1
|
Darabi S, Gorgich EAC, Moradi F, Rustamzadeh A. Lipidopathy disrupts peripheral and central amyloid clearance in Alzheimer's disease: Where are our knowledge. IBRO Neurosci Rep 2025; 18:191-199. [PMID: 39906286 PMCID: PMC11791331 DOI: 10.1016/j.ibneur.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/09/2024] [Accepted: 01/04/2025] [Indexed: 02/06/2025] Open
Abstract
Amyloid-beta (Aβ) production is a normal physiological process, essential for neuronal function. However, an imbalance in Aβ production and clearance is the central pathological feature of Alzheimer's disease (AD), leading to the accumulation of Aβ plaques in the brain. Low-density lipoprotein receptor-related protein 1 (LRP1) plays a critical role in both the central clearance of Aβ from the brain and its peripheral transport to visceral organs. Disruptions in these processes contribute to the accumulation of Aβ in the central nervous system (CNS) and the progression of AD. Recent research emphasizes the need for a broader focus on the systemic effects of organs outside the brain, particularly in the context of AD prevention and treatment. The contribution of peripheral systems, such as the liver, in Aβ clearance, is vital, given that Aβ levels in the plasma correlate closely with those in the brain. Consequently, targeting systemic processes, rather than focusing solely on the CNS, may offer promising therapeutic approaches. Furthermore, high-density lipoprotein (HDL) facilitates the formation of lipoprotein-amyloid complexes, which are important for Aβ transport and clearance, using proteins such as apolipoproteins E and J (ApoE and ApoJ) to form complexes that help manage Aβ accumulation. On the other hand, low-density lipoprotein (LDL) facilitates Aβ efflux from the brain by binding to LRP1, promoting its clearance. Given the relationship between lipid profiles and Aβ levels, along with lipid-modifying drugs, may be effective in managing Aβ accumulation and mitigating AD progression.
Collapse
Affiliation(s)
- Shahram Darabi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-communicable Diseases, Department of Anatomical Sciences, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Fatemeh Moradi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Auob Rustamzadeh
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-communicable Diseases, Department of Anatomical Sciences, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
2
|
Yang Z, Liu L, You T, Wang L, Yi F, Jiang Y, Zhou Y. Comparative study of brain functional imaging of brain in patients with mild to moderate Alzheimer's disease based on functional near infrared spectroscopy. BMC Neurol 2025; 25:186. [PMID: 40289104 PMCID: PMC12036162 DOI: 10.1186/s12883-024-03989-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 12/09/2024] [Indexed: 04/30/2025] Open
Abstract
OBJECTIVE Based on the near-infrared functional brain imaging system, this research studied the hemoglobin concentration signal in resting state and task state. The purpose of this research was to analyze the activated brain regions and functional connections by exploring the changes in hemoglobin concentration and the differences in brain network functional connections between healthy people and mild to moderate AD patients. So as to identify the cognitive dysfunction of patients at an early stage. By accurately locating the area of cognitive impairment in patients, it provides a basis for precise neural regulation of physical therapy. METHODS Patients who came to our hospital from January 2022 to December 2022 were recruited and selected according to the exclusion criteria. After receiving their informed consent, MMSE scale examination and near-infrared brain function imaging examination were performed in a relatively quiet environment. RESULT A total of 24 subjects were included in this study, including 7 in the control group (age: 72.57 ± 7.19) and 17 (age: 76.88 ± 9.29) in the AD group. The average cognitive scores were (28.00 ± 1.16), (19.24 ± 4.89), respectively. There were no statistically significant differences in gender, years of education, age, and past medical history between the AD group and the control group (P > 0.05). In the verbal fluency test (VFT) task, there was a significant difference in the activation values of the two groups in channels 01, 06, 07, 09, 13, 14, 15, 16, 19, 21, 22, 23, 27, 29, 31, 35, 38, 40, 43, 44, 45, 51, and 52II (p < 0.05), and the activation values of the normal group were greater than those of the AD group. There was a significant difference in the mean oxygenated hemoglobin concentration in channels 01, 07, 15, 16, 21, 22, 23, 31, 35, 40, 41, 44, and 48 (p < 0.05), and the average oxygenated hemoglobin concentration in the AD group was lower than that in the normal group. There was no significant difference in activation speed between the two groups. In the resting state, the number of total network edges, DLPFC-L to PreM and SMC-L, DLPFC-L to FEF-L, DLPFC-L to DLPFC-L, FPA-L to PreM and SMC-L, FPA-L to FPA-L, FPA-R to FPA-L, DLPFC-L to DLPFC-R, FEF-R to PreM and There was a statistically significant difference in the number of network edges in SMC-L (p < 0.05). Among the different groups, the number of network edges in the AD group was smaller than that in the normal group. Correlation analysis showed that T14, T31, T16, T23, T27, M16, M22, M41 (T: represents activation value, M: represents mean hemoglobin concentration, and number represents channel number). There was a positive correlation between the total number of network edges, DLPFC-L to PreM and SMC-L, DLPFC-L to DLPFC-L, FPA-L to PreM and SMC-L, FPA-L to FPA-L, DLPFC-L to DLPFC-R, FEF-R to PreM and SMC-L, and MMSE scores (p < 0.05). DISCUSSION In this study, we found hemodynamic changes in the prefrontal lobes of AD patients under the VFT task, and the decrease in the functional connectivity of the prefrontal brain network in AD patients in the resting state, and these changes were associated with cognitive decline in patients. Our findings suggest that fNIRS may be used as a tool for future clinical screening for cognitive impairment, and may also be used to develop personalized preventive measures and treatment plans through accurate assessment.
Collapse
Affiliation(s)
- Zhen Yang
- Neurology Department, The First Affiliated Hospital of Shaoyang University, Shao Yang City, 422000, China
| | - Li Liu
- Neurology Department, The First Hospital of Chang Sha, Chang Sha City, 410000, China
| | - Tao You
- Neurology Department, The First Affiliated Hospital of Shaoyang University, Shao Yang City, 422000, China
| | - Lingling Wang
- Neurology Department, The First Affiliated Hospital of Shaoyang University, Shao Yang City, 422000, China
| | - Fang Yi
- Neurology Department, Zhuzhou Central Hospital, Zhuzhou City, 412000, China
| | - Yu Jiang
- Neurology Department, The First Hospital of Chang Sha, Chang Sha City, 410000, China
| | - Ying Zhou
- Neurology Department, The First Hospital of Chang Sha, Chang Sha City, 410000, China.
