1
|
Xie X, Zhai J, Zhou X, Guo Z, Lo PC, Zhu G, Chan KWY, Yang M. Magnetic Particle Imaging: From Tracer Design to Biomedical Applications in Vasculature Abnormality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306450. [PMID: 37812831 DOI: 10.1002/adma.202306450] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/14/2023] [Indexed: 10/11/2023]
Abstract
Magnetic particle imaging (MPI) is an emerging non-invasive tomographic technique based on the response of magnetic nanoparticles (MNPs) to oscillating drive fields at the center of a static magnetic gradient. In contrast to magnetic resonance imaging (MRI), which is driven by uniform magnetic fields and projects the anatomic information of the subjects, MPI directly tracks and quantifies MNPs in vivo without background signals. Moreover, it does not require radioactive tracers and has no limitations on imaging depth. This article first introduces the basic principles of MPI and important features of MNPs for imaging sensitivity, spatial resolution, and targeted biodistribution. The latest research aiming to optimize the performance of MPI tracers is reviewed based on their material composition, physical properties, and surface modifications. While the unique advantages of MPI have led to a series of promising biomedical applications, recent development of MPI in investigating vascular abnormalities in cardiovascular and cerebrovascular systems, and cancer are also discussed. Finally, recent progress and challenges in the clinical translation of MPI are discussed to provide possible directions for future research and development.
Collapse
Affiliation(s)
- Xulin Xie
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Jiao Zhai
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Zhengjun Guo
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
- Department of Oncology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Pui-Chi Lo
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
2
|
Kolade OU, Brink A, Ayeni AO, More S, Holness J. Optimizing PSMA scintigraphy for resource limited settings - a retrospective comparative study. Cancer Imaging 2024; 24:46. [PMID: 38556864 PMCID: PMC10983723 DOI: 10.1186/s40644-024-00693-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND PSMA PET/CT is the most sensitive molecular imaging modality for prostate cancer (PCa), yet much of the developing world has little or no access to PET/CT. [99mTc]Tc-PSMA scintigraphy (PS) is a cheaper and more accessible gamma camera-based alternative. However, many resource-constrained departments have only a single camera without tomographic or hybrid imaging functionality, and camera time is frequently in high demand. Simplifying imaging protocols by limiting the field of view (FOV) and omitting SPECT/CT or even SPECT may provide a partial solution. The aim was thus to determine the adequacy of PS planar-only and/or SPECT-only imaging protocols with a limited FOV. METHODS The scans of 95 patients with histologically proven PCa who underwent PS with full-body planar and multi-FOV SPECT/CT were reviewed. The detection rates for uptake in the prostate gland/bed and in metastases were compared on planar, SPECT, and SPECT/CT. The agreement between modalities was calculated for the detection of metastases and for staging. The impact of imaging a limited FOV was determined. RESULTS Pathological prostatic uptake was seen in all cases on SPECT/CT (excluding two post-prostatectomy patients), 90.3% of cases on SPECT, and 15.1% on planar images (p < 0.001). Eleven (11.7%) patients had seminal vesicle involvement on SPECT/CT, which was undetectable/indistinguishable on planar images and SPECT. The agreement between modalities was moderate to good (κ = 0.41 to 0.61) for the detection of nodal metastases, with detection rates that did not differ significantly (SPECT/CT = 11.6%, SPECT = 8.4%, planar = 5.3%). Detection rates for bone metastases were 14.7% (SPECT/CT) and 11.6% (SPECT and planar). Agreement between modalities for the detection of bone metastases was good (κ = 0.73 to 0.77). Three (3.1%) patients had visceral metastases on SPECT/CT, two of which were detected on SPECT and planar. There was good agreement between modalities for the TNM staging of patients (κ = 0.70 to 0.88). No metastatic lesions were missed on the limited FOV images. CONCLUSION When PS scintigraphy is performed, SPECT/CT is recommended. However, the lack of SPECT/CT capabilities should not preclude the use of PS in the presence of limited resources, as both planar and SPECT imaging are adequate and will correctly stage most PCa patients. Furthermore, time-based optimisations are achievable by limiting the FOV to exclude the distal lower limbs.
