1
|
Mohan P, Wadhwa P, Mahajan H, Kumar D, Aringhieri G, Cioni D. Detection Accuracy of [ 68 Ga] PSMA PET/CT with Rising PSA in Prostate Cancer. World J Nucl Med 2025; 24:144-154. [PMID: 40336849 PMCID: PMC12055255 DOI: 10.1055/s-0045-1804894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
Objective The objective of this study was to evaluate the clinical utility of gallium-68 [ 68 Ga] prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) with rising prostate-specific antigen (PSA) levels in prostate cancer diagnosis. Methods This is a retrospective, single-center, observational cross-sectional study, which is provided after ethics committee clearance, from May 2, 2022 to June 25, 2022. Study includes sample size of 50 patients with prostate adenocarcinoma with varying PSA levels and Gleason score of 6 to 9 who underwent [ 68 Ga] PSMA PET/CT scan. The patients included in this study underwent PET/CT scan on uMI550 (United Imaging Healthcare, Shanghai, China). Results All patients were divided into three groups based on PSA levels in ng/mL as: PSA ≤ 0.2 (8%), 0.2 < PSA ≤ 1 (10%), 1 < PSA ≤ 3 (8%), 3 < PSA ≤ 10 (18%), and PSA > 10 (56%). Among 50 scans, at least one PSMA avid lesion was visualized in 41 scans (78.9%). These scans were considered positive and included in this study, rest of the scans had insignificant PSMA uptake and were considered negative. [ 68 Ga] PSMA PET/CT detection rates were 75.0, 20.0, 50.0, 88.90, and 89.3% in patients with PSA ≤ 0.2, 0.2 < PSA ≤ 1, 1 < PSA ≤ 3, 3 < PSA ≤ 10, and PSA > 10, respectively. In addition to prostate bed, lesions were also visualized in lymph nodes (32%), liver (2%), skeleton (28%), and thorax (6%). Considering lesions in the prostate bed a significant direct correlation was detected between maximal standardized uptake value (SUVmax) and PSA value ( p = 0.03). Discussion PSMA PET/CT has been demonstrated to be an effective method for identifying both low-grade Gleason score tumors and low PSA levels. The study provides support for the use of [ 68 Ga] PSMA PET/CT in conjunction with PSA levels for the evaluation of prostate cancer, including local recurrence and distant metastases. Conclusion The findings of this study indicate that PSMA PET/CT is an effective method for diagnosing prostate cancer, as it allows for the detection of high SUVmax values in pathological tissues. Furthermore, high sensitivity and detection rates are noted with PSMA PET/CT scan even in cases where PSA levels were low. Therefore, this study demonstrates that [ 68 Ga] PSMA PET/CT is beneficial for the early detection of prostate cancer and the prediction of treatment outcomes.
Collapse
Affiliation(s)
- Parul Mohan
- Department of Nuclear Medicine, Mahajan Imaging and Labs, New Delhi, India
| | - Palak Wadhwa
- Central Research Institute, Shanghai United Imaging Healthcare, Shanghai, China
| | - Harsh Mahajan
- Department of Nuclear Medicine, Mahajan Imaging and Labs, New Delhi, India
| | - Dileep Kumar
- Central Research Institute, Shanghai United Imaging Healthcare, Shanghai, China
| | - Giacomo Aringhieri
- Department of Nuclear Medicine & PET/CT, University of Pisa, Pisa, Italy
| | - Dania Cioni
- Department of Nuclear Medicine & PET/CT, University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Wang L, Wang L, Wang X, Wu D. The Evolving Role of PSMA-PET/CT in Prostate Cancer Management: an Umbrella Review of Diagnostic Restaging, Therapeutic Redirection, and Survival Impact. Curr Oncol Rep 2025:10.1007/s11912-025-01682-2. [PMID: 40366535 DOI: 10.1007/s11912-025-01682-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2025] [Indexed: 05/15/2025]
Abstract
PURPOSE OF REVIEW This review explores the clinical applications of PSMA-PET/CT in patients with intermediate to high-risk prostate cancer, focusing on its role in diagnostic reassessment, therapeutic redirection, and potential survival benefits. By evaluating its translational pathway, we aim to provide a structured analysis of its impact on patient management and treatment outcomes. RECENT FINDINGS Prostate cancer remains a significant health challenge, and advancements in imaging techniques such as PSMA-PET/CT have shown promise in improving diagnostic accuracy and guiding treatment decisions. Emerging evidence highlights its superior sensitivity and specificity compared to conventional imaging, facilitating better staging, detection of metastases, and therapy selection. However, challenges persist in standardizing clinical applications, integrating findings into treatment guidelines, and addressing economic considerations. This review synthesizes the latest research findings and cost-effectiveness analyses to establish a comprehensive translational framework for PSMA-PET/CT in prostate cancer management. By consolidating diverse evidence, we aim to provide the medical community with clearer insights into its clinical utility, address ongoing controversies, and propose strategies to minimize treatment risks. The conclusions drawn from this study aspire to refine treatment protocols and enhance clinical outcomes for patients with this prevalent malignancy.
Collapse
Affiliation(s)
- Licheng Wang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Putuo district, Shanghai, 200065, China
| | - Lizhun Wang
- Department of Information Network Administration, Weifang People's Hospital, No.151 Guangwen Street, Weifang, Shandong, China
| | - Xin'an Wang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Putuo district, Shanghai, 200065, China
| | - Denglong Wu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Putuo district, Shanghai, 200065, China.
| |
Collapse
|
3
|
Bernardino RM, Lajkosz K, Yin LB, Sayyid RK, Wettstein M, Randhawa H, Cockburn JG, Ahmed S, Thomassian R, Diamandis E, Metser U, Berlin A, Fleshner NE. Association of Free-to-Total PSA Ratio and 18F-DCFPyL Prostate-Specific Membrane Antigen PET/CT Findings in Patients with Biochemical Recurrence After Radical Prostatectomy: A Prospective Single-Center Study. J Nucl Med 2024; 65:1731-1739. [PMID: 39327019 DOI: 10.2967/jnumed.124.267877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
In Canada and across the globe, access to PSMA PET/CT is limited and expensive. For patients with biochemical recurrence (BCR) after treatment for prostate cancer, novel strategies are needed to better stratify patients who may or may not benefit from a PSMA PET scan. The role of the free-to-total prostate-specific antigen (PSA) ratio (FPSAR) in posttreatment prostate cancer, specifically in the PSMA PET/CT era, remains unknown. Our aim in this study was to determine the association of FPSAR in patients referred for 18F-DCFPyL PSMA PET/CT in the BCR setting and assess the correlation between FPSAR and 18F-DCFPyL PSMA PET/CT positivity (local recurrence or distant metastases). Methods: This prospective study included 137 patients who were referred for 18F-DCFPyL PSMA PET/CT and had BCR with a total PSA of less than 1 ng/mL after radical prostatectomy (RP) (including adjuvant or salvage radiotherapy). Blood samples were collected on the day of 18F-DCFPyL PSMA PET/CT. FPSAR was categorized as less than 0.10 or as 0.10 or more. A positive 18F-DCFPyL PSMA PET/CT scan was defined by a PROMISE classification lesion score of 2 or 3, irrespective of the site of increased tracer uptake (e.g., prostate, pelvic nodes, bone, or viscera). Results: Overall, 137 blood samples of patients with BCR after RP were analyzed to calculate FPSAR. The median age at 18F-DCFPyL PSMA PET/CT was 68.6 y (interquartile range, 63.0-72.4 y), and the median PSA at 18F-DCFPyL PSMA PET/CT was 0.3 ng/mL (interquartile range, 0.3-0.6 ng/mL). Eighty-six patients (62.8%) had an FPSAR of less than 0.10, whereas 51 patients (37.2%) had an FPSAR of 0.10 or more. An FPSAR of 0.10 or more was identified as an independent predictor of a positive 18F-DCFPyL PSMA PET/CT scan, with an odds ratio of 6.99 (95% CI, 2.96-16.51; P < 0.001). Conclusion: An FPSAR of 0.10 or more after RP independently correlated with increased odds of a positive 18F-DCFPyL PSMA PET/CT scan among BCR post-RP patients. These findings may offer an inexpensive method by which to triage access to 18F-DCFPyL PSMA PET/CT in jurisdictions where availability is not replete.
Collapse
Affiliation(s)
- Rui M Bernardino
- Division of Urology, Department of Surgical Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada;
- Computational and Experimental Biology Group, Nova Medical School, Lisbon, Portugal
| | - Katherine Lajkosz
- Department of Biostatistics, University Health Network, Toronto, Ontario, Canada
| | - Leyi B Yin
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rashid K Sayyid
- Division of Urology, Department of Surgical Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Marian Wettstein
- Division of Urology, Department of Surgical Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Harkanwal Randhawa
- Division of Urology, Department of Surgical Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jessica G Cockburn
- Division of Urology, Department of Surgical Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Sayeed Ahmed
- Division of Urology, Department of Surgical Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Rosita Thomassian
- Division of Urology, Department of Surgical Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Eleftherios Diamandis
- Department of Laboratory Medicine and Pathobiology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ur Metser
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada; and
| | - Alejandro Berlin
- Department of Radiation Oncology and Radiation Medicine Program, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Neil E Fleshner
- Division of Urology, Department of Surgical Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Xiao L, Su M, Li Y. Diagnostic value of dual-time point 68Ga-PSMA PET/CT image for benign and malignant lesions in patients with prostate cancer. Abdom Radiol (NY) 2024; 49:3214-3219. [PMID: 38546825 DOI: 10.1007/s00261-024-04269-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 08/22/2024]
Abstract
OBJECTIVE This study aimed to ascertain the diagnostic efficacy of routine 68Ga-PSMA imaging conducted 1 h post-injection, in conjunction with delayed imaging performed 3 h post-injection, for differentiating between benign and malignant lesions in prostate cancer (PCa) patients. METHODS A retrospective assessment was undertaken on 44 prostate cancer patients who had undergone both routine and delayed 68Ga-PSMA PET/CT scans. Variations in SUVmax and SUVmean values in normal organs, primary prostate cancer sites, metastatic sites, and benign lesions were analyzed. Pathological examination and extended follow-ups were used to confirm all lesions. RESULTS The study encompassed 44 patients, presenting 35 primary prostate cancer lesions, 44 metastatic lesions, and 30 benign lesions. Delayed imaging (3 h post-injection) demonstrated a decreasing trend in the SUVmax and SUVmean for the liver, blood, and spleen. Conversely, an increasing trend was observed for the parotid, lacrimal, and submandibular glands. For primary lesions, the SUVmax and SUVmean values were 17.63 ± 9.61 and 9.77 ± 5.18 during routine imaging, and 25.09 ± 15.11 and 14.05 ± 8.02 (P < 0.001) during delayed imaging. A comparable increase in SUVmax and SUVmean was seen in the delayed images for metastatic lesions when juxtaposed with routine images. Nevertheless, benign lesions displayed a decrease in SUVmax and SUVmean during delayed imaging when set against routine imaging (SUVmax: 3.56 ± 1.49 vs 2.93 ± 1.47, P = 0.001; SUVmean: 1.99 ± 0.87 vs 1.65 ± 0.87, P = 0.003). CONCLUSION Imaging using 68Ga-PSMA PET/CT at 3 h post-injection manifested a higher uptake and target-to-background uptake in most malignant prostate cancer lesions, but a diminished uptake in benign lesions. This observation can assist clinicians in distinguishing non-specific PSMA uptake in prostate cancer patients based on PSMA PET/CT image.