| |
Collapse
|
3
|
Cai W, Neitzel J, Glodzik L, Blacker D, Ma Y. Effect Modifiers of the Association of Blood Pressure With Brain Amyloid and Tau Pathology. Neurology 2025; 104:e213441. [PMID: 40014836 PMCID: PMC11874733 DOI: 10.1212/wnl.0000000000213441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/15/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Hypertension is an important modifiable risk factor of Alzheimer disease (AD), but previous studies reported heterogeneous associations of late-life blood pressure (BP) with brain amyloid and tau pathologies. We investigated how the associations of BP with brain amyloid and tau vary by APOE ε4 carriership, age, cerebrovascular burden, and cognitive status. METHODS We performed analyses among participants with postmortem neuropathology measurements (2005-June 2022) from the National Alzheimer's Coordinating Center. The average systolic BP (SBP) of the first 3 annual visits was the primary exposure, and baseline hypertension status was the secondary exposure. Brain AD pathologies were assessed using Thal and Braak staging. Potential modifiers included APOE ε4 carriership, age, stroke history, and cognitive status. Multinomial logistic regressions with interaction terms were used to test effect modification, adjusting for age, sex, APOE ε4 carriership, education, antihypertensive medication use, and years to death. RESULTS Among 2,094 participants (baseline age: 75 ± 9.5 years; 51.4% women), the association of higher SBP with higher amyloid and tau burdens varied by stroke history and cognitive status while the effect modification by age or APOE ε4 carriership was less consistent. More pronounced associations of SBP with higher amyloid and tau burdens were observed in those with dementia (vs without dementia) and those with a history of stroke (vs without stroke) (All p interaction<0.05). The odds ratios (ORs) per 10-mm Hg increase in SBP in the stroke vs nonstroke subgroup were 1.58 (95% CI 1.04-2.41) vs 1.14 (1.03-1.27) for amyloid and 1.54 (1.00-2.36) vs 1.04 (0.96-1.12) for tau. When comparing dementia with cognitively normal subgroups, ORs were 1.39 (1.17-1.64) vs 1.12 (0.96-1.31) for amyloid and 1.24 (1.08-1.42) vs 0.98 (0.85-1.14) for tau. Similar findings were observed for baseline hypertension status. DISCUSSION Preexisting cerebrovascular burden and cognitive status might interact with elevated SBP in their association with higher brain amyloid and tau, which could help identify high-risk subgroups for BP management and AD prevention. These heterogeneous association patterns need to be confirmed in longitudinal studies with in vivo AD pathology assessments.
Collapse
Affiliation(s)
- Wenjie Cai
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Julia Neitzel
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Lidia Glodzik
- Department of Radiology, Weill Cornell Medicine, Brain Health Imaging Institute, New York, NY; and
| | - Deborah Blacker
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Yuan Ma
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
4
|
Sokolova D, Ghansah SA, Puletti F, Georgiades T, De Schepper S, Zheng Y, Crowley G, Wu L, Rueda-Carrasco J, Koutsiouroumpa A, Muckett P, Freeman OJ, Khakh BS, Hong S. Astrocyte-derived MFG-E8 facilitates microglial synapse elimination in Alzheimer's disease mouse models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.31.606944. [PMID: 39257734 PMCID: PMC11383703 DOI: 10.1101/2024.08.31.606944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Region-specific synapse loss is an early pathological hallmark in Alzheimer's disease (AD). Emerging data in mice and humans highlight microglia, the brain-resident macrophages, as cellular mediators of synapse loss; however, the upstream modulators of microglia-synapse engulfment remain elusive. Here, we report a distinct subset of astrocytes, which are glial cells essential for maintaining synapse homeostasis, appearing in a region-specific manner with age and amyloidosis at onset of synapse loss. These astrocytes are distinguished by their peri-synaptic processes which are 'bulbous' in morphology, contain accumulated p62-immunoreactive bodies, and have reduced territorial domains, resulting in a decrease of astrocyte-synapse coverage. Using integrated in vitro and in vivo approaches, we show that astrocytes upregulate and secrete phagocytic modulator, milk fat globule-EGF factor 8 (MFG-E8), which is sufficient and necessary for promoting microglia-synapse engulfment in their local milieu. Finally, we show that knocking down Mfge8 specifically from astrocytes using a viral CRISPR-saCas9 system prevents microglia-synapse engulfment and ameliorates synapse loss in two independent amyloidosis mouse models of AD. Altogether, our findings highlight astrocyte-microglia crosstalk in determining synapse fate in amyloid models and nominate astrocytic MFGE8 as a potential target to ameliorate synapse loss during the earliest stages of AD.
Collapse
Affiliation(s)
- Dimitra Sokolova
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
- Neuroscience BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Shari Addington Ghansah
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Francesca Puletti
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Tatiana Georgiades
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Sebastiaan De Schepper
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Yongjing Zheng
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Gerard Crowley
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Ling Wu
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Javier Rueda-Carrasco
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Angeliki Koutsiouroumpa
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Philip Muckett
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Oliver J. Freeman
- Neuroscience BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Baljit S. Khakh
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Soyon Hong
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| |
Collapse
|
5
|
Engelhardt E, Resende EDPF, Gomes KB. Physiopathological mechanisms underlying Alzheimer's disease: a narrative review. Dement Neuropsychol 2024; 18:e2024VR01. [PMID: 39697643 PMCID: PMC11654088 DOI: 10.1590/1980-5764-dn-2024-vr01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 12/20/2024] Open
Abstract
The neuropathological signature of Alzheimer's disease (AD) comprises mainly amyloid plaques, and neurofibrillary tangles, resulting in synaptic and neuronal loss. These pathological structures stem from amyloid dysfunctional metabolism according to the amyloid cascade hypothesis, leading to the formation of plaques, and apparently inducing the initiation of the abnormal tau pathway, with phosphorylation and aggregation of these proteins, ultimately causing the formation of tangles. In this narrative review, the existing hypothesis related to the pathophysiology of AD were compiled, and biological pathways were highlighted in order to identify the molecules that could represent biological markers of the disease, necessary to establish early diagnosis, as well as the selection of patients for therapeutical interventional strategies.
Collapse
Affiliation(s)
- Eliasz Engelhardt
- Universidade Federal do Rio de Janeiro, Instituto de Neurologia Deolindo Couto, Rio de Janeiro RJ, Brazil
| | - Elisa de Paula França Resende
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Belo Horizonte MG, Brazil
- Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte MG, Brazil
| | - Karina Braga Gomes
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Belo Horizonte MG, Brazil
| |
Collapse
|
6
|
Alves VC, Carro E, Figueiro-Silva J. Unveiling DNA methylation in Alzheimer's disease: a review of array-based human brain studies. Neural Regen Res 2024; 19:2365-2376. [PMID: 38526273 PMCID: PMC11090417 DOI: 10.4103/1673-5374.393106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/05/2023] [Indexed: 03/26/2024] Open
Abstract
The intricacies of Alzheimer's disease pathogenesis are being increasingly illuminated by the exploration of epigenetic mechanisms, particularly DNA methylation. This review comprehensively surveys recent human-centered studies that investigate whole genome DNA methylation in Alzheimer's disease neuropathology. The examination of various brain regions reveals distinctive DNA methylation patterns that associate with the Braak stage and Alzheimer's disease progression. The entorhinal cortex emerges as a focal point due to its early histological alterations and subsequent impact on downstream regions like the hippocampus. Notably, ANK1 hypermethylation, a protein implicated in neurofibrillary tangle formation, was recurrently identified in the entorhinal cortex. Further, the middle temporal gyrus and prefrontal cortex were shown to exhibit significant hypermethylation of genes like HOXA3, RHBDF2, and MCF2L, potentially influencing neuroinflammatory processes. The complex role of BIN1 in late-onset Alzheimer's disease is underscored by its association with altered methylation patterns. Despite the disparities across studies, these findings highlight the intricate interplay between epigenetic modifications and Alzheimer's disease pathology. Future research efforts should address methodological variations, incorporate diverse cohorts, and consider environmental factors to unravel the nuanced epigenetic landscape underlying Alzheimer's disease progression.
