E, Grosu AL, Henkenberens C, Ilhan H, Löck S, Marnitz-Schulze S, Miederer M, Mix M, Nicolay NH, Niyazi M, Pöttgen C, Rödel CM, Schatka I, Schwarzenboeck SM, Todica AS, Weber W, Wegen S, Wiegel T, Zamboglou C, Zips D, Zöphel K, Zschaeck S, Thorwarth D, Troost EGC. Value of PET imaging for radiation therapy. Strahlenther Onkol 2021; 197:1-23. [PMID: 34259912 DOI: 10.1007/s00066-021-01812-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022]
Abstract
This comprehensive review written by experts in their field gives an overview on the current status of incorporating positron emission tomography (PET) into radiation treatment planning. Moreover, it highlights ongoing studies for treatment individualisation and per-treatment tumour response monitoring for various primary tumours. Novel tracers and image analysis methods are discussed. The authors believe this contribution to be of crucial value for experts in the field as well as for policy makers deciding on the reimbursement of this powerful imaging modality.
Collapse
Affiliation(s)
- Constantin Lapa
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Ursula Nestle
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
- Department of Radiation Oncology, Kliniken Maria Hilf, Mönchengladbach, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Christian Baues
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Ambros Beer
- Department of Nuclear Medicine, Ulm University Hospital, Ulm, Germany
| | - Andreas Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Volker Budach
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Rebecca Bütof
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Stephanie E Combs
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
- Department of Radiation Sciences (DRS), Institute of Radiation Medicine (IRM), Neuherberg, Germany
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Christian Furth
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Cihan Gani
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Anca-L Grosu
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Christoph Henkenberens
- Department of Radiotherapy and Special Oncology, Medical School Hannover, Hannover, Germany
| | - Harun Ilhan
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Steffen Löck
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Simone Marnitz-Schulze
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Matthias Miederer
- Department of Nuclear Medicine, University Hospital Mainz, Mainz, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Maximilian Niyazi
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Christoph Pöttgen
- Department of Radiation Oncology, West German Cancer Centre, University of Duisburg-Essen, Essen, Germany
| | - Claus M Rödel
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Imke Schatka
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | | | - Andrei S Todica
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang Weber
- Department of Nuclear Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Simone Wegen
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Thomas Wiegel
- Department of Radiation Oncology, Ulm University Hospital, Ulm, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Daniel Zips
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Klaus Zöphel
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Nuclear Medicine, Klinikum Chemnitz gGmbH, Chemnitz, Germany
| | - Sebastian Zschaeck
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Daniela Thorwarth
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Esther G C Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany.
| |
Collapse
|
10
|
Lapa C, Nestle U, Albert NL, Baues C, Beer A, Buck A, Budach V, Bütof R, Combs SE, Derlin T, Eiber M, Fendler WP, Furth C, Gani C, Gkika E, Grosu AL, Henkenberens C, Ilhan H, Löck S, Marnitz-Schulze S, Miederer M, Mix M, Nicolay NH, Niyazi M, Pöttgen C, Rödel CM, Schatka I, Schwarzenboeck SM, Todica AS, Weber W, Wegen S, Wiegel T, Zamboglou C, Zips D, Zöphel K, Zschaeck S, Thorwarth D, Troost EGC. Value of PET imaging for radiation therapy. Nuklearmedizin 2021; 60:326-343. [PMID: 34261141 DOI: 10.1055/a-1525-7029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This comprehensive review written by experts in their field gives an overview on the current status of incorporating positron emission tomography (PET) into radiation treatment planning. Moreover, it highlights ongoing studies for treatment individualisation and per-treatment tumour response monitoring for various primary tumours. Novel tracers and image analysis methods are discussed. The authors believe this contribution to be of crucial value for experts in the field as well as for policy makers deciding on the reimbursement of this powerful imaging modality.