Collapse
Affiliation(s)
- Liu Xiao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No. 37. Guoxue Alley, Chengdu, 610041, Sichuan, People's Republic of China
| | - Minggang Su
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No. 37. Guoxue Alley, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuhao Li
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No. 37. Guoxue Alley, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
5
|
Mattes MD. Overview of Radiation Therapy in the Management of Localized and Metastatic Prostate Cancer. Curr Urol Rep 2024; 25:181-192. [PMID: 38861238 DOI: 10.1007/s11934-024-01217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
PURPOSE OF REVIEW The goal is to describe the evolution of radiation therapy (RT) utilization in the management of localized and metastatic prostate cancer. RECENT FINDINGS Long term data for a variety of hypofractionated definitive RT dose-fractionation schemes has matured, allowing patients and providers many standard-of-care options to choose from. Post-prostatectomy, adjuvant RT has largely been replaced by an early salvage approach. Multiparametric MRI and PSMA PET have enabled increasingly targeted RT delivery to the prostate and oligometastatic tumors. Areas of active investigation include determining the value of proton beam therapy and perirectal spacers, and optimally incorporate genomic tumor profiling and next generation hormonal therapies with RT in the curative setting. The use of radiation therapy to treat prostate cancer is rapidly evolving. In the coming years, there will be continued improvements in a variety of areas to enhance the value of RT in multidisciplinary prostate cancer management.
Collapse
Affiliation(s)
- Malcolm D Mattes
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
6
|
Erdogan EB, Tekce E, Koca S, Aslan N, Toluk O, Aydin M. Predictive significance of intraprostatic volumetric parameters derived from early and standard time 68Ga-PSMA PET/CT images in newly diagnosed prostate cancer patients. Nucl Med Commun 2024; 45:629-641. [PMID: 38835183 DOI: 10.1097/mnm.0000000000001851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
OBJECTIVE To investigate the relationship between intraprostatic 68Ga-prostate-specific membrane antigen (PSMA) uptake values and volumetric parameters derived from early pelvic and standard-time whole-body 68Ga-PSMA PET/computed tomography (CT) images in untreated prostate cancer (PCa) patients, and to assess the predictive significance of these data in relation to disease prognosis, comparing them with the Gleason score, clinical risk classification and the presence of metastatic disease detected in 68Ga-PSMA PET/CT imaging. METHODS Eighty-one newly diagnosed PCa patients underwent early phase pelvic imaging at the 5th minute and standard time whole-body imaging at the 60th minute. Various threshold values were used in intraprostatic delineations to compute maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), intraprostatic PSMA tumor volume and intraprostatic total lesion PSMA uptake. Correlations between early and standard time measurements, as well as changes in SUV parameters over time, were examined. The association of these values with Gleason score, clinical risk status (National Comprehensive Cancer Network), and metastatic disease was explored. RESULTS SUVmax measurements from both early and standard time images distinguished all three groups (clinical risk scores, Gleason score and metastatic group), with standard imaging demonstrating statistical superiority in receiver operating characteristic analyses. Strong correlations were observed between early and standard-time PET parameters. Changes in intraprostatic SUVmax and SUVmean values over time did not exhibit predictive value. CONCLUSION Although intraprostatic PSMA PET parameters generally aligned at both early and standard times, parameters obtained from standard time images showed more robust correlations with clinical risk scores, Gleason score and metastasis status in newly diagnosed, untreated PCa patients.
Collapse
Affiliation(s)
| | - Ertugrul Tekce
- Department of Radiation Oncology, Bezmialem Vakif University Faculty of Medicine,
| | | | - Nesrin Aslan
- Department of Nuclear Medicine, Neolife Medical Center, Clinic of Nuclear Medicine and
| | - Ozlem Toluk
- Department of Biostatistics and Medical Informatics, Bezmialem Vakif University Faculty of Medicine, Istanbul, Turkey
| | | |
Collapse
|
7
|
Wu Q, Bates A, Guntur P, Shamim SA, Nabi G. Detection Rate of PSMA PET Using Different Ligands in Men with Biochemical Recurrent Prostate Cancer Following Radical Treatment: A Systematic Review and Meta-analysis of Prospective Studies. Acad Radiol 2024; 31:544-563. [PMID: 37770370 DOI: 10.1016/j.acra.2023.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Despite the acknowledged diagnostic detection rate of prostate-specific membrane antigen (PSMA) positron emission tomography (PET) imaging in prostate cancer, little is known about the quality of evidence, particularly focusing on prospective studies. Most systematic reviews are based on retrospective reports. RATIONALE AND OBJECTIVES To conduct systematic review and meta-analysis of prospective studies reporting the diagnostic detection rate of PSMA PET (computed tomography (CT) and MR) for the detection of biochemically recurrent metastatic prostate cancer. MATERIALS AND METHODS We systematically searched PubMed, MEDLINE, Embase, and Scopus, from database until March 1, 2023 for randomized controlled trials and prospective studies using PSMA PET imaging in prostate cancer. The primary endpoint was to assess diagnostic detection rate of PSMA PET imaging in the detection of recurrent prostate cancer in men with biochemical relapse following radical treatment. We calculated the pooled overall diagnostic detection rate with 95% CI using a random-effects model and assessed the heterogeneity between the studies including risk of biases estimation. RESULTS A total of 6800 patients from 32 articles were included in this study. The overall detection rate of PSMA PET for prostate cancer was 0.67 (95% CI, 0.63, 0.71). For histologically confirmed lymph nodes, the PPV from 13 prospective studies containing 1496 patients was 0.96 (95% CI, 0.93, 0.99). We performed a subgroup analysis of PSMA PET detection rates according to categorically grouped Prostate Specific Antigen (PSA) values of 0-0.5, 0.5-1.0, 1.0-2.0, and >2.0 ng/ml and obtained detection rates of 0.44, 0.63, 0.82, and 0.94, respectively. The detection rate of 18F PSMA was better in men with a PSA between 1 ng/ml and 2 ng/ml in comparison to 68Ga PSMA (0.91 with 95% CI 0.81-0.99 vs. 0.79 with 95% CI 0.73, 0.85). CONCLUSION PSMA PET imaging provides a good detection rate for the metastatic recurrence of prostate cancer in men with biochemical relapse following radical treatment. The detection rate improves significantly above a serum PSA value of 1 ng/ml. The diagnostic detection rate of 18F-PSMA is best at PSA values between 1 and 2 ng/ml, in comparison to 68Ga PSMA. This conclusion is heavily biased, further research needs to focus on better methodology to minimize the risk of biases.
Collapse
Affiliation(s)
- Qiushuo Wu
- Centre for Medical Engineering and Technology, University of Dundee, Scotland, UK.
| | - Anthony Bates
- Centre for Medical Engineering and Technology, University of Dundee, Scotland, UK
| | | | - Shamim Ahmed Shamim
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Ghulam Nabi
- Centre for Medical Engineering and Technology, University of Dundee, Scotland, UK.
| |
Collapse
|
8
|
Sood A, Kishan AU, Evans CP, Feng FY, Morgan TM, Murphy DG, Padhani AR, Pinto P, Van der Poel HG, Tilki D, Briganti A, Abdollah F. The Impact of Positron Emission Tomography Imaging and Tumor Molecular Profiling on Risk Stratification, Treatment Choice, and Oncological Outcomes of Patients with Primary or Relapsed Prostate Cancer: An International Collaborative Review of the Existing Literature. Eur Urol Oncol 2024; 7:27-43. [PMID: 37423774 DOI: 10.1016/j.euo.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/06/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
CONTEXT The clinical introduction of next-generation imaging methods and molecular biomarkers ("radiogenomics") has revolutionized the field of prostate cancer (PCa). While the clinical validity of these tests has thoroughly been vetted, their clinical utility remains a matter of investigation. OBJECTIVE To systematically review the evidence to date on the impact of positron emission tomography (PET) imaging and tissue-based prognostic biomarkers, including Decipher, Prolaris, and Oncotype Dx, on the risk stratification, treatment choice, and oncological outcomes of men with newly diagnosed PCa or those with biochemical failure (BCF). EVIDENCE ACQUISITION We performed a quantitative systematic review of the literature using the MEDLINE, EMBASE, and Web of Science databases (2010-2022) following the Preferred Reporting Items for Systematic Reviews and Meta-analyses statement guidelines. The validated Quality Assessment of Diagnostic Accuracy Studies 2 scoring system was used to assess the risk of bias. EVIDENCE SYNTHESIS A total of 148 studies (130 on PET and 18 on biomarkers) were included. In the primary PCa setting, prostate-specific membrane antigen (PSMA) PET imaging was not useful in improving T staging, moderately useful in improving N staging, but consistently useful in improving M staging in patients with National Comprehensive Cancer Network (NCCN) unfavorable intermediate- to very-high-risk PCa. Its use led to a management change in 20-30% of patients. However, the effect of these treatment changes on survival outcomes was not clear. Similarly, biomarkers in the pretherapy primary PCa setting increased and decreased the risk, respectively, in 7-30% and 32-36% of NCCN low-risk and 31-65% and 4-15% of NCCN favorable intermediate-risk patients being considered for active surveillance. A change in management was noted in up to 65% of patients, with the change being in line with the molecular risk-based reclassification, but again, the impact of these changes on survival outcomes remained unclear. Notably, in the postsurgical primary PCa setting, biomarker-guided adjuvant radiation therapy (RT) was associated with improved oncological control: Δ↓ 2-yr BCF by 22% (level 2b). In the BCF setting, the data were more mature. PSMA PET was consistently useful in improving disease localization-Δ↑ detection for T, N, and M staging was 13-32%, 19-58%, and 9-29%, respectively. Between 29% and 73% of patients had a change in management. Most importantly, these management changes were associated with improved survival outcomes in three trials: Δ↑ 4-yr disease-free survival by 24.3%, Δ↑ 6-mo metastasis-free survival (MFS) by 46.7%, and Δ↑ androgen deprivation therapy-free survival by 8 mo in patients who received PET-concordant RT (level 1b-2b). Biomarker testing in these patients also appeared to be helpful in risk stratifying and guiding the use of early salvage RT (sRT) and concomitant hormonal therapy. Patients with high-genomic-risk scores benefitted from treatment intensification: Δ↑ 8-yr MFS by 20% with the use of early sRT and Δ↑ 12-yr MFS by 11.2% with the use of hormonal therapy alongside early sRT, while low-genomic-risk score patients did equally well with initial conservative management (level 3). CONCLUSIONS Both PSMA PET imaging and tumor molecular profiling provide actionable information in the management of men with primary PCa and those with BCF. Emerging data suggest that radiogenomics-guided treatments translate into direct survival benefits for patients, however, additional prospective data are awaited. PATIENT SUMMARY In this review, we evaluated the utility of prostate-specific membrane antigen positron emission tomography and tumor molecular profiling in guiding the care of men with prostate cancer (PCa). We found that these tests augmented risk stratification, altered management, and improved cancer control in men with a new diagnosis of PCa or for those experiencing a relapse.
