1
|
Rainio O, Kärpijoki H, Knuuti J, Klén R. Pulmonary blood flow quantification in humans from 15O-water PET. Ann Nucl Med 2025; 39:600-607. [PMID: 40087214 PMCID: PMC12095458 DOI: 10.1007/s12149-025-02035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025]
Abstract
PURPOSE Dynamic positron emission tomography (PET) imaging has commonly been applied to study blood perfusion in the human brain and heart, but there is a very limited amount of existing research about the suitability of this method for many other organs of interest. Here, we focus on the quantification of pulmonary blood flow (PBF) in human lungs. We evaluate both the potential of the15 O-water PET imaging via compartmental modeling with automatic volume of interest (VOI) selection for PBF quantification and study the possible differences in PBF caused by different patient characteristics such as age or sex. PROCEDURES We systematically fit the one-tissue compartment model to the mean time-activity curves derived from the15 O-water PET data of 103 patients. The machine learning-based segmentation tool TotalSegmentator is utilized to find segmentation masks for different lung lobes and right ventricle of the heart. Additionally, we automatically remove the majority of the air inside the lung lobe VOIs and the areas surrounding subclavian arteries and brachiocephalic veins with the help of binary erosion and dilatation operations. After the model fitting, we evaluate possible differences in the results caused by age, sex, weight, and body mass index (BMI) by performing Mann-Whitney U tests between different patient subgroups and computing Spearman's correlations coefficients. RESULTS The estimated PBF within all the lung lobes had a mean of1.21±0.825 mL/min/cm3 and a median of 1.03 mL/min/cm3 , but this value was notably lower in right lower lung lobe and much higher in the upper lung lobes. The PBF was higher in both the female patients and in the patients under 65 years but not statistically significantly so. The individual variation was very high. CONCLUSIONS The PBF quantification based on15 O-water PET imaging combined with our automatic VOI selection method is an effective method to produce relatively realistic results. In case of upper lung lobes, the results are likely overestimated if pulmonary vessels are not removed from the VOI. The accurate estimation of the air volume within the lung lobe VOIs is also a non-trivial problem. More research on this topic is warranted to find whether there is a decreasing trend between PBF and age or significant differences between the sexes.
Collapse
Affiliation(s)
- Oona Rainio
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.
| | - Henri Kärpijoki
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Juhani Knuuti
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Riku Klén
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
2
|
Chung KJ, Chaudhari AJ, Nardo L, Jones T, Chen MS, Badawi RD, Cherry SR, Wang G. Quantitative Total-Body Imaging of Blood Flow with High-Temporal-Resolution Early Dynamic 18F-FDG PET Kinetic Modeling. J Nucl Med 2025:jnumed.124.268706. [PMID: 40306973 DOI: 10.2967/jnumed.124.268706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 04/08/2025] [Indexed: 05/02/2025] Open
Abstract
Past efforts to measure blood flow with the widely available radiotracer 18F-FDG were limited to tissues with high 18F-FDG extraction fraction. In this study, we developed an early dynamic 18F-FDG PET method with high-temporal-resolution (HTR) kinetic modeling to assess total-body blood flow based on deriving the vascular phase of 18F-FDG transit and conducted a pilot comparison study against a 11C-butanol flow-tracer reference. Methods: The first 2 min of dynamic PET scans were reconstructed at HTR (60 × 1 s/frame, 30 × 2 s/frame) to resolve the rapid passage of the radiotracer through blood vessels. In contrast to existing methods that use blood-to-tissue transport rate as a surrogate of blood flow, our method directly estimated blood flow using a distributed kinetic model (adiabatic approximation to tissue homogeneity [AATH] model). To validate our 18F-FDG measurements of blood flow against a reference flow-specific radiotracer, we analyzed total-body dynamic PET images of 6 human participants scanned with both 18F-FDG and 11C-butanol. An additional 34 total-body dynamic 18F-FDG PET images of healthy participants were analyzed for comparison against published blood-flow ranges. Regional blood flow was estimated across the body, and total-body parametric imaging of blood flow was conducted for visual assessment. AATH and standard compartment model fitting was compared using the Akaike information criterion at different temporal resolutions. Results: 18F-FDG blood flow was in quantitative agreement with flow measured from 11C-butanol across same-subject regional measurements (Pearson correlation coefficient, 0.955; P < 0.001; linear regression slope and intercept, 0.973 and -0.012, respectively), which was visually corroborated by total-body blood-flow parametric imaging. Our method resolved a wide range of blood-flow values across the body in broad agreement with published ranges (e.g., healthy cohort values of 0.51 ± 0.12 mL/min/cm3 in the cerebral cortex and 2.03 ± 0.64 mL/min/cm3 in the lungs). HTR (1-2 s/frame) was required for AATH modeling. Conclusion: Total-body blood-flow imaging was feasible using early dynamic 18F-FDG PET with HTR kinetic modeling. This method may be combined with standard 18F-FDG PET methods to enable efficient single-tracer multiparametric flow-metabolism imaging, with numerous research and clinical applications in oncology, cardiovascular disease, pain medicine, and neuroscience.