Collapse
Affiliation(s)
- Constantin Lapa
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Ursula Nestle
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.,Department of Radiation Oncology, Kliniken Maria Hilf, Mönchengladbach, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Christian Baues
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Ambros Beer
- Department of Nuclear Medicine, Ulm University Hospital, Ulm, Germany
| | - Andreas Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Volker Budach
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Rebecca Bütof
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Stephanie E Combs
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.,Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany.,Department of Radiation Sciences (DRS), Institute of Radiation Medicine (IRM), Neuherberg, Germany
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Christian Furth
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Cihan Gani
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Anca L Grosu
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | | | - Harun Ilhan
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Steffen Löck
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Simone Marnitz-Schulze
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Matthias Miederer
- Department of Nuclear Medicine, University Hospital Mainz, Mainz, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Maximilian Niyazi
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Christoph Pöttgen
- Department of Radiation Oncology, West German Cancer Centre, University of Duisburg-Essen, Essen, Germany
| | - Claus M Rödel
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiotherapy and Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Imke Schatka
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | | | - Andrei S Todica
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang Weber
- Department of Nuclear Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Simone Wegen
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Thomas Wiegel
- Department of Radiation Oncology, Ulm University Hospital, Ulm, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Daniel Zips
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Klaus Zöphel
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Nuclear Medicine, Klinikum Chemnitz gGmbH, Chemnitz, Germany
| | - Sebastian Zschaeck
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Daniela Thorwarth
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Esther G C Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | | |
Collapse
|
11
|
Nikulin P, Hofheinz F, Maus J, Li Y, Bütof R, Lange C, Furth C, Zschaeck S, Kreissl MC, Kotzerke J, van den Hoff J. A convolutional neural network for fully automated blood SUV determination to facilitate SUR computation in oncological FDG-PET. Eur J Nucl Med Mol Imaging 2021; 48:995-1004. [PMID: 33006022 PMCID: PMC8041711 DOI: 10.1007/s00259-020-04991-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/05/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE The standardized uptake value (SUV) is widely used for quantitative evaluation in oncological FDG-PET but has well-known shortcomings as a measure of the tumor's glucose consumption. The standard uptake ratio (SUR) of tumor SUV and arterial blood SUV (BSUV) possesses an increased prognostic value but requires image-based BSUV determination, typically in the aortic lumen. However, accurate manual ROI delineation requires care and imposes an additional workload, which makes the SUR approach less attractive for clinical routine. The goal of the present work was the development of a fully automated method for BSUV determination in whole-body PET/CT. METHODS Automatic delineation of the aortic lumen was performed with a convolutional neural network (CNN), using the U-Net architecture. A total of 946 FDG PET/CT scans from several sites were used for network training (N = 366) and testing (N = 580). For all scans, the aortic lumen was manually delineated, avoiding areas affected by motion-induced attenuation artifacts or potential spillover from adjacent FDG-avid regions. Performance of the network was assessed using the fractional deviations of automatically and manually derived BSUVs in the test data. RESULTS The trained U-Net yields BSUVs in close agreement with those obtained from manual delineation. Comparison of manually and automatically derived BSUVs shows excellent concordance: the mean relative BSUV difference was (mean ± SD) = (- 0.5 ± 2.2)% with a 95% confidence interval of [- 5.1,3.8]% and a total range of [- 10.0, 12.0]%. For four test cases, the derived ROIs were unusable (< 1 ml). CONCLUSION CNNs are capable of performing robust automatic image-based BSUV determination. Integrating automatic BSUV derivation into PET data processing workflows will significantly facilitate SUR computation without increasing the workload in the clinical setting.
Collapse
Affiliation(s)
- Pavel Nikulin
- Helmholtz-Zentrum Dresden-Rossendorf, PET Center, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328, Dresden, Germany.
| | - Frank Hofheinz
- Helmholtz-Zentrum Dresden-Rossendorf, PET Center, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Jens Maus
- Helmholtz-Zentrum Dresden-Rossendorf, PET Center, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Yimin Li
- Department of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Rebecca Bütof
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Catharina Lange
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christian Furth
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sebastian Zschaeck
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Michael C Kreissl
- Division of Nuclear Medicine, Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - Jörg Kotzerke
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jörg van den Hoff
- Helmholtz-Zentrum Dresden-Rossendorf, PET Center, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
12
|
Popovic M, Talarico O, van den Hoff J, Kunin H, Zhang Z, Lafontaine D, Dogan S, Leung J, Kaye E, Czmielewski C, Mayerhoefer ME, Zanzonico P, Yaeger R, Schöder H, Humm JL, Solomon SB, Sofocleous CT, Kirov AS. KRAS mutation effects on the 2-[18F]FDG PET uptake of colorectal adenocarcinoma metastases in the liver. EJNMMI Res 2020; 10:142. [PMID: 33226505 PMCID: PMC7683631 DOI: 10.1186/s13550-020-00707-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Background Deriving individual tumor genomic characteristics from patient imaging analysis is desirable. We explore the predictive value of 2-[18F]FDG uptake with regard to the KRAS mutational status of colorectal adenocarcinoma liver metastases (CLM). Methods 2-[18F]FDG PET/CT images, surgical pathology and molecular diagnostic reports of 37 patients who underwent PET/CT-guided biopsy of CLM were reviewed under an IRB-approved retrospective research protocol. Sixty CLM in 39 interventional PET scans of the 37 patients were segmented using two different auto-segmentation tools implemented in different commercially available software packages. PET standard uptake values (SUV) were corrected for: (1) partial volume effect (PVE) using cold wall-corrected contrast recovery coefficients derived from phantom spheres with variable diameter and (2) variability of arterial tracer supply and variability of uptake time after injection until start of PET scan derived from the tumor-to-blood standard uptake ratio (SUR) approach. The correlations between the KRAS mutational status and the mean, peak and maximum SUV were investigated using Student’s t test, Wilcoxon rank sum test with continuity correction, logistic regression and receiver operation characteristic (ROC) analysis.