Collapse
Affiliation(s)
- Akshay Sood
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Urology, The James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Amar U Kishan
- Department of Radiation Oncology and Urology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Christopher P Evans
- Department of Urologic Surgery, University of California Davis, Sacramento, CA, USA
| | - Felix Y Feng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Todd M Morgan
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Declan G Murphy
- Department of Genitourinary Oncology, Peter MacCallum Cancer Centre, The University of Melbourne, Victoria, Australia
| | - Anwar R Padhani
- Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, UK
| | - Peter Pinto
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Henk G Van der Poel
- Department of Urology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Derya Tilki
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany; Department of Urology, University Hospital Hamburg-Eppendorf, Hamburg, Germany; Department of Urology, Koc University Hospital, Istanbul, Turkey
| | - Alberto Briganti
- Department of Urology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Firas Abdollah
- Vattikuti Urology Institute, Henry Ford Hospital, Detroit, MI, USA.
| |
Collapse
|
9
|
Houshmand S, Lawhn-Heath C, Behr S. PSMA PET imaging in the diagnosis and management of prostate cancer. Abdom Radiol (NY) 2023; 48:3610-3623. [PMID: 37493837 PMCID: PMC10682054 DOI: 10.1007/s00261-023-04002-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023]
Abstract
Prostate cancer is the second leading cause of cancer-related deaths in men in the United States. Imaging techniques such as CT, MRI, and bone scans have traditionally been used for diagnosis and staging. Molecular imaging modalities targeting the prostate-specific membrane antigen (PSMA) have recently gained attention due to their high affinity and accuracy. PSMA PET has been combined with other modalities such as multiparametric MRI for better diagnostic and prognostic performance. PSMA imaging has been studied at different clinical settings with a wide range of disease aggressiveness. In this review we will explore the role of PSMA PET in high-risk prostate cancer staging, biochemical recurrence, and castration-resistant prostate cancer. The primary focus of this review article is to examine the latest developments in the use of PSMA imaging and emphasize the clinical situations where its effectiveness has been demonstrated to significantly impact the treatment of prostate cancer. In addition, we will touch upon the potential future advancements of PSMA PET imaging and its evolving significance in the management of prostate cancer.
Collapse
Affiliation(s)
- Sina Houshmand
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA.
| | - Courtney Lawhn-Heath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Spencer Behr
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
10
|
Raju S, Sharma A, Kumar S, Seth A, Sharma A, Pandey AK, Kumar R. Impact of forced diuresis at two different time points on pelvic imaging in prostatic carcinoma with 68 Ga-PSMA PET/CT. Nucl Med Commun 2023; 44:1135-1143. [PMID: 37799105 DOI: 10.1097/mnm.0000000000001771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
OBJECTIVE We compared diagnostic quality of 68 Ga-PSMA PET/CT imaging focused on the pelvic structures using two furosemide protocols in two different groups of patients. MATERIAL AND METHODS A total of 55 patients with prostate cancer were retrospectively enrolled in the study. Out of 55, 31 patients were in group 1 (median age: 66 years, Range 44-78 years) in which furosemide injection was given after completion of whole-body 68 Ga-PSMA PET/CT scan and 24 patients were in group 2 (median age: 63.5 years, range: 50-82 years) in which it was given along with the 68 Ga-PSMA injection. In both groups, an initial time point scan (T0 scan) and a delayed time point scan (T1scan) were done. The images were analyzed qualitatively as well as quantitatively. RESULTS Quantitatively there was no statistically significant difference between the SUVmax and T:B of prostatic lesion and seminal vesicle invasion (SVI) in both the groups at two time points ( P > 0.05). Early furosemide injection caused a washout of the urinary bladder radiotracer concentration in significantly higher number of patients in group 2 (62.5% vs. 6.45% patients, P < 0.001). There was significant clearance of radiotracer activity from the ureters in group 2 (SUVmax: 9.28 vs. 3.09, P = 0.002). CONCLUSION The simultaneous furosemide and 68 Ga-PSMA injection can reduce the urinary excretion of the tracer and improve the diagnostic confidence of prostatic lesion, SVI and lymph nodal metastasis, along with reducing the scanning time and radiation burden, making this protocol an effective alternative to the present protocol of delayed furosemide injection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rakesh Kumar
- Diagnostic Nuclear Medicine Division, Department of Nuclear Medicine, AIIMS, New Delhi, India
| |
Collapse
|
11
|
Koehler D, Berliner C, Shenas F, Karimzadeh A, Apostolova I, Klutmann S, Adam G, Sauer M. PSMA hybrid imaging in prostate cancer - current applications and perspectives. ROFO-FORTSCHR RONTG 2023; 195:1001-1008. [PMID: 37348528 DOI: 10.1055/a-2088-9543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
BACKGROUND Prostate cancer (PCa) is the most common malignancy in men and the second most common tumor-associated cause of death in the male population in Germany. Prostate-specific membrane antigen (PSMA)-targeted hybrid imaging using positron emission tomography (PET) in combination with CT or MRI represents a comparably new method that gained increasing importance in the diagnostic process of PCa in recent years. METHOD Current applications of PSMA hybrid imaging were summarized according to the German and European guidelines on PCa. New developments were elaborated based on a literature review of PubMed conducted in 10/22. RESULTS PSMA-PET/CT demonstrated higher detection rates for metastases in high-risk PCa and recurrent PCa after primary therapy than established imaging methods (CT, MRI, and bone scan). Despite promising results from prospective trials in both scenarios and substantial influence on clinical decision making, data regarding the influence of PSMA-PET on PCa-specific and overall survival are still lacking. Hence, PSMA PET/CT is recommended with a "weak" strength rating in most situations. However, its importance in new treatment options like metastasis-directed therapy or PSMA-radioligand therapy expands the scope of PSMA-PET in the clinical routine. CONCLUSION PSMA-targeting hybrid imaging represents the most sensitive diagnostic test in several stages of PCa and allows the development of new treatment strategies. Prospective studies are needed to evaluate the influence of PSMA-PET on patient survival. KEY POINTS · PSMA-PET/CT is superior to conventional imaging in the primary staging of high-risk prostate cancer.. · PSMA hybrid imaging can detect metastases in patients with biochemical recurrence at low PSA values.. · Clinical decision making is frequently influenced by results of PSMA-PET/CT.. CITATION FORMAT · Koehler D, Berliner C, Shenas F et al. PSMA hybrid imaging in prostate cancer - current applications and perspectives. Fortschr Röntgenstr 2023; 195: 1001 - 1008.
Collapse
Affiliation(s)
- Daniel Koehler
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Farzad Shenas
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Amir Karimzadeh
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ivayla Apostolova
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Klutmann
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Sauer
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Duncan I, Ingold N, Martinez-Marroquin E, Paterson C. An Australian experience using Tc-PSMA SPECT/CT in the primary diagnosis of prostate cancer and for staging at biochemical recurrence after local therapy. Prostate 2023; 83:970-979. [PMID: 37051636 DOI: 10.1002/pros.24538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 03/03/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Technetium 99 prostate-specific membrane antigen (Tc-PSMA) single-photon emission computed tomography/computed tomography (SPECT/CT) has the potential to provide greater accessibility globally than gallium 68 (Ga)-PSMA positron emission tomography (PET)/CT but has not been studied as extensively in primary diagnosis, staging, or relapse of prostate cancer (PC). We instituted a novel SPECT/CT reconstruction algorithm using Tc-PSMA and established a database to prospectively accumulate data on all patients referred with PC. This study extracts data on all patients referred over a 3.5-year period with the primary aim of comparing the diagnostic accuracy of Tc-PSMA and multiparametric magnetic resonance imaging (mpMRI) in the primary diagnosis of PC. The secondary aim was to assess the sensitivity of Tc-PSMA in detecting disease with relapse after either radical prostatectomy or primary radiotherapy. METHODS A total of 425 men referred for primary staging (PS) of PC and 172 men referred with biochemical relapse (BCR) were evaluated. We evaluated diagnostic accuracy and correlations between Tc-PSMA SPECT/CT, magnetic resonance imaging (MRI), prostate biopsy, prostate-specific antigen (PSA), and age in the PS group and positivity rates at different PSA levels in the BCR group. RESULTS Taking the biopsy's grade according to the International Society of Urological Pathology protocol as a reference, the sensitivity (true positive rate), specificity (true negative rate), accuracy (positive and negative predictive value), and precision (positive predictive value) for Tc-PSMA in the PS group were 99.7%, 83.3%, 99.4%, and 99.7%, respectively. Comparison rates for MRI in this group were 96.4%, 71.4%, 95.7%, and 99.1%. We found moderate correlations between Tc-PSMA uptake in the prostate and biopsy grade, the presence of metastases, and PSA. In BCR, the Tc-PSMA positive rates were 38.9%, 53.2%, 62.5%, and 84.6% at PSA levels of <0.2, 0.2 to <0.5, 0.5 to <1.0, and > 1.0 ng/mL respectively. CONCLUSIONS We have shown that Tc-PSMA SPECT/CT using an enhanced reconstruction algorithm has a diagnostic performance similar to Ga-PSMA PET/CT and mpMRI in an everyday clinical setting. It may have some advantages in cost, sensitivity for primary lesion detection, and the ability for intraoperative localization of lymph nodes.
Collapse
Affiliation(s)
- Iain Duncan
- Garran Medical Imaging, Garran, Australian Capital Territory, Australia
| | - Nicholas Ingold
- Garran Medical Imaging, Garran, Australian Capital Territory, Australia
| | | | - Catherine Paterson
- University of Canberra, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
13
|
Burgard C, Hoffmann MA, Frei M, Buchholz HG, Khreish F, Marlowe RJ, Schreckenberger M, Ezziddin S, Rosar F. Detection Efficacy of 68Ga-PSMA-11 PET/CT in Biochemical Recurrence of Prostate Cancer with Very Low PSA Levels: A 7-Year, Two-Center "Real-World" Experience. Cancers (Basel) 2023; 15:cancers15051376. [PMID: 36900169 PMCID: PMC10000220 DOI: 10.3390/cancers15051376] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
In biochemical recurrence of prostate cancer (BCR), prompt tumor localization guides early treatment, potentially improving patient outcomes. Gallium-68 prostate-specific membrane antigen-11 positron emission tomography/computed tomography (68Ga-PSMA-11 PET/CT) detection rates of lesions suspicious for prostate cancer are well known to rise along with prostate-specific antigen (PSA) concentration. However, published data are limited regarding very low values (≤0.2 ng/mL). We retrospectively analyzed ~7-year "real-world" experience in this setting in a large post-prostatectomy cohort (N = 115) from two academic clinics. Altogether 44 lesions were detected in 29/115 men (25.2%) (median [minimum-maximum] 1 [1-4]/positive scan). The apparent oligometastatic disease was found in nine patients (7.8%) at PSA as low as 0.03 ng/mL. Scan positivity rates were highest when PSA was >0.15 ng/mL, PSA doubling time was ≤12 months, or the Gleason score was ≥7b (in 83 and 107 patients, respectively, with available data); these findings were statistically significant (p ≤ 0.04), except regarding PSA level (p = 0.07). Given the benefits of promptly localizing recurrence, our observations suggest the potential value of 68Ga-PSMA-11 PET/CT in the very low PSA BCR setting, especially in cases with more rapid PSA doubling time or with high-risk histology.