Collapse
Affiliation(s)
- Victoria Cunha Alves
- Neurodegenerative Diseases Group, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
- Network Center for Biomedical Research, Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University, Madrid, Spain
- Neurotraumatology and Subarachnoid Hemorrhage Group, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
| | - Eva Carro
- Network Center for Biomedical Research, Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Neurobiology of Alzheimer's Disease Unit, Functional Unit for Research Into Chronic Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Joana Figueiro-Silva
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Nath A, Holtzman DM, Miller BL, Grinberg LT, Leschek EW. Insufficient evidence for an association between iatrogenic Alzheimer's disease and cadaveric pituitary-derived growth hormone. Alzheimers Dement 2024; 20:7399-7402. [PMID: 39034810 PMCID: PMC11485294 DOI: 10.1002/alz.14127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/23/2024]
Abstract
A Nature Medicine paper published in January 2024 describes eight cases of iatrogenic Alzheimer's disease in individuals who received cadaveric pituitary-derived human growth hormone. The paper's conclusions argue for the transmissibility of Alzheimer's disease, which, if true, would create a significant public health crisis. For example, neurosurgical practices would require substantial revision, and many individuals who have undergone neurosurgical procedures would now be at considerable risk of Alzheimer's disease. A detailed review of the presented cases reveals that they do not have Alzheimer's disease, and there are alternative explanations for the cognitive decline described. In people with progressive cognitive decline, the diagnosis of Alzheimer's disease requires a demonstration of amyloid and tau pathology or amyloid and tau biomarkers. Extensive tau pathology is not demonstrated, and some also lack amyloid beta pathology. The cases described in this paper do not meet the criteria for dementia due to Alzheimer's disease by clinical and pathological standards. HIGHLIGHTS: Creutzfeldt-Jakob disease has been transmitted by cadaveric growth hormone. There is no evidence for the transmission of Alzheimer's disease by cadaveric growth hormone. There is no evidence that Alzheimer's disease is transmissible.
Collapse
Affiliation(s)
- Avi Nath
- National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - David M. Holtzman
- Department of NeurologyHope Center for Neurological DisordersKnight Alzheimer's Disease Research CenterWashington University School of MedicineSt. LouisMissouriUSA
| | - Bruce L. Miller
- UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Lea T. Grinberg
- UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Ellen Werber Leschek
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
8
|
Kegyes-Brassai AC, Pierson-Bartel R, Bolla G, Kamondi A, Horvath AA. Disruption of sleep macro- and microstructure in Alzheimer's disease: overlaps between neuropsychology, neurophysiology, and neuroimaging. GeroScience 2024:10.1007/s11357-024-01357-z. [PMID: 39333449 DOI: 10.1007/s11357-024-01357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/14/2024] [Indexed: 09/29/2024] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia, often associated with impaired sleep quality and disorganized sleep structure. This study aimed to characterize changes in sleep macrostructure and K-complex density in AD, in relation to neuropsychological performance and brain structural changes. We enrolled 30 AD and 30 healthy control participants, conducting neuropsychological exams, brain MRI, and one-night polysomnography. AD patients had significantly reduced total sleep time (TST), sleep efficiency, and relative durations of non-rapid eye movement (NREM) stages 2 (S2), 3 (S3), and rapid eye movement (REM) sleep (p < 0.01). K-complex (KC) density during the entire sleep period and S2 (p < 0.001) was significantly decreased in AD. We found strong correlations between global cognitive performance and relative S3 (p < 0.001; r = 0.86) and REM durations (p < 0.001; r = 0.87). TST and NREM stage 1 (S1) durations showed a moderate negative correlation with amygdaloid and hippocampal volumes (p < 0.02; r = 0.51-0.55), while S3 and REM sleep had a moderate positive correlation with cingulate cortex volume (p < 0.02; r = 0.45-0.61). KC density strongly correlated with global cognitive function (p < 0.001; r = 0.66) and the thickness of the anterior cingulate cortex (p < 0.05; r = 0.45-0.47). Our results indicate significant sleep organization changes in AD, paralleling cognitive decline. Decreased slow wave sleep and KCs are strongly associated with cingulate cortex atrophy. Since sleep changes are prominent in early AD, they may serve as prognostic markers or therapeutic targets.
Collapse
Affiliation(s)
| | | | - Gergo Bolla
- School of PhD Studies, Semmelweis University, Budapest, Hungary
- Neurocognitive Research Centre, Nyírő Gyula National Institute of Psychiatry, and Addictology, Budapest, Hungary
| | - Anita Kamondi
- Neurocognitive Research Centre, Nyírő Gyula National Institute of Psychiatry, and Addictology, Budapest, Hungary
- Department of Neurosurgery and Neurointervention, Semmelweis University, Budapest, Hungary
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Andras Attila Horvath
- Neurocognitive Research Centre, Nyírő Gyula National Institute of Psychiatry, and Addictology, Budapest, Hungary
- Department of Anatomy Histology and Embryology, Semmelweis University, Budapest, Hungary
- HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
9
|
Bossa MN, Nakshathri AG, Berenguer AD, Sahli H. Generative AI unlocks PET insights: brain amyloid dynamics and quantification. Front Aging Neurosci 2024; 16:1410844. [PMID: 38952479 PMCID: PMC11215072 DOI: 10.3389/fnagi.2024.1410844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/30/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction Studying the spatiotemporal patterns of amyloid accumulation in the brain over time is crucial in understanding Alzheimer's disease (AD). Positron Emission Tomography (PET) imaging plays a pivotal role because it allows for the visualization and quantification of abnormal amyloid beta (Aβ) load in the living brain, providing a powerful tool for tracking disease progression and evaluating the efficacy of anti-amyloid therapies. Generative artificial intelligence (AI) can learn complex data distributions and generate realistic synthetic images. In this study, we demonstrate for the first time the potential of Generative Adversarial Networks (GANs) to build a low-dimensional representation space that effectively describes brain amyloid load and its dynamics. Methods Using a cohort of 1,259 subjects with AV45 PET images from the Alzheimer's Disease Neuroimaging Initiative (ADNI), we develop a 3D GAN model to project images into a latent representation space and generate back synthetic images. Then, we build a progression model on the representation space based on non-parametric ordinary differential equations to study brain amyloid evolution. Results We found that global SUVR can be accurately predicted with a linear regression model only from the latent representation space (RMSE = 0.08 ± 0.01). We generated synthetic PET trajectories and illustrated predicted Aβ change in four years compared with actual progression. Discussion Generative AI can generate rich representations for statistical prediction and progression modeling and simulate evolution in synthetic patients, providing an invaluable tool for understanding AD, assisting in diagnosis, and designing clinical trials. The aim of this study was to illustrate the huge potential that generative AI has in brain amyloid imaging and to encourage its advancement by providing use cases and ideas for future research tracks.