These correlation analyses were also performed for the ratios of the mean, peak and maximum tumor uptake to the mean blood activity concentration at the time of scan: SURMEAN, SURPEAK and SURMAX, respectively. Results Fifteen patients harbored KRAS missense mutations (KRAS+), while another 3 harbored KRAS gene amplification. For 31 lesions, the mutational status was derived from the PET/CT-guided biopsy. The Student’s t test p values for separating KRAS mutant cases decreased after applying PVE correction to all uptake metrics of each lesion and when applying correction for uptake time variability to the SUR metrics. The observed correlations were strongest when both corrections were applied to SURMAX and when the patients harboring gene amplification were grouped with the wild type: p ≤ 0.001; ROC area under the curve = 0.77 and 0.75 for the two different segmentations, respectively, with a mean specificity of 0.69 and sensitivity of 0.85. Conclusion The correlations observed after applying the described corrections show potential for assigning probabilities for the KRAS missense mutation status in CLM using 2-[18F]FDG PET images.
Collapse
Affiliation(s)
- M Popovic
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Cornell University, Ithaca, NY, 14850, USA
| | - O Talarico
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Vassar Brothers Medical Center, Poughkeepsie, NY, 12601, USA.,Lebedev Physical Institute RAS, Moscow, Russia, 119991
| | - J van den Hoff
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - H Kunin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Z Zhang
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - D Lafontaine
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - S Dogan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - J Leung
- Technology Division, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - E Kaye
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - C Czmielewski
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - M E Mayerhoefer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - P Zanzonico
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - R Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - H Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - J L Humm
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - S B Solomon
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - C T Sofocleous
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - A S Kirov
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
13
|
A FDG-PET radiomics signature detects esophageal squamous cell carcinoma patients who do not benefit from chemoradiation. Sci Rep 2020; 10:17671. [PMID: 33077841 PMCID: PMC7573602 DOI: 10.1038/s41598-020-74701-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 10/06/2020] [Indexed: 11/21/2022] Open
Abstract
Detection of patients with esophageal squamous cell carcinoma (ESCC) who do not benefit from standard chemoradiation (CRT) is an important medical need. Radiomics using 18-fluorodeoxyglucose (FDG) positron emission tomography (PET) is a promising approach. In this retrospective study of 184 patients with locally advanced ESCC. 152 patients from one center were grouped into a training cohort (n = 100) and an internal validation cohort (n = 52). External validation was performed with 32 patients treated at a second center. Primary endpoint was disease-free survival (DFS), secondary endpoints were overall survival (OS) and local control (LC). FDG-PET radiomics features were selected by Lasso-Cox regression analyses and a separate radiomics signature was calculated for each endpoint. In the training cohort radiomics signatures containing up to four PET derived features were able to identify non-responders in regard of all endpoints (DFS p < 0.001, LC p = 0.003, OS p = 0.001). After successful internal validation of the cutoff values generated by the training cohort for DFS (p = 0.025) and OS (p = 0.002), external validation using these cutoffs was successful for DFS (p = 0.002) but not for the other investigated endpoints. These results suggest that pre-treatment FDG-PET features may be useful to detect patients who do not respond to CRT and could benefit from alternative treatment.