Collapse
Affiliation(s)
- Caroline Burgard
- Department of Nuclear Medicine, Saarland University—Medical Center, 66421 Homburg, Germany
| | - Manuela A. Hoffmann
- Department of Nuclear Medicine, Johannes Gutenberg University, 55101 Mainz, Germany
- Institute for Preventive Medicine Bw, 56626 Andernach, Germany
- Correspondence:
| | - Madita Frei
- Department of Nuclear Medicine, Saarland University—Medical Center, 66421 Homburg, Germany
| | - Hans-Georg Buchholz
- Department of Nuclear Medicine, Johannes Gutenberg University, 55101 Mainz, Germany
| | - Fadi Khreish
- Department of Nuclear Medicine, Saarland University—Medical Center, 66421 Homburg, Germany
| | | | | | - Samer Ezziddin
- Department of Nuclear Medicine, Saarland University—Medical Center, 66421 Homburg, Germany
| | - Florian Rosar
- Department of Nuclear Medicine, Saarland University—Medical Center, 66421 Homburg, Germany
| |
Collapse
|
14
|
Li C, Scheins J, Tellmann L, Issa A, Wei L, Shah NJ, Lerche C. Fast 3D kernel computation method for positron range correction in PET. Phys Med Biol 2023; 68. [PMID: 36595256 DOI: 10.1088/1361-6560/acaa84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/09/2022] [Indexed: 12/13/2022]
Abstract
Objective. The positron range is a fundamental, detector-independent physical limitation to spatial resolution in positron emission tomography (PET) as it causes a significant blurring of underlying activity distribution in the reconstructed images. A major challenge for positron range correction methods is to provide accurate range kernels that inherently incorporate the generally inhomogeneous stopping power, especially at tissue boundaries. In this work, we propose a novel approach to generate accurate three-dimensional (3D) blurring kernels both in homogenous and heterogeneous media to improve PET spatial resolution.Approach. In the proposed approach, positron energy deposition was approximately tracked along straight paths, depending on the positron stopping power of the underlying material. The positron stopping power was derived from the attenuation coefficient of 511 keV gamma photons according to the available PET attenuation maps. Thus, the history of energy deposition is taken into account within the range of kernels. Special emphasis was placed on facilitating the very fast computation of the positron annihilation probability in each voxel.Results. Positron path distributions of18F in low-density polyurethane were in high agreement with Geant4 simulation at an annihilation probability larger than 10-2∼ 10-3of the maximum annihilation probability. The Geant4 simulation was further validated with measured18F depth profiles in these polyurethane phantoms. The tissue boundary of water with cortical bone and lung was correctly modeled. Residual artifacts from the numerical computations were in the range of 1%. The calculated annihilation probability in voxels shows an overall difference of less than 20% compared to the Geant4 simulation.Significance. The proposed method is expected to significantly improve spatial resolution for non-standard isotopes by providing sufficiently accurate range kernels, even in the case of significant tissue inhomogeneities.
Collapse
Affiliation(s)
- Chong Li
- Institute of Neuroscience and Medicine, INM-4, Forschungszentrum GmbH, Jülich, Germany.,Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jürgen Scheins
- Institute of Neuroscience and Medicine, INM-4, Forschungszentrum GmbH, Jülich, Germany
| | - Lutz Tellmann
- Institute of Neuroscience and Medicine, INM-4, Forschungszentrum GmbH, Jülich, Germany
| | - Ahlam Issa
- Institute of Neuroscience and Medicine, INM-4, Forschungszentrum GmbH, Jülich, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN-Translational Medicine, RWTH Aachen University, Aachen, Germany
| | - Long Wei
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - N Jon Shah
- Institute of Neuroscience and Medicine, INM-4, Forschungszentrum GmbH, Jülich, Germany.,Institute of Neuroscience and Medicine, INM-11, Forschungszentrum GmbH, Jülich, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN-Translational Medicine, RWTH Aachen University, Aachen, Germany
| | - Christoph Lerche
- Institute of Neuroscience and Medicine, INM-4, Forschungszentrum GmbH, Jülich, Germany
| |
Collapse
|
15
|
Ma W, Mao J, Yang J, Wang T, Zhao ZH. Comparing the diagnostic performance of radiotracers in prostate cancer biochemical recurrence: a systematic review and meta-analysis. Eur Radiol 2022; 32:7374-7385. [PMID: 35486169 PMCID: PMC9668945 DOI: 10.1007/s00330-022-08802-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/27/2022] [Accepted: 04/04/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES To systematically assess the early detection rate of biochemical prostate cancer recurrence using choline, fluciclovine, and PSMA. METHODS Under the guidance of the Preferred Reporting Items for Systematic reviews and Meta-Analysis Diagnostic Test Accuracy guidelines, literature that assessed the detection rates (DRs) of choline, fluciclovine, and PSMA in prostate cancer biochemical recurrence was searched in PubMed and EMBASE databases for our systematic review from 2012 to July 15, 2021. In addition, the PSA-stratified performance of detection positivity was obtained to assess the DRs for various methods, including fluciclovine, PSMA, or choline PET/CT, with respect to biochemical recurrence based on different PSA levels. RESULTS In total, 64 studies involving 11,173 patients met the inclusion criteria. Of the studies, 12, 7, and 48 focused on choline, fluciclovine, and PSMA, respectively. The pooled DRs were 24%, 37%, and 44%, respectively, for a PSA level less than 0.5 ng/mL (p < 0.001); 36%, 44%, and 60% for a PSA level of 0.5-0.99 ng/mL (p < 0.001); and 50%, 61%, and 80% for a PSA level of 1.0-1.99 ng/mL (p < 0.001). The DR with 18F-labeled PSMA was higher than that with 68Ga-labeled PSMA, and the DR was 58%, 72%, and 88% for PSA levels < 0.5 ng/mL, 0.5-0.9 ng/mL, and 1.0-1.99 ng/mL, respectively. CONCLUSION The DRs of PSMA-radiotracers were greater than those of choline-radiotracers and fluciclovine-radiotracers at the patient level. 18F-labeled PSMA achieved a higher DR than 68Ga-labeled PSMA. KEY POINTS • The DRs of PSMA-radiotracers were greater than those of choline-radiotracers and fluciclovine-radiotracers at the patient level. • 18F-labeled PSMA achieved a higher DR than 68Ga-labeled PSMA.
Collapse
Affiliation(s)
- Weili Ma
- Department of Radiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Key Laboratory of Functional Molecular Imaging of Tumor and Interventional Diagnosis and Treatment of Shaoxing City, Shaoxing, 312000, China
| | - Jiwei Mao
- Department of Radiotherapy, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, China
| | - Jianfeng Yang
- Department of Radiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Key Laboratory of Functional Molecular Imaging of Tumor and Interventional Diagnosis and Treatment of Shaoxing City, Shaoxing, 312000, China
| | - Ting Wang
- Department of Radiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Key Laboratory of Functional Molecular Imaging of Tumor and Interventional Diagnosis and Treatment of Shaoxing City, Shaoxing, 312000, China
| | - Zhen Hua Zhao
- Department of Radiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Key Laboratory of Functional Molecular Imaging of Tumor and Interventional Diagnosis and Treatment of Shaoxing City, Shaoxing, 312000, China.
| |
Collapse
|
16
|
[ 89Zr]Zr-PSMA-617 PET/CT in biochemical recurrence of prostate cancer: first clinical experience from a pilot study including biodistribution and dose estimates. Eur J Nucl Med Mol Imaging 2022; 49:4736-4747. [PMID: 35930033 PMCID: PMC9606102 DOI: 10.1007/s00259-022-05925-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/22/2022] [Indexed: 11/14/2022]
Abstract
Purpose Prostate-specific membrane antigen (PSMA)-targeted PET/CT has become increasingly important in the management of prostate cancer, especially in localization of biochemical recurrence (BCR). PSMA-targeted PET/CT imaging with long-lived radionuclides as 89Zr (T1/2 = 78.4 h) may improve diagnostics by allowing data acquisition on later time points. In this study, we present our first clinical experience including preliminary biodistribution and dosimetry data of [89Zr]Zr-PSMA-617 PET/CT in patients with BCR of prostate cancer. Methods Seven patients with BCR of prostate cancer who revealed no (n = 4) or undetermined (n = 3) findings on [68Ga]Ga-PSMA-11 PET/CT imaging were referred to [89Zr]Zr-PSMA-617 PET/CT. PET/CT imaging was performed 1 h, 24 h, 48 h, and 72 h post injection (p.i.) of 111 ± 11 MBq [89Zr]Zr-PSMA-617 (mean ± standard deviation). Normal organ distribution and dosimetry were determined. Lesions visually considered as suggestive of prostate cancer were quantitatively analyzed. Results Intense physiological uptake was observed in the salivary and lacrimal glands, liver, spleen, kidneys, intestine and urinary tract. The parotid gland received the highest absorbed dose (0.601 ± 0.185 mGy/MBq), followed by the kidneys (0.517 ± 0.125 mGy/MBq). The estimated overall effective dose for the administration of 111 MBq was 10.1 mSv (0.0913 ± 0.0118 mSv/MBq). In 6 patients, and in particular in 3 of 4 patients with negative [68Ga]Ga-PSMA-11 PET/CT, at least one prostate cancer lesion was detected in [89Zr]Zr-PSMA-617 PET/CT imaging at later time points. The majority of tumor lesions were first visible at 24 h p.i. with continuously increasing tumor-to-background ratio over time. All tumor lesions were detectable at 48 h and 72 h p.i. Conclusion [89Zr]Zr-PSMA-617 PET/CT imaging is a promising new diagnostic tool with acceptable radiation exposure for patients with prostate cancer especially when [68Ga]Ga-PSMA-11 PET/CT imaging fails detecting recurrent disease. The long half-life of 89Zr enables late time point imaging (up to 72 h in our study) with increased tracer uptake in tumor lesions and higher tumor-to-background ratios allowing identification of lesions non-visible on [68Ga]Ga-PSMA-11 PET/CT imaging.
Collapse
|
17
|
Pêtre A, Quivrin M, Briot N, Boustani J, Martin E, Bessieres I, Cochet A, Créhange G. Salvage involved-field and extended-field radiotherapy in PET-positive nodal recurrent prostate cancer: outcomes and patterns of failure. Adv Radiat Oncol 2022; 8:101040. [DOI: 10.1016/j.adro.2022.101040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/19/2022] [Indexed: 11/27/2022] Open
|
18
|
Ga-68-PSMA-11 PET/CT in Patients with Biochemical Recurrence of Prostate Cancer after Primary Treatment with Curative Intent-Impact of Delayed Imaging. J Clin Med 2022; 11:jcm11123311. [PMID: 35743385 PMCID: PMC9225064 DOI: 10.3390/jcm11123311] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 12/09/2022] Open
Abstract
The presence of prostate-specific membrane antigen (PSMA) on prostate cancer cells and its metastases allows its use in diagnostics using PET/CT. The aim of this study was to evaluate the usefulness of delayed phase images in the Ga-68-PSMA-11 PET/CT. Methods: 108 patients with prostate cancer (median age: 68.5 years, range: 49−83) were referred for Ga-68-PSMA-11 PET/CT due to biochemical relapse (PSA (prostate-specific antigen) (3.2 ± 5.4 ng/mL). Examinations were performed at 60 min, with an additional delayed phase of the pelvis region at 120−180 min. Results: The Ga-68-PSMA-11 PET/CT showed lesions in 86/108 (80%) patients; detection rate depending on the PSA level: 0.2 < PSA < 0.5 ng/mL vs. 0.5 ≤ PSA < 1.0 ng/mL vs. 1.0 ≤ PSA < 2.0 ng/mL vs. PSA ≥ 2.0 ng/mL was 56% (standard vs. delay: 56 vs. 56%) vs. 60% (52 vs. 60%) vs. 87% (83 vs. 87%) vs. 82% (77 vs. 82%) of patients, respectively. The delayed phase had an impact on the treatment in 14/86 patients (16%) (p < 0.05): 7 pts increased uptake was seen only after 60 min, which was interpreted as physiological or inflammatory accumulation; the delayed image showed increased accumulation in 7 patients only: 4 in regional lymph nodes, 1 in local recurrence, and 2 patients with local recurrence showed additional foci. Conclusions: Delayed phase of Ga-68-PSMA-11 PET/CT has an impact on treatment management in 16% of patients.