Collapse
Affiliation(s)
- Kevin J Chung
- Department of Radiology, University of California Davis Health, Sacramento, California;
| | - Abhijit J Chaudhari
- Department of Radiology, University of California Davis Health, Sacramento, California
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis Health, Sacramento, California
| | - Terry Jones
- Department of Radiology, University of California Davis Health, Sacramento, California
| | - Moon S Chen
- Department of Internal Medicine, University of California Davis Health, Sacramento, California; and
| | - Ramsey D Badawi
- Department of Radiology, University of California Davis Health, Sacramento, California
- Department of Biomedical Engineering, University of California at Davis, Davis, California
| | - Simon R Cherry
- Department of Radiology, University of California Davis Health, Sacramento, California
- Department of Biomedical Engineering, University of California at Davis, Davis, California
| | - Guobao Wang
- Department of Radiology, University of California Davis Health, Sacramento, California
| |
Collapse
|
3
|
Chung KJ, Abdelhafez YG, Spencer BA, Jones T, Tran Q, Nardo L, Chen MS, Sarkar S, Medici V, Lyo V, Badawi RD, Cherry SR, Wang G. Quantitative PET imaging and modeling of molecular blood-brain barrier permeability. Nat Commun 2025; 16:3076. [PMID: 40159510 PMCID: PMC11955546 DOI: 10.1038/s41467-025-58356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/19/2025] [Indexed: 04/02/2025] Open
Abstract
Neuroimaging of blood-brain barrier permeability has been instrumental in identifying its broad involvement in neurological and systemic diseases. However, current methods evaluate the blood-brain barrier mainly as a structural barrier. Here we developed a non-invasive positron emission tomography method in humans to measure the blood-brain barrier permeability of molecular radiotracers that cross the blood-brain barrier through its molecule-specific transport mechanism. Our method uses high-temporal resolution dynamic imaging and kinetic modeling for multiparametric imaging and quantification of the blood-brain barrier permeability-surface area product of molecular radiotracers. We show, in humans, our method can resolve blood-brain barrier permeability across three radiotracers and demonstrate its utility in studying brain aging and brain-body interactions in metabolic dysfunction-associated steatotic liver inflammation. Our method opens new directions to effectively study the molecular permeability of the human blood-brain barrier in vivo using the large catalogue of available molecular positron emission tomography tracers.
Collapse
Affiliation(s)
- Kevin J Chung
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA
| | - Yasser G Abdelhafez
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA
| | - Benjamin A Spencer
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA
| | - Terry Jones
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA
| | - Quyen Tran
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA
| | - Moon S Chen
- Department of Internal Medicine, University of California Davis Health, Sacramento, CA, USA
| | - Souvik Sarkar
- Department of Internal Medicine, University of California Davis Health, Sacramento, CA, USA
- Division of Gastroenterology and Hepatology, University of California Davis Health, Sacramento, CA, USA
| | - Valentina Medici
- Department of Internal Medicine, University of California Davis Health, Sacramento, CA, USA
- Division of Gastroenterology and Hepatology, University of California Davis Health, Sacramento, CA, USA
| | - Victoria Lyo
- Department of Surgery, University of California Davis Health, Sacramento, CA, USA
- Center for Alimentary and Metabolic Sciences, University of California Davis Health, Sacramento, CA, USA
| | - Ramsey D Badawi
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA
- Department of Biomedical Engineering, University of California at Davis, Davis, CA, USA
| | - Simon R Cherry
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA
- Department of Biomedical Engineering, University of California at Davis, Davis, CA, USA
| | - Guobao Wang
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA.
| |
Collapse
|
4
|
Faisal Mohamad N, Koch KU, Aanerud J, Meier K, Mikkelsen IK, Espelund US, Eriksen CF, Juul N, Alstrup KB, Jespersen B, Fries LM, Tankisi A, Dyrskog S, Cortnum SOS, Sindby AK, Borghammer P, Tolbod LP, Meng L, Korshoej AR, Rasmussen M. Impact of norepinephrine versus phenylephrine on brain circulation, organ blood flow and tissue oxygenation in anaesthetised patients with brain tumours: study protocol for a randomised controlled trial. BMJ Open 2025; 15:e095172. [PMID: 40132839 PMCID: PMC11938255 DOI: 10.1136/bmjopen-2024-095172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/28/2025] [Indexed: 03/27/2025] Open
Abstract
INTRODUCTION Vasopressor support is often preferred as an efficient and convenient way to raise the blood pressure during surgery and intensive care therapy. However, the optimal vasopressor for ensuring organ blood flow and tissue oxygen delivery during surgery remains undetermined. This study aims to assess the impact of norepinephrine versus phenylephrine on cerebral and non-cerebral organ perfusion and oxygenation during anaesthesia in neurosurgical patients with brain tumours. The study also explores the impact of the vasopressor agents on the distribution of cardiac output between various organs. METHODS AND ANALYSIS This is an investigator-initiated, double-blinded, randomised clinical trial including 32 patients scheduled for supratentorial brain tumour surgery. The patients are randomised to receive a phenylephrine or norepinephrine infusion during preoperative positron emission tomography (PET) examinations and the following neurosurgical procedure. PET measurements of blood flow and oxygen metabolism in the brain and other organs are performed on the awake subject during anaesthesia, following a 10% and 20% gradual increase in blood pressure from the baseline value. The primary endpoint is the between-group difference in cerebral blood flow. Secondary endpoints include detection of ischaemic brain lesions possibly associated with vasopressor treatment, changes in cerebral oxygen metabolism, non-cerebral organ blood flow and oxygen metabolism, cardiac output, regional cerebral oxygen saturation, autoregulation and distribution of cardiac output between organs. ETHICS AND DISSEMINATION This study was approved by the Danish National Medical Ethics Committee (20 May 2022; 2203674). Results will be disseminated via peer-reviewed publication and presentation at international conferences. TRIAL REGISTRATION NUMBER EudraCT no: 2021-006168-26. CLINICALTRIALS gov: NCT06083948.