Collapse
|
14
|
Du J, Bai X, Cherry SR. A depth-encoding PET detector for high resolution PET using 1 mm SiPMs. Phys Med Biol 2020; 65:165011. [PMID: 32580180 DOI: 10.1088/1361-6560/ab9fc9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A dual-ended readout PET detector based on two Hamamatsu 16 × 16 arrays of 1 × 1 mm2 SiPMs coupled to both ends of a 25 × 25 array of 0.69 × 0.69 × 20 mm3 polished LYSOs was evaluated in terms of flood histogram, energy resolution, timing resolution, and DOI resolution. The SiPM arrays have a pitch size of 1.2 mm. Each SiPM pixel has an active area of 1 × 1 mm2, and was fabricated using 15 μm microcells. The LYSO array has a pitch size of 0.75 mm, and the crystals are separated using Toray reflector with a thickness of 50 μm. The flood histogram and energy resolution were measured at different overvoltages (ranging from 1.5 to 7.0 V, in 0.5 V steps) and at four different temperatures (-7, 0, 10 and 20 °C). The timing resolution and DOI resolution were obtained at the optimal overvoltage for the flood histogram and at each different temperature. Overall, the results show better performance was obtained at lower temperatures, and that the optimal overvoltage decreased at higher temperatures. The optimal overvoltage was 5.0 V (corresponding to a bias voltage of 68.5 V) in order to achieve the highest quality flood histogram at 0 °C. Under these conditions, the flood histogram quality, energy resolution, timing resolution, and DOI resolution were 3.26 ± 0.65, 18.4 ± 4.5%, 1.70 ± 0.12 ns and 2.22 ± 0.19 mm, respectively. The flood histograms and energy resolution were also obtained at different activities. The results show that better flood histogram and energy resolution were obtained at lower activity, however all the crystals can be resolved at an event rate of over 210 k cps, indicating the DOI detector module can be used both for high resolution human brain PET and small animal PET applications.
Collapse
Affiliation(s)
- Junwei Du
- Department of Biomedical Engineering, University of California-Davis, One Shields Avenue, Davis, CA 95616 United States of America
| | | | | |
Collapse
|
15
|
Chen PJ, Yap WK, Chang YC, Tseng CK, Chao YK, Hsieh JCH, Pai PC, Lee CH, Yang CK, Ho ATY, Hung TM. Prognostic value of lymph node to primary tumor standardized uptake value ratio in unresectable esophageal cancer. BMC Cancer 2020; 20:545. [PMID: 32522275 PMCID: PMC7288503 DOI: 10.1186/s12885-020-07044-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/04/2020] [Indexed: 01/25/2023] Open
Abstract
Background Unresectable esophageal cancer harbors high mortality despite chemoradiotherapy. Better patient selection for more personalized management may result in better treatment outcomes. We presume the ratio of maximum standardized uptake value (SUV) of metastatic lymph nodes to primary tumor (NTR) in 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography (FDG PET/CT) may provide prognostic information and further stratification of these patients. Methods The patients with non-metastatic and unresectable esophageal squamous cell carcinoma (SCC) receiving FDG PET/CT staging and treated by chemoradiotherapy were retrospectively reviewed. Receiver operating characteristic (ROC) analysis was performed to determine the optimal cut-off value for NTR. Kaplan-Meier method and Cox regression model were used for survival analyses and multivariable analyses, respectively. Results From 2010 to 2016, 96 eligible patients were analyzed. The median follow-up time was 10.2 months (range 1.6 to 83.6 months). Using ROC analysis, the best NTR cut-off value was 0.46 for prediction of distant metastasis. The median distant metastasis-free survival (DMFS) was significantly lower in the high-NTR group (9.5 vs. 22.2 months, p = 0.002) and median overall survival (OS) (9.5 vs. 11.6 months, p = 0.013) was also significantly worse. Multivariable analysis revealed that NTR was an independent prognostic factor for DMFS (hazard ratio [HR] 1.81, p = 0.023) and OS (HR 1.77, p = 0.014). Conclusions High pretreatment NTR predicts worse treatment outcomes and could be an easy-to-use and helpful prognostic factor to provide more personalized treatment for patients with non-metastatic and unresectable esophageal SCC.
Collapse
Affiliation(s)
- Po-Jui Chen
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan, Taiwan
| | - Wing-Keen Yap
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan, Taiwan
| | - Yu-Chuan Chang
- Department of Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, No.259, Wenhua 1st Rd., Kwei-Shan, Taoyuan, Taiwan
| | - Chen-Kan Tseng
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan, Taiwan
| | - Yin-Kai Chao
- Division of Thoracic Surgery, Department of Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jason Chia-Hsun Hsieh
- Division of Medical Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Chemical and Materials Engineering, Chang Gung University, No.259, Wenhua 1st Rd., Kwei-Shan, Taoyuan, Taiwan
| | - Ping-Ching Pai
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan, Taiwan
| | - Ching-Hsin Lee
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan, Taiwan
| | - Chan-Keng Yang
- Division of Medical Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Albert Tsung-Ying Ho
- Department of Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tsung-Min Hung
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan, Taiwan. .,Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, No.259, Wenhua 1st Rd., Kwei-Shan, Taoyuan, Taiwan.