Collapse
|
19
|
99mTc-PSMA SPECT in Prostate Cancer. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
|
21
|
Beinecke JM, Anders P, Schurrat T, Heider D, Luster M, Librizzi D, Hauschild AC. Evaluation of machine learning strategies for imaging confirmed prostate cancer recurrence prediction on electronic health records. Comput Biol Med 2022; 143:105263. [PMID: 35131608 DOI: 10.1016/j.compbiomed.2022.105263] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND The main screening parameter to monitor prostate cancer recurrence (PCR) after primary treatment is the serum concentration of prostate-specific antigen (PSA). In recent years, Ga-68-PSMA PET/CT has become an important method for additional diagnostics in patients with biochemical recurrence. PURPOSE While Ga-68-PSMA PET/CT performs better, it is an expensive, invasive, and time-consuming examination. Therefore, in this study, we aim to employ modern multivariate Machine Learning (ML) methods on electronic health records (EHR) of prostate cancer patients to improve the prediction of imaging confirmed PCR (IPCR). METHODS We retrospectively analyzed the clinical information of 272 patients, who were examined using Ga-68-PSMA PET/CT. The PSA values ranged from 0 ng/mL to 2270.38 ng/mL with a median PSA level at 1.79 ng/mL. We performed a descriptive analysis using Logistic Regression. Additionally, we evaluated the predictive performance of Logistic Regression, Support Vector Machine, Gradient Boosting, and Random Forest. Finally, we assessed the importance of all features using Ensemble Feature Selection (EFS). RESULTS The descriptive analysis found significant associations between IPCR and logarithmic PSA values as well as between IPCR and performed hormonal therapy. Our models were able to predict IPCR with an AUC score of 0.78 ± 0.13 (mean ± standard deviation) and a sensitivity of 0.997 ± 0.01. Features such as PSA, PSA doubling time, PSA velocity, hormonal therapy, radiation treatment, and injected activity show high importance for IPCR prediction using EFS. CONCLUSION This study demonstrates the potential of employing a multitude of parameters into multivariate ML models to improve identification of non-recurring patients compared to the current focus on the main screening parameter (PSA). We showed that ML models are able to predict IPCR, detectable by Ga-68-PSMA PET/CT, and thereby pave the way for optimized early imaging and treatment.
Collapse
Affiliation(s)
- Jacqueline Michelle Beinecke
- Department of Mathematics and Computer Science at the Philipps University Marburg, Germany; Institute for Medical Informatics at the University Medical Center Göttingen, Göttingen, Germany.
| | - Patrick Anders
- Department of Nuclear Medicine, University Hospital Marburg, Germany
| | - Tino Schurrat
- Department of Nuclear Medicine, University Hospital Marburg, Germany
| | - Dominik Heider
- Department of Mathematics and Computer Science at the Philipps University Marburg, Germany
| | - Markus Luster
- Department of Nuclear Medicine, University Hospital Marburg, Germany
| | - Damiano Librizzi
- Department of Nuclear Medicine, University Hospital Marburg, Germany
| | - Anne-Christin Hauschild
- Department of Mathematics and Computer Science at the Philipps University Marburg, Germany; Institute for Medical Informatics at the University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
22
|
Detection efficacy of PET/CT with 18F-FSU-880 in patients with suspected recurrent prostate cancer: a prospective single-center study. Ann Nucl Med 2022; 36:302-309. [DOI: 10.1007/s12149-021-01704-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/28/2021] [Indexed: 11/25/2022]
|
23
|
Zhang X, Chen Z. Tumor-Specificity Growth Factor Combined with Tumor Markers in Nuclear Medicine Imaging to Identify Prostate Cancer Osteonosus. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:7380120. [PMID: 34925738 PMCID: PMC8683177 DOI: 10.1155/2021/7380120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/13/2021] [Accepted: 10/25/2021] [Indexed: 01/13/2023]
Abstract
Objective This study has explored the application value of malignant tumor SPE growth factor (TSGF) combined with tumor markers (TM) (TSGF + TM) in nuclear medicine imaging to identify prostate cancer osteonosus (PCO). Methods A retrospective analysis for 70 patients with prostate cancer and bone disease admitted to our hospital was performed, 30 healthy persons in the same period were selected as the control group, and the advantages and disadvantages of various examinations were analyzed. All patients were diagnosed with PET whole body bone imaging. Suspicious lesions could be examined by MRI or CT. According to the results of imaging examination, patients were divided into 40 cases of malignant prostate cancer and 30 cases of benign prostate cancer. All the patients underwent 18F-FDG-PET imaging, alpha-fetoprotein (AFP), and TSGF + TM determination. The case diagnosis results were compared and analyzed, and the sensitivity (SEN), specificity (SPE), and accuracy (ACC) of various detection methods were calculated. The SEN, SPE, and ACC of positron emission tomography (PET) were 90.9%, 57.8%, and 81.2%, respectively; those of TM were 79.2%, 94.6%, and 69.8%, respectively; and those of TSGF + TM were 95.9%, 100%, and 97.3%, respectively. The accuracy of combined diagnosis of tumors can reach 100%. The AFP and TSGF levels of serum TM were compared and analyzed, and it was found that the benign lesion group and the malignant lesion group showed significant increases compared with the control group, and the difference between the malignant lesion group and the control group was obvious (P < 0.05). SGF combined with TM could obtain a more definite diagnosis in PCO. Conclusion TSGF + TM combined with 18F-FDG-PET imaging showed important clinical value to diagnose the PCO. The imaging accuracy of TSGF + TM combined with 18F-FDG-PET is 97.3%, and the specificity of tumor diagnosis is 100%. Therefore, the TSGF + TM applied in medical imaging and identification of PCO was worthy of clinical promotion.
Collapse
Affiliation(s)
- Xuemin Zhang
- Shaanxi University of Chinese Medicine, Clinical Medicine of Chinese and Western Medicine, Hanzhong, Shaanxi 723000, China
| | - Zhengfu Chen
- Shaanxi University of Chinese Medicine, Clinical Medicine of Chinese and Western Medicine, Hanzhong, Shaanxi 723000, China
| |
Collapse
|
24
|
Manafi-Farid R, Ranjbar S, Jamshidi Araghi Z, Pilz J, Schweighofer-Zwink G, Pirich C, Beheshti M. Molecular Imaging in Primary Staging of Prostate Cancer Patients: Current Aspects and Future Trends. Cancers (Basel) 2021; 13:5360. [PMID: 34771523 PMCID: PMC8582501 DOI: 10.3390/cancers13215360] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022] Open
Abstract
Accurate primary staging is the cornerstone in all malignancies. Different morphological imaging modalities are employed in the evaluation of prostate cancer (PCa). Regardless of all developments in imaging, invasive histopathologic evaluation is still the standard method for the detection and staging of the primary PCa. Magnetic resonance imaging (MRI) and computed tomography (CT) play crucial roles; however, functional imaging provides additional valuable information, and it is gaining ever-growing acceptance in the management of PCa. Targeted imaging with different radiotracers has remarkably evolved in the past two decades. [111In]In-capromab pendetide scintigraphy was a new approach in the management of PCa. Afterwards, positron emission tomography (PET) tracers such as [11C/18F]choline and [11C]acetate were developed. Nevertheless, none found a role in the primary staging. By introduction of the highly sensitive small molecule prostate-specific membrane antigen (PSMA) PET/CT, as well as recent developments in MRI and hybrid PET/MRI systems, non-invasive staging of PCa is being contemplated. Several studies investigated the role of these sophisticated modalities in the primary staging of PCa, showing promising results. Here, we recapitulate the role of targeted functional imaging. We briefly mention the most popular radiotracers, their diagnostic accuracy in the primary staging of PCa, and impact on patient management.
Collapse
Affiliation(s)
- Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran 1411713135, Iran;
| | - Shaghayegh Ranjbar
- Department of Nuclear Medicine, Division of Molecular Imaging and Theranostics, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria; (S.R.); (Z.J.A.); (J.P.); (G.S.-Z.); (C.P.)
| | - Zahra Jamshidi Araghi
- Department of Nuclear Medicine, Division of Molecular Imaging and Theranostics, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria; (S.R.); (Z.J.A.); (J.P.); (G.S.-Z.); (C.P.)
| | - Julia Pilz
- Department of Nuclear Medicine, Division of Molecular Imaging and Theranostics, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria; (S.R.); (Z.J.A.); (J.P.); (G.S.-Z.); (C.P.)
| | - Gregor Schweighofer-Zwink
- Department of Nuclear Medicine, Division of Molecular Imaging and Theranostics, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria; (S.R.); (Z.J.A.); (J.P.); (G.S.-Z.); (C.P.)
| | - Christian Pirich
- Department of Nuclear Medicine, Division of Molecular Imaging and Theranostics, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria; (S.R.); (Z.J.A.); (J.P.); (G.S.-Z.); (C.P.)
| | - Mohsen Beheshti
- Department of Nuclear Medicine, Division of Molecular Imaging and Theranostics, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria; (S.R.); (Z.J.A.); (J.P.); (G.S.-Z.); (C.P.)
| |
Collapse
|
25
|
Klinkhammer BM, Lammers T, Mottaghy FM, Kiessling F, Floege J, Boor P. Non-invasive molecular imaging of kidney diseases. Nat Rev Nephrol 2021; 17:688-703. [PMID: 34188207 PMCID: PMC7612034 DOI: 10.1038/s41581-021-00440-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 02/05/2023]
Abstract
In nephrology, differential diagnosis or assessment of disease activity largely relies on the analysis of glomerular filtration rate, urinary sediment, proteinuria and tissue obtained through invasive kidney biopsies. However, currently available non-invasive functional parameters, and most serum and urine biomarkers, cannot capture intrarenal molecular disease processes specifically. Moreover, although histopathological analyses of kidney biopsy samples enable the visualization of pathological morphological and molecular alterations, they only provide information about a small part of the kidney and do not allow longitudinal monitoring. These limitations not only hinder understanding of the dynamics of specific disease processes in the kidney, but also limit the targeting of treatments to active phases of disease and the development of novel targeted therapies. Molecular imaging enables non-invasive and quantitative assessment of physiological or pathological processes by combining imaging technologies with specific molecular probes. Here, we discuss current preclinical and clinical molecular imaging approaches in nephrology. Non-invasive visualization of the kidneys through molecular imaging can be used to detect and longitudinally monitor disease activity and can therefore provide companion diagnostics to guide clinical trials, as well as the safe and effective use of drugs.
Collapse
Affiliation(s)
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
- Department of Pharmaceutics, Utrecht University, Utrecht, Netherlands
- Department of Targeted Therapeutics, University of Twente, Enschede, Netherlands
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Jürgen Floege
- Department of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany.
- Department of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany.