Collapse
Affiliation(s)
- Olumayowa U Kolade
- Division of Nuclear Medicine, Department of Radiation Medicine, University of Cape Town, Cape Town, South Africa.
- Department of Nuclear Medicine, University College Hospital, Ibadan, Oyo State, Nigeria.
| | - Anita Brink
- Division of Nuclear Medicine, Department of Radiation Medicine, University of Cape Town, Cape Town, South Africa
- Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Akinwale O Ayeni
- Division of Nuclear Medicine, Department of Radiation Medicine, University of Cape Town, Cape Town, South Africa
- Department of Nuclear Medicine, Klerksdorp/Tshepong Hospital Complex, Klerksdorp, South Africa
- Division of Nuclear Medicine, Department of Radiation Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stuart More
- Division of Nuclear Medicine, Department of Radiation Medicine, University of Cape Town, Cape Town, South Africa
| | - Jennifer Holness
- Division of Nuclear Medicine, Department of Radiation Medicine, University of Cape Town, Cape Town, South Africa
- Division of Nuclear Medicine, Department of Medical Imaging and Clinical Oncology, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
3
|
Mhlanga J, Alazraki A, Cho SY, Lai H, Nadel H, Pandit-Taskar N, Qi J, Rajderkar D, Voss S, Watal P, McCarten K. Imaging recommendations in pediatric lymphoma: A COG Diagnostic Imaging Committee/SPR Oncology Committee White Paper. Pediatr Blood Cancer 2023; 70 Suppl 4:e29968. [PMID: 36114654 PMCID: PMC10641880 DOI: 10.1002/pbc.29968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022]
Abstract
Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL) are both malignancies originating in the lymphatic system and both affect children, but many features differ considerably, impacting workup and management. This paper provides consensus-based imaging recommendations for evaluation of patients with HL and NHL at diagnosis and response assessment for both interim and end of therapy (follow-up).
Collapse
Affiliation(s)
- Joyce Mhlanga
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, Saint Louis, Missouri, USA
| | - Adina Alazraki
- Departments of Pediatrics and Radiology, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Steve Y Cho
- Department of Radiology, Nuclear Medicine and Molecular Imaging Section, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Hollie Lai
- Department of Radiology, Children's Health of Orange County, Orange, California, USA
| | - Helen Nadel
- Department of Pediatric Radiology, Lucile Packard Children's Hospital at Stanford, Stanford University School of Medicine, Stanford, California, USA
| | - Neeta Pandit-Taskar
- Department of Radiology, Molecular imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
- Department of Radiology, Weill Cornell Medical College, New York City, New York, USA
| | - Jing Qi
- Department of Radiology, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, Wisconsin, USA
| | - Dhanashree Rajderkar
- Department of Radiology, Division of Pediatric Radiology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Stephan Voss
- Harvard Medical School, Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Pankaj Watal
- University of Central Florida College of Medicine, Nemours Children's Hospital, Orlando, Florida, USA
| | - Kathleen McCarten
- Diagnostic Imaging and Pediatrics, Imaging and Radiation Oncology Core, Lincoln, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
4
|
Brink A, Hlongwa KN, More S. The Impact of PET/CT on Paediatric Oncology. Diagnostics (Basel) 2023; 13:192. [PMID: 36673002 PMCID: PMC9857884 DOI: 10.3390/diagnostics13020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/01/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
This review paper will discuss the use of positron emission tomography/computed tomography (PET/CT) in paediatric oncology. Functional imaging with PET/CT has proven useful to guide treatment by accurately staging disease and limiting unnecessary treatments by determining the metabolic response to treatment. 18F-Fluorodeoxyglucose (2-[18F]FDG) PET/CT is routinely used in patients with lymphoma. We highlight specific considerations in the paediatric population with lymphoma. The strengths and weaknesses for PET/CT tracers that compliment Meta-[123I]iodobenzylguanidine ([123I]mIBG) for the imaging of neuroblastoma are summarized. 2-[18F]FDG PET/CT has increasingly been used in the staging and evaluation of disease response in sarcomas. The current recommendations for the use of PET/CT in sarcomas are given and potential future developments and highlighted. 2-[18F]FDG PET/CT in combination with conventional imaging is currently the standard for disease evaluation in children with Langerhans-cell Histiocytosis (LCH) and the non-LCH disease spectrum. The common pitfalls of 2-[18F]FDG PET/CT in this setting are discussed.