Collapse
Affiliation(s)
- Matías Nicolás Bossa
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Akshaya Ganesh Nakshathri
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Abel Díaz Berenguer
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Hichem Sahli
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Interuniversity Microelectronics Centre (IMEC), Leuven, Belgium
| |
Collapse
|
10
|
Zheng Q, Zhu H, Lv C, Zhu Z, Cui H, Fan Z, Sun J, Huang Z, Shi P. Clioquinol rescues yeast cells from Aβ42 toxicity via the inhibition of oxidative damage. Biotechnol J 2024; 19:e2300662. [PMID: 38863126 DOI: 10.1002/biot.202300662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 06/13/2024]
Abstract
Alzheimer's disease (AD), the most common form of dementia, has gotten considerable attention. Previous studies have demonstrated that clioquinol (CQ) as a metal chelator is a potential drug for the treatment of AD. However, the mode of action of CQ in AD is still unclear. In our study, the antioxidant effects of CQ on yeast cells expressing Aβ42 were investigated. We found that CQ could reduce Aβ42 toxicity by alleviating reactive oxygen species (ROS) generation and lipid peroxidation level in yeast cells. These alterations were mainly attributable to the increased reduced glutathione (GSH) content and independent of activities of superoxide dismutase (SOD) and/or catalase (CAT). CQ could affect antioxidant enzyme activity by altering the transcription level of related genes. Interestingly, it was noted for the first time that CQ could combine with antioxidant enzymes to reduce their enzymatic activities by molecular docking and circular dichroism spectroscopy. In addition, CQ restored Aβ42-mediated disruption of GSH homeostasis via regulating YAP1 expression to protect cells against oxidative stress. Our findings not only improve the current understanding of the mechanism of CQ as a potential drug for AD treatment but also provide ideas for subsequent drug research and development.
Collapse
Affiliation(s)
- Qiaoqiao Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Hongzheng Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Chunyi Lv
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ziting Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Hanyue Cui
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zheyu Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, The Chinese Academy of Sciences, Xining, China
| | - Zhiwei Huang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
11
|
Wang SM, Kang DW, Um YH, Kim S, Lee CU, Scheltens P, Lim HK. Plasma oligomer beta-amyloid is associated with disease severity and cerebral amyloid deposition in Alzheimer's disease spectrum. Alzheimers Res Ther 2024; 16:55. [PMID: 38468313 PMCID: PMC10926587 DOI: 10.1186/s13195-024-01400-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 01/26/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Multimer detection system-oligomeric amyloid-β (MDS-OAβ) is a measure of plasma OAβ, which is associated with Alzheimer's disease (AD) pathology. However, the relationship between MDS-OAβ and disease severity of AD is not clear. We aimed to investigate MDS-OAβ levels in different stages of AD and analyze the association between MDS-OAβ and cerebral Aβ deposition, cognitive function, and cortical thickness in subjects within the AD continuum. METHODS In this cross-sectional study, we analyzed a total 126 participants who underwent plasma MDS-OAβ, structural magnetic resonance image of brain, and neurocognitive measures using Korean version of the Consortium to Establish a Registry for Alzheimer's Disease, and cerebral Aβ deposition or amyloid positron emission tomography (A-PET) assessed by [18F] flutemetamol PET. Subjects were divided into 4 groups: N = 39 for normal control (NC), N = 31 for A-PET-negative mild cognitive impairment (MCI) patients, N = 30 for A-PET-positive MCI patients, and N = 22 for AD dementia patients. The severity of cerebral Aβ deposition was expressed as standard uptake value ratio (SUVR). RESULTS Compared to the NC (0.803 ± 0.27), MDS-OAβ level was higher in the A-PET-negative MCI group (0.946 ± 0.137) and highest in the A-PET-positive MCI group (1.07 ± 0.17). MDS-OAβ level in the AD dementia group was higher than in the NC, but it fell to that of the A-PET-negative MCI group level (0.958 ± 0.103). There were negative associations between MDS-OAβ and cognitive function and both global and regional cerebral Aβ deposition (SUVR). Cortical thickness of the left fusiform gyrus showed a negative association with MDS-OAβ when we excluded the AD dementia group. CONCLUSIONS These findings suggest that MDS-OAβ is not only associated with neurocognitive staging, but also with cerebral Aβ burden in patients along the AD continuum.
Collapse
Affiliation(s)
- Sheng-Min Wang
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 10, 63-Ro, Yeongdeungpo-Gu, Seoul, 07345, South Korea
| | - Dong Woo Kang
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Yoo Hyun Um
- Department of Psychiatry, St. Vincent Hospital, Suwon, Korea, College of Medicine, The Catholic University of Korea, Suwon, 16247, South Korea
| | - Sunghwan Kim
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 10, 63-Ro, Yeongdeungpo-Gu, Seoul, 07345, South Korea
| | - Chang Uk Lee
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Boelelaan 1118, Amsterdam, 1081, HZ, Netherlands
- EQT Life Sciences Partners, Amsterdam, 1071, DV, The Netherlands
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 10, 63-Ro, Yeongdeungpo-Gu, Seoul, 07345, South Korea.
| |
Collapse
|
12
|
Kim SJ, Jang H, Yoo H, Na DL, Ham H, Kim HJ, Kim JP, Farrar G, Moon SH, Seo SW. Clinical and Pathological Validation of CT-Based Regional Harmonization Methods of Amyloid PET. Clin Nucl Med 2024; 49:1-8. [PMID: 38048354 DOI: 10.1097/rlu.0000000000004937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
PURPOSE The CT-based regional direct comparison Centiloid (dcCL) method was developed to harmonize and quantify regional β-amyloid (Aβ) burden. In the present study, we aimed to investigate correlations between the CT-based regional dcCL scales and Aβ pathological burdens and to validate the clinical utility using thresholds derived from pathological assessment. PATIENTS AND METHODS We included a pathological cohort of 63 cases and a clinical cohort of 4062 participants, and obtained modified Consortium to Establish a Registry for Alzheimer's Disease criteria (mCERAD) scores by assessment of neuritic plaque burdens in multiple areas of each cortical region. PET and CT images were processed using the CT-based regional dcCL method to calculate scales in 6 distinct regions. RESULTS The CT-based regional dcCL scales were correlated with neuritic plaque burdens represented by mCERAD scores, globally and regionally ( r = 0.56~0.76). In addition, striatum dcCL scales reflected Aβ involvement in the striatum ( P < 0.001). The regional dcCL scales could predict significant Aβ deposition in specific brain regions with high accuracy: area under the receiver operating characteristic curve of 0.81-0.97 with an mCERAD cutoff of 1.5 and area under the receiver operating characteristic curve of 0.88-0.93 with an mCERAD cutoff of 0.5. When applying the dcCL thresholds of 1.5 mCERAD scores, the G(-)R(+) group showed lower performances in memory and global cognitive functions and had less hippocampal volume compared with the G(-)R(-) group ( P < 0.001). However, when applying the dcCL thresholds of 0.5 mCERAD scores, there were no differences in the global cognitive functions between the 2 groups. CONCLUSIONS The thresholds of regional dcCL scales derived from pathological assessments might provide clinicians with a better understanding of biomarker-guided diagnosis and distinguishable clinical phenotypes, which are particularly useful when harmonizing different PET ligands with only PET/CT.