| |
Collapse
|
16
|
Unterrainer M, Eze C, Ilhan H, Marschner S, Roengvoraphoj O, Schmidt-Hegemann NS, Walter F, Kunz WG, Rosenschöld PMA, Jeraj R, Albert NL, Grosu AL, Niyazi M, Bartenstein P, Belka C. Recent advances of PET imaging in clinical radiation oncology. Radiat Oncol 2020; 15:88. [PMID: 32317029 PMCID: PMC7171749 DOI: 10.1186/s13014-020-01519-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/19/2020] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy and radiation oncology play a key role in the clinical management of patients suffering from oncological diseases. In clinical routine, anatomic imaging such as contrast-enhanced CT and MRI are widely available and are usually used to improve the target volume delineation for subsequent radiotherapy. Moreover, these modalities are also used for treatment monitoring after radiotherapy. However, some diagnostic questions cannot be sufficiently addressed by the mere use standard morphological imaging. Therefore, positron emission tomography (PET) imaging gains increasing clinical significance in the management of oncological patients undergoing radiotherapy, as PET allows the visualization and quantification of tumoral features on a molecular level beyond the mere morphological extent shown by conventional imaging, such as tumor metabolism or receptor expression. The tumor metabolism or receptor expression information derived from PET can be used as tool for visualization of tumor extent, for assessing response during and after therapy, for prediction of patterns of failure and for definition of the volume in need of dose-escalation. This review focuses on recent and current advances of PET imaging within the field of clinical radiotherapy / radiation oncology in several oncological entities (neuro-oncology, head & neck cancer, lung cancer, gastrointestinal tumors and prostate cancer) with particular emphasis on radiotherapy planning, response assessment after radiotherapy and prognostication.
Collapse
Affiliation(s)
- M Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany. .,Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany. .,German Cancer Consortium (DKTK), partner site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - C Eze
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - H Ilhan
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - S Marschner
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - O Roengvoraphoj
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - N S Schmidt-Hegemann
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - F Walter
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - W G Kunz
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - P Munck Af Rosenschöld
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, and Lund University, Lund, Sweden
| | - R Jeraj
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA
| | - N L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK), partner site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A L Grosu
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), partner Site Freiburg, Freiburg, Germany
| | - M Niyazi
- German Cancer Consortium (DKTK), partner site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - P Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK), partner site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - C Belka
- German Cancer Consortium (DKTK), partner site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
17
|
Zschaeck S, Li Y, Bütof R, Lili C, Hua W, Troost ECG, Beck M, Amthauer H, Kaul D, Kotzerke J, Baur ADJ, Ghadjar P, Baumann M, Krause M, Hofheinz F. Combined tumor plus nontumor interim FDG-PET parameters are prognostic for response to chemoradiation in squamous cell esophageal cancer. Int J Cancer 2020; 147:1427-1436. [PMID: 32010957 DOI: 10.1002/ijc.32897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 11/06/2022]
Abstract
We have investigated the prognostic value of two novel interim 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET) parameters in patients undergoing chemoradiation (CRT) for esophageal squamous cell carcinoma (ESCC): one tumor parameter (maximal standardized uptake ratio rSUR) and one normal tissue parameter (change of FDG uptake within irradiated nontumor-affected esophagus ∆SUVNTO ). PET data of 134 European and Chinese patients were analyzed. Parameter establishment was based on 36 patients undergoing preoperative CRT plus surgery, validation was performed in 98 patients receiving definitive CRT. Patients received PET imaging prior and during fourth week of CRT. Clinical parameters, baseline PET parameters, and interim PET parameters (rSUR and ∆SUVNTO ) were analyzed and compared to event-free survival (EFS), overall survival (OS), loco-regional control (LRC) and freedom from distant metastases (FFDM). Combining rSUR and ∆SUVNTO revealed a strong prognostic impact on EFS, OS, LRC and FFDM in patients undergoing preoperative CRT. In the definitive CRT cohort, univariate analysis with respect to EFS revealed several staging plus both previously established interim PET parameters as significant prognostic factors. Multivariate analyses revealed only rSUR and ∆SUVNTO as independent prognostic factors (p = 0.003, p = 0.008). Combination of these parameters with the cutoff established in preoperative CRT revealed excellent discrimination of patients with a long or short EFS (73% vs. 17% at 2 years, respectively) and significantly discriminated all other endpoints (OS, p < 0.001; LRC, p < 0.001; FFDM, p = 0.02), even in subgroups. Combined use of interim FDG-PET derived parameters ∆SUVNTO and rSUR seems to have predictive potential, allowing to select responders for definitive CRT and omission of surgery.