Collapse
Affiliation(s)
- Anita Brink
- Division of Nuclear Medicine, Department of Radiation Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
| | | | | |
Collapse
|
5
|
Guja KE, Nadel H, Iagaru A. Overview and Recent Advances in 18F-FDG PET/CT for Evaluation of Pediatric Lymphoma. Semin Nucl Med 2022. [DOI: 10.1053/j.semnuclmed.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Vali R, Alessio A, Balza R, Borgwardt L, Bar-Sever Z, Czachowski M, Jehanno N, Kurch L, Pandit-Taskar N, Parisi M, Piccardo A, Seghers V, Shulkin BL, Zucchetta P, Lim R. SNMMI Procedure Standard/EANM Practice Guideline on Pediatric 18F-FDG PET/CT for Oncology 1.0. J Nucl Med 2021; 62:99-110. [PMID: 33334912 PMCID: PMC8679588 DOI: 10.2967/jnumed.120.254110] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and professional organization founded in 1954 to promote the science, technology, and practical application of nuclear medicine. The European Association of Nuclear Medicine (EANM) is a professional nonprofit medical association founded in 1985 to facilitate communication worldwide among individuals pursuing clinical and academic excellence in nuclear medicine. SNMMI and EANM members are physicians, technologists, and scientists specializing in the research and practice of nuclear medicine. The SNMMI and EANM will periodically put forth new standards/guidelines for nuclear medicine practice to help advance the science of nuclear medicine and improve service to patients. Existing standards/guidelines will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated. Each standard/guideline, representing a policy statement by the SNMMI/EANM, has undergone a thorough consensus process, entailing extensive review. The SNMMI and EANM recognize that the safe and effective use of diagnostic nuclear medicine imaging requires particular training and skills, as described in each document. These standards/guidelines are educational tools designed to assist practitioners in providing appropriate and effective nuclear medicine care for patients. These guidelines are consensus documents, and are not inflexible rules or requirements of practice. They are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, the SNMMI and the EANM cautions against the use of these standards/guidelines in litigation in which the clinical decisions of a practitioner are called into question. The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by medical professionals taking into account the unique circumstances of each case. Thus, there is no implication that action differing from what is laid out in the standards/guidelines, standing alone, is below standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in the standards/guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of the standards/guidelines. The practice of medicine involves not only the science, but also the art of dealing with the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible for general guidelines to consistently allow for an accurate diagnosis to be reached or a particular treatment response to be predicted. Therefore, it should be recognized that adherence to these standards/guidelines will not ensure a successful outcome. All that should be expected is that the practitioner follows a reasonable course of action, based on their level of training, the current knowledge, the available resources, and the needs/context of the particular patient being treated. PET and computerized tomography (CT) have been widely used in oncology. 18F-FDG is the most common radiotracer used for PET imaging. The purpose of this document is to provide imaging specialists and clinicians guidelines for recommending, performing, and interpreting 18F-FDG PET/CT in pediatric patients in oncology. There is not a high level of evidence for all recommendations suggested in this paper. These recommendations represent the expert opinions of experienced leaders in this field. Further studies are needed to have evidence-based recommendations for the application of 18F-FDG PET/CT in pediatric oncology. These recommendations should be viewed in the context of good practice of nuclear medicine and are not intended to be a substitute for national and international legal or regulatory provisions.