Collapse
Affiliation(s)
| | | | - Heejin Yoo
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center
| | | | | | | | | | - Gill Farrar
- Pharmaceutical Diagnostics, GE Healthcare, Chalfont St Giles, United Kingdom
| | - Seung Hwan Moon
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | |
Collapse
|
13
|
Tobeh NS, Bruce KD. Emerging Alzheimer's disease therapeutics: promising insights from lipid metabolism and microglia-focused interventions. Front Aging Neurosci 2023; 15:1259012. [PMID: 38020773 PMCID: PMC10630922 DOI: 10.3389/fnagi.2023.1259012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
More than 55 million people suffer from dementia, with this number projected to double every 20 years. In the United States, 1 in 3 aged individuals dies from Alzheimer's disease (AD) or another type of dementia and AD kills more individuals than breast cancer and prostate cancer combined. AD is a complex and multifactorial disease involving amyloid plaque and neurofibrillary tangle formation, glial cell dysfunction, and lipid droplet accumulation (among other pathologies), ultimately leading to neurodegeneration and neuronal death. Unfortunately, the current FDA-approved therapeutics do not reverse nor halt AD. While recently approved amyloid-targeting antibodies can slow AD progression to improve outcomes for some patients, they are associated with adverse side effects, may have a narrow therapeutic window, and are expensive. In this review, we evaluate current and emerging AD therapeutics in preclinical and clinical development and provide insight into emerging strategies that target brain lipid metabolism and microglial function - an approach that may synergistically target multiple mechanisms that drive AD neuropathogenesis. Overall, we evaluate whether these disease-modifying emerging therapeutics hold promise as interventions that may be able to reverse or halt AD progression.
Collapse
Affiliation(s)
- Nour S Tobeh
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kimberley D Bruce
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
14
|
Hwang U, Kim SW, Jung D, Kim S, Lee H, Seo SW, Seong JK, Yoon S. Real-world prediction of preclinical Alzheimer's disease with a deep generative model. Artif Intell Med 2023; 144:102654. [PMID: 37783547 DOI: 10.1016/j.artmed.2023.102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 10/04/2023]
Abstract
Amyloid positivity is an early indicator of Alzheimer's disease and is necessary to determine the disease. In this study, a deep generative model is utilized to predict the amyloid positivity of cognitively normal individuals using proxy measures, such as structural MRI scans, demographic variables, and cognitive scores, instead of invasive direct measurements. Through its remarkable efficacy in handling imperfect datasets caused by missing data or labels, and imbalanced classes, the model outperforms previous studies and widely used machine learning approaches with an AUROC of 0.8609. Furthermore, this study illuminates the model's adaptability to diverse clinical scenarios, even when feature sets or diagnostic criteria differ from the training data. We identify the brain regions and variables that contribute most to classification, including the lateral occipital lobes, posterior temporal lobe, and APOE ϵ4 allele. Taking advantage of deep generative models, our approach can not only provide inexpensive, non-invasive, and accurate diagnostics for preclinical Alzheimer's disease, but also meet real-world requirements for clinical translation of a deep learning model, including transferability and interpretability.
Collapse
Affiliation(s)
- Uiwon Hwang
- Division of Digital Healthcare, Yonsei University, Wonju, 26493, Republic of Korea
| | - Sung-Woo Kim
- Department of Bio-convergence Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Dahuin Jung
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - SeungWook Kim
- Department of Bio-convergence Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyejoo Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea; Neuroscience Center, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea; Neuroscience Center, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Joon-Kyung Seong
- Department of Artificial Intelligence, Korea University, Seoul, 02841, Republic of Korea; School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, College of Health Science, Korea University, Seoul, 02841, Republic of Korea.
| | - Sungroh Yoon
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea; Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
15
|
Therriault J, Lussier FZ, Tissot C, Chamoun M, Stevenson J, Rahmouni N, Pallen V, Bezgin G, Servaes S, Kunach P, Wang Y, Fernandez‐Arias J, Vermeiren M, Pascoal TA, Massarweh G, Vitali P, Soucy J, Saha‐Chaudhuri P, Gauthie S, Rosa‐Neto P. Amyloid beta plaque accumulation with longitudinal [18F]AZD4694 PET. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12391. [PMID: 37644990 PMCID: PMC10461075 DOI: 10.1002/dad2.12391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/01/2022] [Accepted: 11/29/2022] [Indexed: 08/31/2023]
Abstract
Introduction [18F]AZD4694 is an amyloid beta (Aβ) imaging agent used in several observational studies and clinical trials. However, no studies have yet published data on longitudinal Aβ accumulation measured with [18F]AZD4694. Methods We assessed 146 individuals who were evaluated with [18F]AZD4694 at baseline and 2-year follow-up. We calculated annual rates of [18F]AZD4694 change for clinically defined and biomarker-defined groups. Results Cognitively unimpaired (CU) older adults displayed subtle [18F]AZD4694 standardized uptake value ratio (SUVR) accumulation over the follow-up period. In contrast, Aβ positive CU older adults displayed higher annual [18F]AZD4694 SUVR increases. [18F]AZD4694 SUVR accumulation in Aβ positive mild cognitive impairment (MCI) and dementia was modest across the neocortex. Discussion Larger increases in [18F]AZD4694 SUVR were observed in CU individuals who had abnormal amyloid positron emission tomography levels at baseline. [18F]AZD4694 can be used to monitor Aβ levels in therapeutic trials as well as clinical settings, particularly prior to initiating anti-amyloid therapies.
Collapse
Affiliation(s)
- Joseph Therriault
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Firoza Z. Lussier
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Cécile Tissot
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Mira Chamoun
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Jenna Stevenson
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Nesrine Rahmouni
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Vanessa Pallen
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Gleb Bezgin
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Stijn Servaes
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Peter Kunach
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Yi‐Ting Wang
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Jaime Fernandez‐Arias
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Marie Vermeiren
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
| | - Tharick A. Pascoal
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Gassan Massarweh
- Department of RadiochemistryMcGill UniversityMontrealQuebecCanada
| | - Paolo Vitali
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Jean‐Paul Soucy
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Paramita Saha‐Chaudhuri
- Department of EpidemiologyBiostatistics and Occupational HealthMcGill UniversityMontrealQuebecCanada
- Department of Mathematics & StatisticsUniversity of VermontBurlingtonVermontUSA
| | - Serge Gauthie
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Pedro Rosa‐Neto
- Translational Neuroimaging LaboratoryDouglas Mental Health InstituteMcGill University Research Centre for Studies in AgingMontrealQuebecCanada
- Department of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
16
|
Chen Z, Zheng W, Pang K, Xia D, Guo L, Chen X, Wu F, Wang H. Weakly supervised learning analysis of Aβ plaque distribution in the whole rat brain. Front Neurosci 2023; 16:1097019. [PMID: 36741048 PMCID: PMC9892753 DOI: 10.3389/fnins.2022.1097019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023] Open
Abstract
Alzheimer's disease (AD) is a great challenge for the world and hardly to be cured, partly because of the lack of animal models that fully mimic pathological progress. Recently, a rat model exhibiting the most pathological symptoms of AD has been reported. However, high-resolution imaging and accurate quantification of beta-amyloid (Aβ) plaques in the whole rat brain have not been fulfilled due to substantial technical challenges. In this paper, a high-efficiency data analysis pipeline is proposed to quantify Aβ plaques in whole rat brain through several terabytes of image data acquired by a high-speed volumetric imaging approach we have developed previously. A novel segmentation framework applying a high-performance weakly supervised learning method which can dramatically reduce the human labeling consumption is described in this study. The effectiveness of our segmentation framework is validated with different metrics. The segmented Aβ plaques were mapped to a standard rat brain atlas for quantitative analysis of the Aβ distribution in each brain area. This pipeline may also be applied to the segmentation and accurate quantification of other non-specific morphology objects.