Collapse
Affiliation(s)
- Sebastian Zschaeck
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Dresden, Dresden, Germany
| | - Yimin Li
- Department of Radiation Oncology, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Rebecca Bütof
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner site Dresden, Dresden, Germany
| | - Chen Lili
- Department of Radiation Oncology, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Wu Hua
- Department of Nuclear Medicine, The Xiamen First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Esther C G Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner site Dresden, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology OncoRay, Dresden, Germany
| | - Marcus Beck
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Holger Amthauer
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - David Kaul
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jörg Kotzerke
- OncoRay - National Center for Radiation Research in Oncology, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Dresden, Dresden, Germany.,Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Alexander D J Baur
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik für Radiologie, Berlin, Germany
| | - Pirus Ghadjar
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michael Baumann
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner site Dresden, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology OncoRay, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mechthild Krause
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner site Dresden, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology OncoRay, Dresden, Germany
| | - Frank Hofheinz
- Helmholtz-Zentrum Dresden-Rossendorf, PET Center, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| |
Collapse
|
18
|
Mantziari S, Pomoni A, Prior JO, Winiker M, Allemann P, Demartines N, Schäfer M. 18F- FDG PET/CT-derived parameters predict clinical stage and prognosis of esophageal cancer. BMC Med Imaging 2020; 20:7. [PMID: 31969127 PMCID: PMC6977262 DOI: 10.1186/s12880-019-0401-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/16/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although 18F- FDG PET/CT is validated in baseline workup of esophageal cancer to detect distant metastases, it remains underused in assessing local staging and biology of the primary tumor. This study aimed to evaluate the association between 18F- FDG PET/CT-derived parameters of esophageal cancer, and its clinico-pathological features and prognosis. METHODS All patients (n = 86) with esophageal adenocarcinoma or squamous cell cancer operated between 2005 and 2014 were analyzed. Linear regression was used to identify clinico-pathologic features of esophageal cancer associated with the tumor's maximal Standardized Uptake Value (SUVmax), Total Lesion Glycolysis (TLG) and Metabolic Tumor Volume (MTV). ROC curve analysis was performed to precise the optimal cutoff of each variable associated with a locally advanced (cT3/4) status, long-term survival and recurrence. Kaplan Meier curves and Cox regression were used for survival analyses. RESULTS High baseline SUVmax was associated with cT3/4 status and middle-third tumor location, TLG with a cT3/4 and cN+ status, whereas MTV only with active smoking. A cT3/4 status was significantly predicted by a SUVmax > 8.25 g/mL (p < 0.001), TLG > 41.7 (p < 0.001) and MTV > 10.70 cm3 (p < 0.01) whereas a SUVmax > 12.7 g/mL was associated with an early tumor recurrence and a poor disease-free survival (median 13 versus 56 months, p = 0.030), particularly in squamous cell cancer. CONCLUSIONS Baseline 18F- FDG PET/CT has a high predictive value of preoperative cT stage, as its parameters SUVmax, TLG and MTV can predict a locally advanced tumor with high accuracy. A SUVmax > 12.7 g/mL may herald early tumor recurrence and poor disease-free survival.
Collapse
Affiliation(s)
- Styliani Mantziari
- Department of Visceral Surgery, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1011, Lausanne, Switzerland.,Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Anastasia Pomoni
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - John O Prior
- Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne, Switzerland.,Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Michael Winiker
- Department of Visceral Surgery, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Pierre Allemann
- Department of Visceral Surgery, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1011, Lausanne, Switzerland.,Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Nicolas Demartines
- Department of Visceral Surgery, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1011, Lausanne, Switzerland. .,Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne, Switzerland.
| | - Markus Schäfer
- Department of Visceral Surgery, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1011, Lausanne, Switzerland.,Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
19
|
Zhang G, Liu Y, Dong F, Liu X. Transcription/Expression of KLRB1 Gene as A Prognostic Indicator in Human Esophageal Squamous Cell Carcinoma. Comb Chem High Throughput Screen 2020; 23:667-674. [PMID: 32416673 DOI: 10.2174/1386207323666200517114154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/07/2020] [Accepted: 04/24/2020] [Indexed: 12/24/2022]
Abstract
AIM AND OBJECTIVE Esophageal squamous cell carcinoma (ESCC) is the most prevalent type of cancer with worldwide distribution and dismal prognosis despite ongoing efforts to improve treatment options. Therefore, it is essential to determine the prognostic factors for ESCC. METHODS AND RESULTS We determined KLRB1 to be a prognostic indicator of human ESCC. KLRB1 was expressed at low levels in ESCC patients. Based on the risk score, patients were divided into high and low-risk groups. High-risk patients showed a poor survival rate. The prediction model based on the N stage, sex, and KLRB1 was significantly better than that based on the N stage and sex. The modified prediction model showed a robust ROC curve with an AUC value of 0.973. The knockdown of KLRB1 inhibited the growth of human ESCC cells. KLRB1 regulated Akt, mTOR, p27, p38, NF-κB, Cyclin D1, and JNK signaling, which was consistent with the result of GSEA. CONCLUSION KLRB1 is a potential prognostic marker for human ESCC patients.