Collapse
Affiliation(s)
- Reza Vali
- Department of Diagnostic Imaging, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Adam Alessio
- Michigan State University, East Lansing, Michigan
| | - Rene Balza
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lise Borgwardt
- Department for Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Zvi Bar-Sever
- Schneider Children's Medical Center, Petach Tikva, Israel
| | | | - Nina Jehanno
- Department of Nuclear Medicine, Institut Curie, Paris, France
| | - Lars Kurch
- University Hospital Leipzig, Department of Nuclear Medicine, Leipzig, Germany
| | | | - Marguerite Parisi
- University of Washington School of Medicine and Seattle Children's Hospital, Seattle, Washington
| | | | - Victor Seghers
- Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Barry L Shulkin
- St. Jude Children's Research Hospital, Memphis, Tennessee; and
| | | | - Ruth Lim
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
7
|
Positron Emission Tomography and Molecular Imaging of Head and Neck Malignancies. CURRENT RADIOLOGY REPORTS 2020. [DOI: 10.1007/s40134-020-00366-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Abstract
Although fluorodeoxyglucose PET/MR imaging is a promising new modality, there is not yet enough data to support its routine use for staging or surveillance of children with lymphoma. PET/MR imaging protocols are still under development, and its availability globally is limited. The cost-benefit of using PET/MR imaging has not yet been established, especially because annual post-treatment surveillance imaging with fluorodeoxyglucose PET is not necessary in most patients with lymphoma. Further research into the use of PET/MR imaging in pediatric oncology patients is needed with continued collaborations among institutions.
Collapse
|
9
|
Imaging for diagnosis, staging and response assessment of Hodgkin lymphoma and non-Hodgkin lymphoma. Pediatr Radiol 2019; 49:1545-1564. [PMID: 31620854 DOI: 10.1007/s00247-019-04529-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/14/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023]
Abstract
Hodgkin lymphoma and non-Hodgkin lymphoma are common malignancies in children and are now highly treatable. Imaging plays a major role in diagnosis, staging and response using conventional CT and MRI and metabolic imaging with positron emission tomography (PET)/CT and PET/MRI. Cross-sectional imaging has replaced staging laparotomy and splenectomy by demonstrating abdominal nodal groups and organ involvement. [F-18]2-fluoro-2-deoxyglucose (FDG) PET provides information on bone marrow involvement, and MRI elucidates details of cortical bone and confirmation of bone marrow involvement. The staging system for Hodgkin lymphoma is the Ann Arbor system with Cotswald modifications and is based on imaging, whereas the non-Hodgkin staging system is the St. Jude Classification by Murphy or the more recent revised International Pediatric Non-Hodgkin Lymphoma Staging System (IPNHLSS). Because all pediatric lymphomas are metabolically FDG-avid and identify all nodal, solid organ, cortical bone and bone marrow disease, staging evaluations require FDG PET as PET/CT or PET/MRI in both Hodgkin and non-Hodgkin lymphoma. Both diseases have in common issues of airway compromise at presentation demonstrated by imaging. Differences exist in that Hodgkin lymphoma has several independent poor prognostic factors seen by imaging such as large mediastinal adenopathy, Stage IV disease, systemic symptoms, pleural effusion and pericardial effusion. Non-Hodgkin lymphoma includes more organ involvement such as renal, ovary, central nervous system and skin. Early or interim PET-negative scans are a reliable indicator of improved clinical outcome and optimize risk-adapted therapy and patient management; imaging may not, however, predict who will relapse. A recent multicenter trial has concluded that it is usually sufficient for pediatric lymphoma at staging and interim assessment to evaluate children with PET imaging from skull base to mid-thigh. Various systems of assessment of presence of disease or response are used, including the Deauville visual scale, where avidity is compared to liver; Lugano, which includes size change as part of response; or quantitative PET, which uses standardized uptake values to define more accurate response. Newer methods of immunotherapy can produce challenges in FDG PET evaluation because of inflammatory changes that may not represent disease.
Collapse
|