- Electron Microscopy Facility, RWTH Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
26
|
Lawal IO, Lengana T, Popoola GO, Orunmuyi AT, Kgatle MM, Mokoala KMG, Sathekge MM. Pattern of Prostate Cancer Recurrence Assessed by 68Ga-PSMA-11 PET/CT in Men Treated with Primary Local Therapy. J Clin Med 2021; 10:jcm10173883. [PMID: 34501331 PMCID: PMC8432125 DOI: 10.3390/jcm10173883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/21/2022] Open
Abstract
Imaging plays a vital role in detecting the recurrence of prostate cancer (PCa) to guide the choice of salvage therapy. Gallium-68 prostate-specific membrane antigen positron-emission tomography/computed tomography (68Ga-PSMA-11 PET/CT) is useful for detecting PCa recurrence. We assessed the pattern of PCa recurrence stratified by serum prostate-specific antigen level and type of primary local treatment in men with biochemical recurrence (BCR) after primary local therapy with radical prostatectomy or external beam radiotherapy (EBRT) using 68Ga-PSMA-11 PET/CT. We reviewed patients imaged with 68Ga-PSMA-11 PET/CT for the localization of the site of PCa recurrence. We determined the site and number of lesions due to PCa recurrence at different PSA levels. A total of 247 men (mean age of 65.72 ± 7.51 years and median PSA of 2.70 ng/mL (IQR = 0.78–5.80)) were included. 68Ga-PSMA-11 PET/CT detected the site of recurrence in 81.4% of patients with a median number of lesions per patient of 1 (range = 1–5). 68Ga-PSMA-11 PET/CT positivity was 43.6%, 75.7%, 83.3%, 90.0%, and 95.8% at PSA levels of <0.5, 0.5–1.0., 1.1–2.0, 2.1–5.0, and 5.0–10.0, respectively. The most common site of recurrence was in the prostate gland/bed at all PSA levels. Pelvic, extra-pelvic, and combined pelvic and extra-pelvic sites of recurrence were seen in 118, 50, and 33 patients, respectively. The risk of extra-pelvic recurrence increases with rising PSA levels. 68Ga-PSMA-11 PET/CT has a high lesion detection rate for biochemical recurrence of PCa in patients previously treated with primary local therapy.
Collapse
Affiliation(s)
- Ismaheel O. Lawal
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa; (I.O.L.); (T.L.); (M.M.K.); (K.M.G.M.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Thabo Lengana
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa; (I.O.L.); (T.L.); (M.M.K.); (K.M.G.M.)
| | - Gbenga O. Popoola
- Department of Epidemiology and Community Health, University of Ilorin, Ilorin 240102, Nigeria;
| | | | - Mankgopo M. Kgatle
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa; (I.O.L.); (T.L.); (M.M.K.); (K.M.G.M.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Kgomotso M. G. Mokoala
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa; (I.O.L.); (T.L.); (M.M.K.); (K.M.G.M.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Mike M. Sathekge
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa; (I.O.L.); (T.L.); (M.M.K.); (K.M.G.M.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
- Correspondence: ; Tel.: +27-12-354-1794
| |
Collapse
|
27
|
Qin LP, Lv J, Li MZ, Xie LJ, Li JP, Li JF, Cheng MH. Biphasic GA 68-labeled prostate specific membrane antigen-11 positron emission tomography/computed tomography scans in the differential diagnosis and risk stratification of initial primary prostate cancer. Quant Imaging Med Surg 2021; 11:3619-3628. [PMID: 34341736 DOI: 10.21037/qims-20-1312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/07/2021] [Indexed: 12/09/2022]
Abstract
Background This study aimed to assess the value of biphasic GA 68-labeled prostate-specific membrane antigen-11 (68Ga-PSMA-11) positron emission tomography/computed tomography (PET/CT) scan in the differential diagnosis and risk stratification of initial primary prostate cancer (PCa). Methods A total of 51 patients with PCa (8 low- and intermediate-risk PCa patients and 43 high-risk PCa patients) and 36 patients with benign prostate lesions, who underwent standard whole-body imaging and delayed pelvic imaging of 68Ga-PSMA-11 PET/CT, were enrolled in this prospective study. The PET parameters, such as maximum and mean standard uptake value (SUVmax and SUVmean), and maximum and mean standard retention index of PET images were calculated and compared in different prostate lesions. The diagnostic performances of the PET parameters were evaluated by receiver operating characteristic (ROC) curves. Results All the PET parameters of PCa participants were significantly higher than those of participants with benign prostate lesions (P<0.001). The SUVmean of delayed imaging had the best performance in the diagnosis of PCa with an area under the curve (AUC) of 0.918 (95% CI: 0.858 to 0.977), the sensitivity of 90.0%, and specificity of 83.3%. The SUVmax and SUVmean of high-risk PCa participants were significantly higher than those of low- and intermediate-risk PCa participants (P<0.005). The SUVmax of standard imaging had the best performance in predicting high-risk PCa with an AUC of 0.890 (95% CI: 0.799 to 0.980), a sensitivity of 76.7%, and a specificity of 100.0%. Conclusions The biphasic 68Ga-PSMA-11 PET/CT scan had good performance in discriminating prostate cancer from benign prostate diseases. The SUVmean of the prostate lesion at delayed imaging of 68Ga-PSMA-11 PET/CT had the best value in the differential diagnosis of PCa, and the SUVmax at standard imaging was most valuable in predicting the risk stratification of PCa.
Collapse
Affiliation(s)
- Lu-Ping Qin
- Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jie Lv
- Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ming-Zhao Li
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liang-Jun Xie
- Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jin-Ping Li
- Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian-Fang Li
- Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mu-Hua Cheng
- Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Comparison of Early Imaging and Imaging 60 min Post-Injection after Forced Diuresis with Furosemide in the Assessment of Local Recurrence in Prostate Cancer Patients with Biochemical Recurrence Referred for 68Ga-PSMA-11 PET/CT. Diagnostics (Basel) 2021; 11:diagnostics11071191. [PMID: 34208989 PMCID: PMC8304119 DOI: 10.3390/diagnostics11071191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022] Open
Abstract
Background: 68Ga-PSMA-11 PET/CT is a promising method for the assessment of local recurrence (LR) in prostate cancer (PCa) patients. The aim of this study was to evaluate the diagnostic performance of early 68Ga-PSMA-11 PET imaging in comparison to 68Ga-PSMA-11 PET imaging 60 min post-injection (p.i.) in the detection of LR in patients with biochemical recurrence (BR) of prostate carcinoma. Materials and Methods: 190 image sets of patients with BR in PCa who underwent 68Ga-PSMA-11 PET/CT were assessed retrospectively (median prostate specific antigen (PSA) value, 0.70 ng/mL (range, 0.1–105.6 ng/mL)). Patients received an early static scan of the pelvic area (median, 248 s p.i. (range, 56–923 s)) and a whole-body scan 60 min p.i. (median, 64 min p.i. (range, 45–100 min)) with intravenous administration of 20 mg furosemide i.v. at the time of tracer application, followed by intravenous hydration with 500 mL of sodium chloride (NaCl 0.9%). Assessment was based on visual analysis and calculation of the maximum standardized uptake value (SUVmax) of the pathologic lesions present in the prostate fossa found in the early PET imaging and 60 min PET scans. The scans were characterized as negative, positive, or equivocal. The results were compared, and the combination of early and 60 min p.i. imaging was evaluated. Results: Image assessment resulted in 30 (15.8%) positive, 17 (8.9%) equivocal, and 143 (75.3%) negative findings in early scans, and 28 (14.7%) positive, 25 (13.2%) equivocal, and 137 (72.1%) negative findings of LR in 60 min p.i. images. For combined image analysis, 33 (17.4%) cases were positive and 20 (10.5%) were equivocal. There was no statistical significance between the number of positive (p = 0.815), negative (p = 0.327), and equivocal (p = 0.152) findings. Furthermore, the combination of both scans showed no statistically significant differences for the positive and negative findings (p = 0.063). The median SUVmax was 4.9 (range, 2.0–55.2) for positive lesions in the early scans and 8.0 (range, 2.1–139.9) in the scans 60 min p.i. The median SUVmax for bladder activity was 2.5 (range, 0.9–12.2) in the early scans and 8.2 (range, 1.8–27.6) in the scans 60 min p.i. Conclusion: Early static imaging additional to 68Ga-PSMA-11 PET images acquired 60 min p.i. has limited value in patients prepared with furosemide and hydration, and showed no statistically significant change in the detection rate (DR) of LR and the number of equivocal findings. Based on our results, in departments following a protocol with forced diuresis, including furosemide, additional early static imaging cannot be routinely recommended for the assessment of BR in PCa patients.
Collapse
|
29
|
Lawhn-Heath C, Salavati A, Behr SC, Rowe SP, Calais J, Fendler WP, Eiber M, Emmett L, Hofman MS, Hope TA. Prostate-specific Membrane Antigen PET in Prostate Cancer. Radiology 2021; 299:248-260. [PMID: 33787338 DOI: 10.1148/radiol.2021202771] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Prostate-specific membrane antigen (PSMA)-targeted radiopharmaceuticals are playing a large role at the time of initial staging and biochemical recurrence for localizing prostate cancer, as well as in other emerging clinical settings. PSMA PET has demonstrated increased detection rate compared with conventional imaging and has been shown to change management plans in a substantial percentage of cases. The aims of this narrative review are to highlight the development and clinical impact of PSMA PET radiopharmaceuticals, to compare PSMA to other agents such as fluorine 18 fluciclovine and carbon 11 choline, and to highlight some of the individual PSMA PET agents that have contributed to the advancement of prostate cancer imaging.
Collapse
Affiliation(s)
- Courtney Lawhn-Heath
- From the Department of Radiology and Biomedical Imaging (C.L.H., S.C.B., T.A.H.) and Helen Diller Family Comprehensive Cancer Center (S.C.B., T.A.H.), University of California San Francisco, 505 Parnassus Ave, M391, San Francisco, CA 94143; Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Md (A.S., S.P.R.); Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, Calif (J.C.); Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany (W.P.F.); Department of Nuclear Medicine, Technical University of Munich, Munich, Germany (M.E.); Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, Australia (L.E.); Prostate Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia (M.S.H.); and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia (M.S.H.)
| | - Ali Salavati
- From the Department of Radiology and Biomedical Imaging (C.L.H., S.C.B., T.A.H.) and Helen Diller Family Comprehensive Cancer Center (S.C.B., T.A.H.), University of California San Francisco, 505 Parnassus Ave, M391, San Francisco, CA 94143; Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Md (A.S., S.P.R.); Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, Calif (J.C.); Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany (W.P.F.); Department of Nuclear Medicine, Technical University of Munich, Munich, Germany (M.E.); Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, Australia (L.E.); Prostate Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia (M.S.H.); and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia (M.S.H.)
| | - Spencer C Behr
- From the Department of Radiology and Biomedical Imaging (C.L.H., S.C.B., T.A.H.) and Helen Diller Family Comprehensive Cancer Center (S.C.B., T.A.H.), University of California San Francisco, 505 Parnassus Ave, M391, San Francisco, CA 94143; Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Md (A.S., S.P.R.); Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, Calif (J.C.); Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany (W.P.F.); Department of Nuclear Medicine, Technical University of Munich, Munich, Germany (M.E.); Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, Australia (L.E.); Prostate Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia (M.S.H.); and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia (M.S.H.)