Collapse
Affiliation(s)
- Zhiyi Chen
- National Engineering Laboratory for Brain-Inspired Intelligence Technology and Application, School of Information Science and Technology, University of Science and Technology of China, Hefei, China,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Weijie Zheng
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China,AHU-IAI AI Joint Laboratory, Anhui University, Hefei, China
| | - Keliang Pang
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China,*Correspondence: Keliang Pang,
| | - Debin Xia
- National Engineering Laboratory for Brain-Inspired Intelligence Technology and Application, School of Information Science and Technology, University of Science and Technology of China, Hefei, China,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Lingxiao Guo
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Xuejin Chen
- National Engineering Laboratory for Brain-Inspired Intelligence Technology and Application, School of Information Science and Technology, University of Science and Technology of China, Hefei, China,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Feng Wu
- National Engineering Laboratory for Brain-Inspired Intelligence Technology and Application, School of Information Science and Technology, University of Science and Technology of China, Hefei, China,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Hao Wang
- National Engineering Laboratory for Brain-Inspired Intelligence Technology and Application, School of Information Science and Technology, University of Science and Technology of China, Hefei, China,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China,Hao Wang,
| |
Collapse
|
17
|
Moffat G, Zhukovsky P, Coughlan G, Voineskos AN. Unravelling the relationship between amyloid accumulation and brain network function in normal aging and very mild cognitive decline: a longitudinal analysis. Brain Commun 2022; 4:fcac282. [PMID: 36415665 PMCID: PMC9678202 DOI: 10.1093/braincomms/fcac282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 07/29/2022] [Accepted: 10/31/2022] [Indexed: 06/27/2024] Open
Abstract
Pathological changes in the brain begin accumulating decades before the appearance of cognitive symptoms in Alzheimer's disease. The deposition of amyloid beta proteins and other neurotoxic changes occur, leading to disruption in functional connections between brain networks. Discrete characterization of the changes that take place in preclinical Alzheimer's disease has the potential to help treatment development by targeting the neuropathological mechanisms to prevent cognitive decline and dementia from occurring entirely. Previous research has focused on the cross-sectional differences in the brains of patients with mild cognitive impairment or Alzheimer's disease and healthy controls or has concentrated on the stages immediately preceding cognitive symptoms. The present study emphasizes the early preclinical phases of neurodegeneration. We use a longitudinal approach to examine the brain changes that take place during the early stages of cognitive decline in the Open Access Series of Imaging Studies-3 data set. Among 1098 participants, 274 passed the inclusion criteria (i.e. had at least two cognitive assessments and two amyloid scans). Over 90% of participants were healthy at baseline. Over 8-10 years, some participants progressed to very mild cognitive impairment (n = 48), while others stayed healthy (n = 226). Participants with cognitive decline show faster amyloid accumulation in the lateral temporal, motor and parts of the lateral prefrontal cortex. These changes in amyloid levels were linked to longitudinal increases in the functional connectivity of select networks, including default mode, frontoparietal and motor components. Our findings advance the understanding of amyloid staging and the corresponding changes in functional organization of large-scale brain networks during the progression of early preclinical Alzheimer's disease.
Collapse
Affiliation(s)
- Gemma Moffat
- Kimel Family Translational Imaging-Genetics Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Peter Zhukovsky
- Kimel Family Translational Imaging-Genetics Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Gillian Coughlan
- Rotman Research Institute, Baycrest Hospital, Toronto, ON, M6A 2E1, Canada
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Aristotle N Voineskos
- Kimel Family Translational Imaging-Genetics Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
18
|
Takalloobanafshi G, Kukreja A, Hicks JW. Historical efforts to develop 99mTc-based amyloid plaque targeting radiotracers. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:963698. [PMID: 39390996 PMCID: PMC11466234 DOI: 10.3389/fnume.2022.963698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/21/2022] [Indexed: 10/12/2024]
Abstract
Imaging biomarkers have changed the way we study Alzheimer's disease and related dementias, develop new therapeutics to treat the disease, and stratify patient populations in clinical trials. With respect to protein aggregates comprised of amyloid-β plaques and tau neurofibrillary tangles, Positron Emission Tomography (PET) has become the gold standard imaging modality for quantitative visualization. Due to high infrastructural costs, the availability of PET remains limited to large urban areas within high income nations. This limits access to leading edge medical imaging, and potentially access to new treatments, by millions of rural and remote residents in those regions as well as billions of people in middle- and low-income countries. Single Photon Emission Computed Tomography (SPECT) is a more widely available imaging alternative with lower infrastructural costs and decades of familiarity amongst nuclear medicine professionals. Recent technological advances have closed the gap in spatial resolution and quantitation between SPECT and PET. If effective SPECT radiotracers were available to visualize amyloid-β plaques, geographic barriers to imaging could be circumvented. In this review, we will discuss past efforts to develop SPECT radiotracers targeting amyloid-β plaques which incorporate the most used radionuclide in nuclear medicine: technetium-99m (99mTc; t 1/2 = 6.01 h; γ = 140 keV). While reviewing the various chemical scaffolds and chelates employed, the focus will be upon the impact to the pharmacological properties of putative 99mTc-based amyloid-targeting radiotracers.