Collapse
Affiliation(s)
- Guangwei Zhang
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Ying Liu
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Fajin Dong
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Xianming Liu
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| |
Collapse
|
20
|
Sarikaya I, Sarikaya A. Assessing PET Parameters in Oncologic 18F-FDG Studies. J Nucl Med Technol 2019; 48:278-282. [PMID: 31811061 DOI: 10.2967/jnmt.119.236109] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023] Open
Abstract
PET imaging, particularly oncologic applications of 18F-FDG, has become a routine diagnostic study. To better describe malignancies, various PET parameters are used. In 18F-FDG PET studies, SUVmax is the most commonly used parameter to measure the metabolic activity of the tumor. In obese patients, SUV corrected by lean body mass (SUL), and in pediatric patients, SUV corrected by body surface area, are recommended. Metabolic tumor volume is an important parameter to determine the local and total tumor burden. Total lesion glycolysis (SUVmean × metabolic tumor volume) provides information about averages. Some treatment response assessment protocols recommend using the SUVpeak or SULpeak of the tumor. Tumor-to-liver ratio and tumor-to-blood-pool ratio are helpful when comparing studies for treatment response assessment. Dual-time-point PET imaging with retention index can help differentiate malignant from benign lesions and may help detect small lesions. Dynamic 18F-FDG PET imaging and quantitative analysis can measure the metabolic, phosphorylation, and dephosphorylation rates of lesions but are mainly used for research purposes. In this article, we will review the currently available PET parameters in 18F-FDG studies with their importance, uses, limitations, and reasons for erroneous results.
Collapse
Affiliation(s)
- Ismet Sarikaya
- Department of Nuclear Medicine, Kuwait University Faculty of Medicine, Kuwait City, Kuwait; and
| | - Ali Sarikaya
- Department of Nuclear Medicine, Trakya University Faculty of Medicine, Edirne, Turkey
| |
Collapse
|
21
|
Combining the radiomic features and traditional parameters of 18F-FDG PET with clinical profiles to improve prognostic stratification in patients with esophageal squamous cell carcinoma treated with neoadjuvant chemoradiotherapy and surgery. Ann Nucl Med 2019; 33:657-670. [DOI: 10.1007/s12149-019-01380-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022]
|
22
|
Confirmation of the prognostic value of pretherapeutic tumor SUR and MTV in patients with esophageal squamous cell carcinoma. Eur J Nucl Med Mol Imaging 2019; 46:1485-1494. [PMID: 30949816 DOI: 10.1007/s00259-019-04307-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/04/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE The prognosis for patients with inoperable esophageal carcinoma is still poor and the reliability of individual therapy outcome prediction based on clinical parameters is not convincing. In a recent publication, we were able to show that PET can provide independent prognostic information in such a patient group and that the tumor-to-blood standard uptake ratio (SUR) can improve the prognostic value of tracer uptake values. The present investigation addresses the question of whether the distinctly improved prognostic value of SUR can be confirmed in a similar patient group that was examined and treated at a different site. METHODS 18F-FDG PET/CT was performed in 147 consecutive patients (115 male, 32 female, mean age: 62 years) with newly diagnosed esophageal squamous cell carcinoma prior to definitive radiochemotherapy. In the PET images, the metabolic active volume (MTV) of the primary tumor was delineated with an adaptive threshold method. For the resulting ROIs, SUVmax and total lesion glycolysis (TLG = MTV × SUVmean) were computed. The blood SUV was determined by manually delineating the aorta in the low-dose CT. SUR values were computed as ratio of tumor SUV and blood SUV. Univariate Cox regression and Kaplan-Meier analysis with respect to overall survival (OS), distant-metastases-free survival (DM), and locoregional control (LRC) was performed. Additionally, a multivariate Cox regression including clinically relevant parameters was performed. RESULTS Univariate Cox regression revealed MTV, TLG, and SURmax as significant prognostic factors for OS. MTV as well as TLG were significant prognostic factors for LRC while SURmax showed only a trend for significance. None of the PET parameters was prognostic for DM. In univariate analysis, SUVmax was not prognostic for any of the investigated clinical endpoints. In multivariate analysis (T-stage, N-stage, MTV, and SURmax), MTV was an independent prognostic factor for OS and showed a trend for significance for LRC. SURmax was not an independent predictor for OS or LRC. When including the PET parameters separately in multivariate analysis, MTV as well as SURmax were prognostic factors for OS indicating that SURmax is independent from the clinical parameters but not from MTV. In addition, MTV was an independent prognostic factor for LRC in this separate analysis. CONCLUSIONS Our study revealed a clearly improved prognostic value of tumor SUR compared to tumor SUV and confirms our previously published findings regarding OS. Furthermore, SUR delivers prognostic information beyond that provided by the clinical parameters alone, but does not add prognostic information beyond that provided by MTV in this patient group. Therefore, our results suggest that pretherapeutic MTV is the parameter of choice for PET-based risk stratification in the considered setting but further investigations are necessary to demonstrate that this suggestion is correct.