| | - Steven P Rowe
- From the Department of Radiology and Biomedical Imaging (C.L.H., S.C.B., T.A.H.) and Helen Diller Family Comprehensive Cancer Center (S.C.B., T.A.H.), University of California San Francisco, 505 Parnassus Ave, M391, San Francisco, CA 94143; Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Md (A.S., S.P.R.); Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, Calif (J.C.); Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany (W.P.F.); Department of Nuclear Medicine, Technical University of Munich, Munich, Germany (M.E.); Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, Australia (L.E.); Prostate Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia (M.S.H.); and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia (M.S.H.)
| | - Jeremie Calais
- From the Department of Radiology and Biomedical Imaging (C.L.H., S.C.B., T.A.H.) and Helen Diller Family Comprehensive Cancer Center (S.C.B., T.A.H.), University of California San Francisco, 505 Parnassus Ave, M391, San Francisco, CA 94143; Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Md (A.S., S.P.R.); Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, Calif (J.C.); Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany (W.P.F.); Department of Nuclear Medicine, Technical University of Munich, Munich, Germany (M.E.); Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, Australia (L.E.); Prostate Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia (M.S.H.); and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia (M.S.H.)
| | - Wolfgang P Fendler
- From the Department of Radiology and Biomedical Imaging (C.L.H., S.C.B., T.A.H.) and Helen Diller Family Comprehensive Cancer Center (S.C.B., T.A.H.), University of California San Francisco, 505 Parnassus Ave, M391, San Francisco, CA 94143; Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Md (A.S., S.P.R.); Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, Calif (J.C.); Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany (W.P.F.); Department of Nuclear Medicine, Technical University of Munich, Munich, Germany (M.E.); Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, Australia (L.E.); Prostate Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia (M.S.H.); and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia (M.S.H.)
| | - Mattias Eiber
- From the Department of Radiology and Biomedical Imaging (C.L.H., S.C.B., T.A.H.) and Helen Diller Family Comprehensive Cancer Center (S.C.B., T.A.H.), University of California San Francisco, 505 Parnassus Ave, M391, San Francisco, CA 94143; Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Md (A.S., S.P.R.); Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, Calif (J.C.); Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany (W.P.F.); Department of Nuclear Medicine, Technical University of Munich, Munich, Germany (M.E.); Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, Australia (L.E.); Prostate Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia (M.S.H.); and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia (M.S.H.)
| | - Louise Emmett
- From the Department of Radiology and Biomedical Imaging (C.L.H., S.C.B., T.A.H.) and Helen Diller Family Comprehensive Cancer Center (S.C.B., T.A.H.), University of California San Francisco, 505 Parnassus Ave, M391, San Francisco, CA 94143; Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Md (A.S., S.P.R.); Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, Calif (J.C.); Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany (W.P.F.); Department of Nuclear Medicine, Technical University of Munich, Munich, Germany (M.E.); Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, Australia (L.E.); Prostate Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia (M.S.H.); and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia (M.S.H.)
| | - Michael S Hofman
- From the Department of Radiology and Biomedical Imaging (C.L.H., S.C.B., T.A.H.) and Helen Diller Family Comprehensive Cancer Center (S.C.B., T.A.H.), University of California San Francisco, 505 Parnassus Ave, M391, San Francisco, CA 94143; Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Md (A.S., S.P.R.); Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, Calif (J.C.); Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany (W.P.F.); Department of Nuclear Medicine, Technical University of Munich, Munich, Germany (M.E.); Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, Australia (L.E.); Prostate Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia (M.S.H.); and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia (M.S.H.)
| | - Thomas A Hope
- From the Department of Radiology and Biomedical Imaging (C.L.H., S.C.B., T.A.H.) and Helen Diller Family Comprehensive Cancer Center (S.C.B., T.A.H.), University of California San Francisco, 505 Parnassus Ave, M391, San Francisco, CA 94143; Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Md (A.S., S.P.R.); Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, Calif (J.C.); Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany (W.P.F.); Department of Nuclear Medicine, Technical University of Munich, Munich, Germany (M.E.); Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, Australia (L.E.); Prostate Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia (M.S.H.); and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia (M.S.H.)
| |
Collapse
|
30
|
Manafi-Farid R, Harsini S, Saidi B, Ahmadzadehfar H, Herrmann K, Briganti A, Walz J, Beheshti M. Factors predicting biochemical response and survival benefits following radioligand therapy with [ 177Lu]Lu-PSMA in metastatic castrate-resistant prostate cancer: a review. Eur J Nucl Med Mol Imaging 2021; 48:4028-4041. [PMID: 33677734 PMCID: PMC8484081 DOI: 10.1007/s00259-021-05237-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/01/2021] [Indexed: 12/21/2022]
Abstract
Background Prostate cancer (PC) is one of the most common cancers in men. Although the overall prognosis is favorable, the management of metastatic castration-resistant prostate cancer (mCRPC) patients is challenging. Usually, mCRPC patients with progressive disease are considered for radioligand therapy (RLT) after exhaustion of other standard treatments. The prostate-specific membrane antigen (PSMA) labeled with Lutetium-177 ([177Lu]Lu-PSMA) has been widely used, showing favorable and successful results in reducing prostate-specific antigen (PSA) levels, increasing quality of life, and decreasing pain, in a multitude of studies. Nevertheless, approximately thirty percent of patients do not respond to [177Lu]Lu-PSMA RLT. Here, we only reviewed and reported the evaluated factors and their impact on survival or biochemical response to treatment to have an overview of the potentialprognostic parameters in [177Lu]Lu-PSMA RLT. Methods Studies were retrieved by searching MEDLINE/PubMed and GoogleScholar. The search keywords were as follows: {(“177Lu-PSMA”) AND (“radioligand”) AND (“prognosis”) OR (“predict”)}. Studies discussing one or more factors which may be prognostic or predictive of response to [177Lu]Lu-PSMA RLT, that is PSA response and survival parameters, were included. Results Several demographic, histological, biochemical, and imaging factors have been assessed as predictive parameters for the response to thistreatment; however, the evaluated factors were diverse, and the results mostly were divergent, except for the PSA level reduction after treatment, which unanimously predicted prolonged survival. Conclusion Several studies have investigated a multitude of factors to detect those predicting response to [177Lu]Lu-PSMA RLT. The results wereinconsistent regarding some factors, and some were evaluated in only a few studies. Future prospective randomized trials are required to detect theindependent prognostic factors, and to further determine the clinical and survival benefits of [177Lu]Lu-PSMA RLT.
Collapse
Affiliation(s)
- Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Tehran University of Medical sciences, Tehran, Iran
| | - Sara Harsini
- Research Center for Nuclear Medicine, Tehran University of Medical sciences, Tehran, Iran.,Association of Nuclear Medicine and Molecular Imaging (ANMMI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Bahare Saidi
- Research Center for Nuclear Medicine, Tehran University of Medical sciences, Tehran, Iran
| | | | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital, Essen, Germany
| | - Alberto Briganti
- Urological Research Institute, Scientific Institute San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | - Jochen Walz
- Department of Urology, Institute Paoli-Calmettes Cancer Centre, Marseille, France
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine & Endocrinology, Paracelsus Medical University, Salzburg, Austria. .,Department of Nuclear Medicine, University Hospital, RWTH University, Aachen, Germany.
| |
Collapse
|
31
|
Keegan NM, Bodei L, Morris MJ. Seek and Find: Current Prospective Evidence for Prostate-specific Membrane Antigen Imaging to Detect Recurrent Prostate Cancer. Eur Urol Focus 2021; 7:267-278. [PMID: 33744163 PMCID: PMC8371443 DOI: 10.1016/j.euf.2021.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/14/2021] [Accepted: 03/02/2021] [Indexed: 11/20/2022]
Abstract
CONTEXT Men with biochemically relapsed prostate cancer face a clinical conundrum. Depending on the detected distribution of disease, treatment goals may range from cure with focal therapy to palliative with systemic therapy to expectant observation. Retrospective studies of prostate-specific membrane antigen (PSMA)-based imaging demonstrate higher disease detection rates than conventional imaging. OBJECTIVE This review focuses on available prospective evidence for diagnostic use of PSMA-based imaging to accurately restage recurrent prostate cancer and explores the potential clinical impact, near future uses, and challenges for PSMA-based imaging in this setting. EVIDENCE ACQUISITION PubMed and EMBASE databases were searched for prospective studies with primary, secondary, or exploratory endpoints evaluating PSMA-based imaging for patients with recurrent prostate cancer published in English in the past 10 yrs. EVIDENCE SYNTHESIS We reviewed 48 prospective studies evaluating the role of PSMA positron emission tomography (PET) in recurrent prostate cancer. These studies establish the diagnostic accuracy and safety of PSMA PET using the 68Ga-PSMA-11 and 18F-DCFPyL radiotracers even at lower prostate-specific antigen (PSA) levels (0.5 ≤ PSA < 1.0 ng/m: disease detection rate 51-78%). The use of PSMA PET has been shown to result in changes in management in up to two-thirds of patients. CONCLUSIONS There is now higher-level regulatory-quality prospective evidence for PSMA-based imaging for the detection of recurrent prostate cancer. There is prospective evidence of superiority over cross-sectional imaging and bone scintigraphy, as well as for the alterations in disease management as a result of PSMA-based imaging. PATIENT SUMMARY When the prostate-specific antigen (PSA) level is rising after primary therapy, prostate-specific membrane antigen (PSMA) positron emission tomography (PET) is excellent at detecting and localizing prostate cancer, even at low PSA levels. Those who benefit best from treatment modifications based on PSMA PET findings are yet to be defined.
Collapse
Affiliation(s)
- Niamh M Keegan
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lisa Bodei
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael J Morris
- Genitourinary Medical Oncology Service, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
32
|
Chevalme YM, Boudali L, Gauthé M, Rousseau C, Skanjeti A, Merlin C, Robin P, Giraudet AL, Janier M, Talbot JN. Survey by the French Medicine Agency (ANSM) of the imaging protocol, detection rate, and safety of 68Ga-PSMA-11 PET/CT in the biochemical recurrence of prostate cancer in case of negative or equivocal 18F-fluorocholine PET/CT: 1084 examinations. Eur J Nucl Med Mol Imaging 2021; 48:2935-2950. [PMID: 33416958 PMCID: PMC8263442 DOI: 10.1007/s00259-020-05086-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/20/2020] [Indexed: 01/03/2023]
Abstract
Introduction Despite growing evidence of a superior diagnostic performance of 68Ga-PSMA-11 over 18F-fluorocholine (FCH) PET/CT, the number of PET/CT centres able to label on site with gallium-68 is still currently limited. Therefore, patients with biochemical recurrence (BCR) of prostate cancer frequently undergo FCH as the 1st-line PET/CT. Actually, the positivity rate (PR) of a second-line PSMA-11 PET/CT in case of negative FCH PET/CT has only been reported in few short series, in a total of 185 patients. Our aims were to check (1) whether the excellent PR reported with PSMA-11 is also obtained in BCR patients whose recent FCH PET/CT was negative or equivocal; (2) in which biochemical and clinical context a high PSMA-11 PET/CT PR may be expected in those patients, in particular revealing an oligometastatic pattern; (3) whether among the various imaging protocols for PSMA-11 PET/CT used in France, one yields a significantly highest PR; (4) the tolerance of PSMA-11. Patients and methods Six centres performed 68Ga-PSMA-11 PET/CTs during the first 3 years of its use in France. Prior to each PET/CT, the patient’s data were submitted prospectively for authorisation to ANSM, the French Medicine Agency. The on-site readings of 1084 PSMA-11 PET/CTs in BCR patients whose recent FCH PET/CTs resulted negative or equivocal were pooled and analysed. Results (1) The overall PR was 68%; for a median serum PSA level (sPSA) of 1.7 ng/mL, an oligometastatic pattern (1–3 foci) was observed in 31% of the cases overall; (2) PR was significantly related to sPSA (from 41% if < 0.2 ng/mL to 81% if ≥ 2 ng/mL), to patients’ age, to initial therapy (64% if prostatectomy vs. 85% without prostatectomy due to frequent foci in the prostate fossa), to whether FCH PET/CT was negative or equivocal (PR = 62% vs. 82%), and to previous BCR (PR = 63% for 1st BCR vs. 72% in case of previous BCR); (3) no significant difference in PR was found according to the imaging protocol: injected activity, administration of a contrast agent and/or of furosemide, dose length product, one single or multiple time points of image acquisition; (4) no adverse event was reported after PSMA-11 injection, even associated with a contrast agent and/or furosemide. Conclusion Compared with the performance of PSMA-11 PET/CT in BCR reported independently of FCH PET/CT in 6 large published series (n > 200), the selection based on FCH PET/CT resulted in no difference of PSMA-11 PR for sPSA < 1 ng/mL but in a slightly lower PR for sPSA ≥ 1 ng/mL, probably because FCH performs rather well at this sPSA and very occult BCR was over-represented in our cohort. An oligometastatic pattern paving the way to targeted therapy was observed in one fourth to one third of the cases, according to the clinico-biochemical context of the BCR. Systematic dual or triple acquisition time points or administration of a contrast agent and/or furosemide did not bring a significant added value for PSMA-11 PET/CT positivity and should be decided on individual bases.