Collapse
Affiliation(s)
- Ghazaleh Takalloobanafshi
- Department of Chemistry, Western University, London, ON, Canada
- Cyclotron and Radiochemistry Facility, Lawson Health Research Institute, London, ON, Canada
| | - Aditi Kukreja
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Justin W. Hicks
- Cyclotron and Radiochemistry Facility, Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
- Saint Joseph's Health Care London, London, ON, Canada
| |
Collapse
|
19
|
Jiang J, Yang C, Ai JQ, Zhang QL, Cai XL, Tu T, Wan L, Wang XS, Wang H, Pan A, Manavis J, Gai WP, Che C, Tu E, Wang XP, Li ZY, Yan XX. Intraneuronal sortilin aggregation relative to granulovacuolar degeneration, tau pathogenesis and sorfra plaque formation in human hippocampal formation. Front Aging Neurosci 2022; 14:926904. [PMID: 35978952 PMCID: PMC9376392 DOI: 10.3389/fnagi.2022.926904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
Extracellular β-amyloid (Aβ) deposition and intraneuronal phosphorylated-tau (pTau) accumulation are the hallmark lesions of Alzheimer’s disease (AD). Recently, “sorfra” plaques, named for the extracellular deposition of sortilin c-terminal fragments, are reported as a new AD-related proteopathy, which develop in the human cerebrum resembling the spatiotemporal trajectory of tauopathy. Here, we identified intraneuronal sortilin aggregation as a change related to the development of granulovacuolar degeneration (GVD), tauopathy, and sorfra plaques in the human hippocampal formation. Intraneuronal sortilin aggregation occurred as cytoplasmic inclusions among the pyramidal neurons, co-labeled by antibodies to the extracellular domain and intracellular C-terminal of sortilin. They existed infrequently in the brains of adults, while their density as quantified in the subiculum/CA1 areas increased in the brains from elderly lacking Aβ/pTau, with pTau (i.e., primary age-related tauopathy, PART cases), and with Aβ/pTau (probably/definitive AD, pAD/AD cases) pathologies. In PART and pAD/AD cases, the intraneuronal sortilin aggregates colocalized partially with various GVD markers including casein kinase 1 delta (Ck1δ) and charged multivesicular body protein 2B (CHMP2B). Single-cell densitometry established an inverse correlation between sortilin immunoreactivity and that of Ck1δ, CHMP2B, p62, and pTau among pyramidal neurons. In pAD/AD cases, the sortilin aggregates were reduced in density as moving from the subiculum to CA subregions, wherein sorfra plaques became fewer and absent. Taken together, we consider intraneuronal sortilin aggregation an aging/stress-related change implicating protein sorting deficit, which can activate protein clearance responses including via enhanced phosphorylation and hydrolysis, thereby promoting GVD, sorfra, and Tau pathogenesis, and ultimately, neuronal destruction and death.
Collapse
Affiliation(s)
- Juan Jiang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Chen Yang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Jia-Qi Ai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Qi-Lei Zhang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Xiao-Lu Cai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Tian Tu
- Department of Neurology, Xiangya Hospital, Changsha, China
| | - Lily Wan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Xiao-Sheng Wang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Hui Wang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Jim Manavis
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Wei-Ping Gai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Chong Che
- GeneScience Pharmaceuticals Co., Ltd., Changchun High-Tech Dev. Zone, Changchun, China
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, China
| | - Xiao-Ping Wang
- Department of Psychiatry, The Second Xiangya Hospital, Changsha, China
| | - Zhen-Yan Li
- Department of Neurosurgery, Xiangya Hospital, Changsha, China
- *Correspondence: Zhen-Yan Li,
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
- Xiao-Xin Yan,
| |
Collapse
|
20
|
Region-Specific Characteristics of Astrocytes and Microglia: A Possible Involvement in Aging and Diseases. Cells 2022; 11:cells11121902. [PMID: 35741031 PMCID: PMC9220858 DOI: 10.3390/cells11121902] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Although different regions of the brain are dedicated to specific functions, the intra- and inter-regional heterogeneity of astrocytes and microglia in these regions has not yet been fully understood. Recently, an advancement in various technologies, such as single-cell RNA sequencing, has allowed for the discovery of astrocytes and microglia with distinct molecular fingerprints and varying functions in the brain. In addition, the regional heterogeneity of astrocytes and microglia exhibits different functions in several situations, such as aging and neurodegenerative diseases. Therefore, investigating the region-specific astrocytes and microglia is important in understanding the overall function of the brain. In this review, we summarize up-to-date research on various intra- and inter-regional heterogeneities of astrocytes and microglia, and provide information on how they can be applied to aging and neurodegenerative diseases.
Collapse
|
21
|
Jellinger KA. Recent update on the heterogeneity of the Alzheimer’s disease spectrum. J Neural Transm (Vienna) 2021; 129:1-24. [DOI: 10.1007/s00702-021-02449-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/25/2021] [Indexed: 02/03/2023]
|
22
|
Plini ERG, O’Hanlon E, Boyle R, Sibilia F, Rikhye G, Kenney J, Whelan R, Melnychuk MC, Robertson IH, Dockree PM. Examining the Role of the Noradrenergic Locus Coeruleus for Predicting Attention and Brain Maintenance in Healthy Old Age and Disease: An MRI Structural Study for the Alzheimer's Disease Neuroimaging Initiative. Cells 2021; 10:1829. [PMID: 34359997 PMCID: PMC8306442 DOI: 10.3390/cells10071829] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
The noradrenergic theory of Cognitive Reserve (Robertson, 2013-2014) postulates that the upregulation of the locus coeruleus-noradrenergic system (LC-NA) originating in the brainstem might facilitate cortical networks involved in attention, and protracted activation of this system throughout the lifespan may enhance cognitive stimulation contributing to reserve. To test the above-mentioned theory, a study was conducted on a sample of 686 participants (395 controls, 156 mild cognitive impairment, 135 Alzheimer's disease) investigating the relationship between LC volume, attentional performance and a biological index of brain maintenance (BrainPAD-an objective measure, which compares an individual's structural brain health, reflected by their voxel-wise grey matter density, to the state typically expected at that individual's age). Further analyses were carried out on reserve indices including education and occupational attainment. Volumetric variation across groups was also explored along with gender differences. Control analyses on the serotoninergic (5-HT), dopaminergic (DA) and cholinergic (Ach) systems were contrasted with the noradrenergic (NA) hypothesis. The antithetic relationships were also tested across the neuromodulatory subcortical systems. Results supported by Bayesian modelling showed that LC volume disproportionately predicted higher attentional performance as well as biological brain maintenance across the three groups. These findings lend support to the role of the noradrenergic system as a key mediator underpinning the neuropsychology of reserve, and they suggest that early prevention strategies focused on the noradrenergic system (e.g., cognitive-attentive training, physical exercise, pharmacological and dietary interventions) may yield important clinical benefits to mitigate cognitive impairment with age and disease.