Collapse
|
23
|
Hofheinz F, Maus J, Zschaeck S, Rogasch J, Schramm G, Oehme L, Apostolova I, Kotzerke J, den Hoff JV. Interobserver variability of image-derived arterial blood SUV in whole-body FDG PET. EJNMMI Res 2019; 9:23. [PMID: 30830508 PMCID: PMC6399366 DOI: 10.1186/s13550-019-0486-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/01/2019] [Indexed: 11/16/2022] Open
Abstract
Background Today, the standardized uptake value (SUV) is essentially the only means for quantitative evaluation of static [18F-]fluorodeoxyglucose (FDG) positron emission tomography (PET) investigations. However, the SUV approach has several well-known shortcomings which adversely affect the reliability of the SUV as a surrogate of the metabolic rate of glucose consumption. The standard uptake ratio (SUR), i.e., the uptake time-corrected ratio of tumor SUV to image-derived arterial blood SUV, has been shown in the first clinical studies to overcome most of these shortcomings, to decrease test-retest variability, and to increase the prognostic value in comparison to SUV. However, it is unclear, to what extent the SUR approach is vulnerable to observer variability of the additionally required blood SUV (BSUV) determination. The goal of the present work was the investigation of the interobserver variability of image-derived BSUV. Methods FDG PET/CT scans from 83 patients (72 male, 11 female) with non-small cell lung cancer (N = 46) or head and neck cancer (N = 37) were included. BSUV was determined by 8 individuals, each applying a dedicated delineation tool for the BSUV determination in the aorta. Two of the observers applied two further tools. Altogether, five different delineation tools were used. With each used tool, delineation was performed for the whole patient group, resulting in 12 distinct observations per patient. Intersubject variability of BSUV determination was assessed using the fractional deviations for the individual patients from the patient group average and was quantified as standard deviation (SD is), 95% confidence interval, and range. Interobserver variability of BSUV determination was assessed using the fractional deviations of the individual observers from the observer-average for the considered patient and quantified as standard deviations (SD p, SD d) or root mean square (RMS), 95% confidence interval, and range in each patient, each observer, and the pooled data respectively. Results Interobserver variability in the pooled data amounts to RMS = 2.8% and is much smaller than the intersubject variability of BSUV (SD is= 16%). Averaged over the whole patient group, deviations of individual observers from the observer average are very small and fall in the range [ − 0.96, 1.05]%. However, interobserver variability partly differs distinctly for different patients, covering a range of [0.7, 7.4]% in the investigated patient group. Conclusion The present investigation demonstrates that the image-based manual determination of BSUV in the aorta is sufficiently reproducible across different observers and delineation tools which is a prerequisite for accurate SUR determination. This finding is in line with the already demonstrated superior prognostic value of SUR in comparison to SUV in the first clinical studies.
Collapse
Affiliation(s)
- Frank Hofheinz
- PET Center, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, Germany.
| | - Jens Maus
- PET Center, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, Germany
| | - Sebastian Zschaeck
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiation Oncology, Berlin, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch 2, Berlin, 10178, Germany
| | - Julian Rogasch
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nuclear Medicine, Berlin, Germany
| | - Georg Schramm
- Division of Nuclear Medicine, Department of Imaging and Pathology, KU/UZ Leuven, Leuven, Belgium
| | - Liane Oehme
- Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Ivayla Apostolova
- Zentrum für Radiologie und Endoskopie, Abteilung für Nuklearmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jörg Kotzerke
- Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Jörg van den Hoff
- PET Center, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, Germany.,Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| |
Collapse
|
24
|
Leahy R, Boellaard R, Zaidi H. Whole‐body parametric
PET
imaging will replace conventional image‐derived
PET
metrics in clinical oncology. Med Phys 2018; 45:5355-5358. [DOI: 10.1002/mp.13266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 01/26/2023] Open
Affiliation(s)
- Richard Leahy
- Signal and Image Processing Institute University of Southern California Los Angeles CA 90089USA
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine Amsterdam University Medical Centers Location VUMC AmsterdamThe Netherlands
- Department of Nuclear Medicine and Molecular Imaging University of Groningen University Medical Center Groningen Groningen The Netherlands
| | | |
Collapse
|