Collapse
Affiliation(s)
- Yanna-Marina Chevalme
- Direction des médicaments en oncologie, hématologie, transplantation, néphrologie, thérapie cellulaire, produits sanguins, et radiopharmaceutiques, Agence Nationale de Sécurité du Médicament et des produits de santé (ANSM), 143 Bd Anatole, F93200, St Denis, France.
| | - Lotfi Boudali
- Direction des médicaments en oncologie, hématologie, transplantation, néphrologie, thérapie cellulaire, produits sanguins, et radiopharmaceutiques, Agence Nationale de Sécurité du Médicament et des produits de santé (ANSM), 143 Bd Anatole, F93200, St Denis, France
| | - Mathieu Gauthé
- Service de médecine nucléaire, Hôpital Tenon, AP-HP Sorbonne Université, Paris, France
| | - Caroline Rousseau
- Nuclear Medicine Unit, ICO René Gauducheau, CNRS, Inserm, CRCINA, Nantes University, F-44000, Nantes, France
| | - Andrea Skanjeti
- Nuclear Medicine Department, Hospices Civils de Lyon, EA 3738, Université Claude Bernard Lyon 1, Lyon, France
| | - Charles Merlin
- Nuclear Medicine Department, Cancer Center Jean PERRIN, Clermont-Ferrand, France
| | - Philippe Robin
- Service de Médecine Nucléaire, EA 3878 (GETBO), Centre Hospitalier Régional et Universitaire de Brest, Université de Bretagne Occidentale, Brest, France
| | | | - Marc Janier
- Nuclear Medicine Department, Hospices Civils de Lyon, EA 3738, Université Claude Bernard Lyon 1, Lyon, France.,Comité permanent de l'ANSM, Médicaments de diagnostic et de médecine nucléaire, St Denis, France
| | - Jean-Noël Talbot
- Service de médecine nucléaire, Hôpital Tenon, AP-HP Sorbonne Université, Paris, France.,Comité permanent de l'ANSM, Médicaments de diagnostic et de médecine nucléaire, St Denis, France
| |
Collapse
|
33
|
Design and synthesis of a new conjugate of a tris(3-hydroxy-4-pyridinone) chelator (KC18) for potential use as gallium-68-labeled prostate-specific membrane antigen (PSMA) radiopharmaceutical. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
34
|
Sistani G, Metser U, Bauman GS, Laidley DT, Pautler SE, Zukotynski KA. Case series - 18F-DCFPyL-positron emission tomography/computed tomography (PET/CT) time of imaging. Can Urol Assoc J 2020; 15:E376-E379. [PMID: 33382375 DOI: 10.5489/cuaj.6984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Golmehr Sistani
- Department of Medical Imaging, Western University, London, ON, Canada
| | - Ur Metser
- Department of Radiology, University of Toronto, Toronto, ON, Canada
| | - Glenn S Bauman
- Department of Radiation Oncology, Western University, London, ON, Canada
| | - David T Laidley
- Department of Nuclear Medicine, Western University, London, ON, Canada
| | - Stephen E Pautler
- Department of Surgery, Division of Urology, Western University, London, ON, Canada
| | | |
Collapse
|
35
|
Diagnostic Performance of [ 18F]Fluorocholine and [ 68Ga]Ga-PSMA PET/CT in Prostate Cancer: A Comparative Study. J Clin Med 2020; 9:jcm9072308. [PMID: 32708097 PMCID: PMC7408886 DOI: 10.3390/jcm9072308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 12/27/2022] Open
Abstract
The current study endeavored to closely compare the detection rate of 68-Gallium labelled prostate-specific membrane antigen ([68Ga]Ga-PSMA) versus [18F]Fluorocholine in men with prostate cancer (PC), to investigate the benefits and pitfalls of each modality in the setting of various patient characteristics. We retrospectively analyzed 29 biopsy-proven PC patients in two categories, staging and restaging, who underwent both scans within a maximum of 30 days of each other. Variables including patient demographics, prostate specific antigen (PSA) level, Gleason score, clinical course, and following treatments were recorded. The number and location of suspicious lesions as well as uptake values were noted. A total of 148 suspicious lesions were detected, of which 70.9% (105/148) were concordantly visualized in both imaging modalities. [68Ga]Ga-PSMA positron emission tomography/computed tomography (PET/CT) revealed a higher number of metastatic lesions per patients (91% vs 78%). The mean of maximum standardized uptake value (SUV max) in concordant lesions was significantly higher in [68Ga]Ga-PSMA compared to [18F]Fluorocholine PET/CT (14.6 ± 8.44 vs. 6.9 ± 3.4, p = 0.001). Discordant lesions were detected by both modalities, but more frequently by [68Ga]Ga-PSMA PET/CT (20.3% in [68Ga]Ga-PSMA versus 8.8% by [18F]Fluorocholine PET/CT). In patients with PSA levels below 1.0 ng/mL and <2.0 ng/mL, [18F]Fluorocholine PET/CT detection rate was half (57% and 55%, respectively) that of [68Ga]Ga-PSMA PET/CT. Tumor, nodes and metastases (TNM) staging, and subsequently patient management, was only influenced in 4/29 patients (14%), particularly by [68Ga]Ga-PSMA PET/CT with PSA values under 0.5 ng/mL. [68Ga]Ga-PSMA PET/CT revealed superior diagnostic performance to [18F]Fluorocholine PET/CT in staging and restaging of PC patients, especially in cases with low PSA levels. However, in a few hormone resistant high-risk PC patients, [18F]Fluorocholine PET/CT may improve overall diagnostic accuracy.
Collapse
|
36
|
López-Mora DA, Carrió I. Advances And New Indications of PET/CT scan. Med Clin (Barc) 2020; 156:65-67. [PMID: 32620354 DOI: 10.1016/j.medcli.2020.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 11/19/2022]
Affiliation(s)
- Diego Alfonso López-Mora
- Servicio de Medicina Nuclear. Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona, Barcelona, España.
| | - Ignasi Carrió
- Servicio de Medicina Nuclear. Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona, Barcelona, España
| |
Collapse
|
37
|
Francolini G, Detti B, Bottero M, Zilli T, Lancia A, Bruni A, Borghesi S, Mariotti M, Castellucci P, Fanti S, Filippi AR, Teriaca MA, Maragna V, Aristei C, Mazzeo E, Livi L, Ingrosso G. Detection rate, pattern of relapse and influence on therapeutic decision of PSMA PET/CT in patients affected by biochemical recurrence after radical prostatectomy, a retrospective case series. Clin Transl Oncol 2020; 23:364-371. [PMID: 32602076 DOI: 10.1007/s12094-020-02427-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/10/2020] [Indexed: 12/24/2022]
Abstract
AIMS 68Ga-Prostate-specific membrane antigen (PSMA) PET/CT is widely used in patients with biochemical recurrence (BCR) after radical prostatectomy. We collected data about patients staged with PSMA PET/CT after BCR (PSA < 1 ng/ml) in four different institutes. Impact of baseline features (Gleason score, risk classification, PSA at recurrence, PSA doubling time and time to recurrence) was explored to understand predictive factors of (PSMA) PET/CT positivity. Impact of restaging on following treatment approaches was reported. RESULTS 92 patients were included. PSMA PET/CT detection rate was 56.5% and low-volume disease (≤ 3 non-visceral lesions) was detected in 52.2% of patients. After positive scan, 13.5% of patients still lies on observation, ADT alone was administered in 30.8% of cases, Stereotactic body RT (SBRT) alone was delivered to 44.2% of patients and 11.5% of patients underwent concomitant SBRT and ADT. Seven patients underwent conventional salvage prostate bed RT. Chi-squared test showed a higher rate of positive PSMA PET/CT for patients with Gleason score > 7 (p = 0.004) and TTR < 29.5 months (p = 0.003). CONCLUSIONS PSMA PET/CT showed a high detection rate. This influenced clinical management in a significant percentage of patients, allowing treatment tailoring on the basis of imaging.
Collapse
Affiliation(s)
- G Francolini
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Largo G. A. Brambilla 3, 50134, Florence, Italy.
| | - B Detti
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Largo G. A. Brambilla 3, 50134, Florence, Italy
| | - M Bottero
- Department of Radiation Oncology, Policlinico Tor Vergata, University of Rome, Rome, Italy
| | - T Zilli
- Radiation Oncology Division, Geneva University Hospital, Geneva, Switzerland
| | - A Lancia
- Radiation Oncology Unit, Department of Medical Sciences and Infectious Disease, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - A Bruni
- Radiotherapy Unit, University Hospital of Modena, Modena, Italy
| | - S Borghesi
- UOC Radiation Oncology Arezzo-Valdarno, Azienda USL Toscana Sud Est, Arezzo, Italy
| | - M Mariotti
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Largo G. A. Brambilla 3, 50134, Florence, Italy
| | - P Castellucci
- Department of Nuclear Medicine, Policlinico S. Orsola-Malpighi, Bologna, Italy
| | - S Fanti
- Department of Nuclear Medicine, Policlinico S. Orsola-Malpighi, Bologna, Italy
| | - A R Filippi
- Radiation Oncology Unit, Department of Medical Sciences and Infectious Disease, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - M A Teriaca
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Largo G. A. Brambilla 3, 50134, Florence, Italy
| | - V Maragna
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Largo G. A. Brambilla 3, 50134, Florence, Italy
| | - C Aristei
- Radiation Oncology Section, Department of Surgical and Biomedical Science, University of Perugia, Perugia, Italy
| | - E Mazzeo
- Radiotherapy Unit, University Hospital of Modena, Modena, Italy
| | - L Livi
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Largo G. A. Brambilla 3, 50134, Florence, Italy
| | - G Ingrosso
- Radiation Oncology Section, Department of Surgical and Biomedical Science, University of Perugia, Perugia, Italy
| |
Collapse
|