Collapse
Affiliation(s)
- Emanuele R. G. Plini
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
| | - Erik O’Hanlon
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
- Department of Psychiatry, Royal College of Surgeons in Ireland, Hospital Rd, Beaumont, 9QRH+4F Dublin, Ireland
- Department of Psychiatry, School of Medicine Dublin, Trinity College Dublin, 152-160 Pearse St, 8QV3+99 Dublin, Ireland;
| | - Rory Boyle
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
| | - Francesca Sibilia
- Department of Psychiatry, School of Medicine Dublin, Trinity College Dublin, 152-160 Pearse St, 8QV3+99 Dublin, Ireland;
| | - Gaia Rikhye
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
| | - Joanne Kenney
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
| | - Robert Whelan
- Department of Psychology, Global Brain Health Institute, Trinity College Dublin, Lloyd Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland;
| | - Michael C. Melnychuk
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
| | - Ian H. Robertson
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
- Department of Psychology, Global Brain Health Institute, Trinity College Dublin, Lloyd Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland;
| | - Paul M. Dockree
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
| |
Collapse
|
23
|
Polak-Szabela A, Dziembowska I, Bracha M, Pedrycz-Wieczorska A, Kedziora-Kornatowska K, Kozakiewicz M. The Analysis of Oxidative Stress Markers May Increase the Accuracy of the Differential Diagnosis of Alzheimer's Disease with and without Depression. Clin Interv Aging 2021; 16:1105-1117. [PMID: 34163154 PMCID: PMC8215848 DOI: 10.2147/cia.s310750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022] Open
Abstract
Introduction The aim of work is to assess the usefulness of oxidative stress parameters in the differential diagnosis of dementia of the Alzheimer’s type and dementia of the Alzheimer’s type with coexisting depression. Methods The study involved three groups of people: patients with Alzheimer’s disease (AD) (AD; N=27), patients with Alzheimer’s disease and depression (D) (AD+D; N=30), and a control group that consisted of people without dementia and without depression (C; N=24). The assessment of cognitive functioning was carried out using among alia, Auditory Verbal Learning Test and Verbal Fluency Test. Furthermore, we determined the activity of superoxide dismutase (SOD-1) and superoxide anion radical. Results Multiple models with different combinations of independent variables showed that SOD together with Rey delayed recall were the best significant predictors of AD with the area under curve (AUC) of 0.893 (p = 0.001) and superoxide anion radical (O2•−) together with verbal fluency – sharp objects were the best significant predictors of AD +D diagnosis with the AUC of 0.689 (p = 0.034). Conclusion This study confirmed the value of neuropsychological diagnosis and analysis of oxidative stress markers in the diagnosis of AD and major depressive disorder (MDD) in the course of AD. The combination of the use of biochemical markers and neuropsychological tests seems particularly important for differential diagnosis.
Collapse
Affiliation(s)
- Anna Polak-Szabela
- Department of Geriatrics, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Inga Dziembowska
- Department of Pathophysiology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Marietta Bracha
- Department of Geriatrics, Division of Biochemistry and Biogerontology, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | | | | | - Mariusz Kozakiewicz
- Department of Geriatrics, Division of Biochemistry and Biogerontology, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
24
|
Back MK, Ruggieri S, Jacobi E, von Engelhardt J. Amyloid Beta-Mediated Changes in Synaptic Function and Spine Number of Neocortical Neurons Depend on NMDA Receptors. Int J Mol Sci 2021; 22:ijms22126298. [PMID: 34208315 PMCID: PMC8231237 DOI: 10.3390/ijms22126298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
Onset and progression of Alzheimer's disease (AD) pathophysiology differs between brain regions. The neocortex, for example, is a brain region that is affected very early during AD. NMDA receptors (NMDARs) are involved in mediating amyloid beta (Aβ) toxicity. NMDAR expression, on the other hand, can be affected by Aβ. We tested whether the high vulnerability of neocortical neurons for Aβ-toxicity may result from specific NMDAR expression profiles or from a particular regulation of NMDAR expression by Aβ. Electrophysiological analyses suggested that pyramidal cells of 6-months-old wildtype mice express mostly GluN1/GluN2A NMDARs. While synaptic NMDAR-mediated currents are unaltered in 5xFAD mice, extrasynaptic NMDARs seem to contain GluN1/GluN2A and GluN1/GluN2A/GluN2B. We used conditional GluN1 and GluN2B knockout mice to investigate whether NMDARs contribute to Aβ-toxicity. Spine number was decreased in pyramidal cells of 5xFAD mice and increased in neurons with 3-week virus-mediated Aβ-overexpression. NMDARs were required for both Aβ-mediated changes in spine number and functional synapses. Thus, our study gives novel insights into the Aβ-mediated regulation of NMDAR expression and the role of NMDARs in Aβ pathophysiology in the somatosensory cortex.
Collapse
|
25
|
Lukiw WJ, Vergallo A, Lista S, Hampel H, Zhao Y. Biomarkers for Alzheimer's Disease (AD) and the Application of Precision Medicine. J Pers Med 2020; 10:E138. [PMID: 32967128 PMCID: PMC7565758 DOI: 10.3390/jpm10030138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023] Open
Abstract
An accurate diagnosis of Alzheimer's disease (AD) currently stands as one of the most difficult and challenging in all of clinical neurology. AD is typically diagnosed using an integrated knowledge and assessment of multiple biomarkers and interrelated factors. These include the patient's age, gender and lifestyle, medical and genetic history (both clinical- and family-derived), cognitive, physical, behavioral and geriatric assessment, laboratory examination of multiple AD patient biofluids, especially within the systemic circulation (blood serum) and cerebrospinal fluid (CSF), multiple neuroimaging-modalities of the brain's limbic system and/or retina, followed up in many cases by post-mortem neuropathological examination to finally corroborate the diagnosis. More often than not, prospective AD cases are accompanied by other progressive, age-related dementing neuropathologies including, predominantly, a neurovascular and/or cardiovascular component, multiple-infarct dementia (MID), frontotemporal dementia (FTD) and/or strokes or 'mini-strokes' often integrated with other age-related neurological and non-neurological disorders including cardiovascular disease and cancer. Especially over the last 40 years, enormous research efforts have been undertaken to discover, characterize, and quantify more effectual and reliable biological markers for AD, especially during the pre-clinical or prodromal stages of AD so that pre-emptive therapeutic treatment strategies may be initiated. While a wealth of genetic, neurobiological, neurochemical, neuropathological, neuroimaging and other diagnostic information obtainable for a single AD patient can be immense: (i) it is currently challenging to integrate and formulate a definitive diagnosis for AD from this multifaceted and multidimensional information; and (ii) these data are unfortunately not directly comparable with the etiopathological patterns of other AD patients even when carefully matched for age, gender, familial genetics, and drug history. Four decades of AD research have repeatedly indicated that diagnostic profiles for AD are reflective of an extremely heterogeneous neurological disorder. This commentary will illuminate the heterogeneity of biomarkers for AD, comment on emerging investigative approaches and discuss why 'precision medicine' is emerging as our best paradigm yet for the most accurate and definitive prediction, diagnosis, and prognosis of this insidious and lethal brain disorder.
Collapse
Affiliation(s)
- Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA 70112, USA;
- Department of Cell Biology and Anatomy, LSU-HSC, New Orleans, LA 70112, USA
- Department of Ophthalmology, LSU Neuroscience Center, LSU-HSC, New Orleans, LA 70112, USA
- Department Neurology, LSU Neuroscience Center, LSU-HSC, New Orleans, LA 70112, USA
| | - Andrea Vergallo
- Sorbonne University, GRC no 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière hospital, F-75013 Paris, France; (A.V.); (S.L.); (H.H.)
| | - Simone Lista
- Sorbonne University, GRC no 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière hospital, F-75013 Paris, France; (A.V.); (S.L.); (H.H.)
- Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’Hôpital, F-75013 Paris, France
- Department of Neurology, Institute of Memory and Alzheimer’s Disease (IM2A), Pitié-Salpêtrière Hospital, AP-HP, F-75013 Paris, France
| | - Harald Hampel
- Sorbonne University, GRC no 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière hospital, F-75013 Paris, France; (A.V.); (S.L.); (H.H.)
| | - Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA 70112, USA;
- Department of Cell Biology and Anatomy, LSU-HSC, New Orleans, LA 70112, USA
| |
Collapse
|