Collapse
Affiliation(s)
- Niwar Faisal Mohamad
- Department of Anesthesiology, Section of Neuroanesthesia, Aarhus University Hospital, Aarhus, Denmark
- Department of Anesthesiology and Intensive Care, Goedstrup Regional Hospital, Goedstrup, Denmark
- Department of Intensive Care Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Klaus Ulrik Koch
- Department of Intensive Care Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Joel Aanerud
- Department of Nuclear Medicine and PET-Center, Aarhus Universitetshospital, Aarhus, Denmark
| | - Kaare Meier
- Department of Anesthesiology, Section of Neuroanesthesia, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
| | | | - Ulrick S Espelund
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Anesthesiology, Horsens Regional Hospital, Horsens, Denmark
| | - Christian Fenger Eriksen
- Department of Anesthesiology, Section of Neuroanesthesia, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Juul
- Aarhus University Hospital, Aarhus, Denmark
| | - Karen Baden Alstrup
- Department of Anesthesiology, Section of Neuroanesthesia, Aarhus University Hospital, Aarhus, Denmark
| | - Bo Jespersen
- Department of Anesthesiology, Section of Neuroanesthesia, Aarhus University Hospital, Aarhus, Denmark
| | - Lene Marie Fries
- Department of Anesthesiology, Section of Neuroanesthesia, Aarhus University Hospital, Aarhus, Denmark
- Department of Intensive Care Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Alp Tankisi
- Department of Anesthesiology, Section of Neuroanesthesia, Aarhus University Hospital, Aarhus, Denmark
| | - Stig Dyrskog
- Department of Intensive Care Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Per Borghammer
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Nuclear Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - LingZhong Meng
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anders Rosendal Korshoej
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
| | - Mads Rasmussen
- Department of Anesthesiology, Section of Neuroanesthesia, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Rainio O, Knuuti J, Klén R. New compartment model for hepatic blood flow quantification in humans from 15O-water PET images. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07210-5. [PMID: 40116877 DOI: 10.1007/s00259-025-07210-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/07/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Different compartment models are commonly used to derive crucial information about blood flow, metabolism, and oxygenation from the results of a dynamic positron emission tomography (PET) scan. However, compared to blood flow in many other organs of interest, the hepatic blood flow (HBF) quantification is challenging due to the dual blood supply of liver from both the hepatic artery and the portal vein (PV). Here, we introduce a new model that can be used to estimate the HBF in combination with an automatic volume of interest selection method. MATERIALS AND METHODS By using the15 O-water PET data of 57 patients, we extract the mean time-activity curves (TACs) from aorta, hepatic PV, liver, and spleen with help of an automated computer tomography-based segmentation tool and systematically fit our new compartment model and three earlier compartment models from literature to the TACs. After this, we compare the model performance with mean relative error (MRE), mean squared error, and Akaike's information criteria with one-sided Wilcoxon signed-rank tests. After determining the best model, we study possible HBF differences caused by age, sex, and weight with Mann-Whitney U test and Pearson's correlations coefficient. RESULTS We obtained the mean arterial HBF of 0.299±0.168 mL/min/mL, the mean portal HBF of 0.930±0.520 mL/min/mL, and the total HBF of 1.229±0.612 mL/min/mL with our new model. Based on earlier research, both these estimates and also the results of two earlier versions of the original dual-input model are realistic. Out of these three models, our proposed model performed the best in terms of MRE (p-values ≤ 0.001). According to our results, there are no significant sex- or age-based differences but there is moderate positive correlation between the arterial and portal HBFs and negative correlation between the total HBF and the weight of patients. CONCLUSION The HBF can effectively be estimated from15 O-water PET data with our new model in combination with robust segmentation by TotalSegmentator. Due to the fact that potential underestimation of the PV concentration caused by the small size of this vessel might lead to overestimation of the HBF, more research would be beneficial to validate these methods further. Our results suggests that there is a negative trend between the HBF and the weight, though this might be related to the underlying conditions of the patients.
Collapse
Affiliation(s)
- Oona Rainio
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.
| | - Juhani Knuuti
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Riku Klén
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
6
|
Rainio O, Klén R. Compartmental modeling for blood flow quantification from dynamic 15 O-water PET images of humans: a systematic review. Ann Nucl Med 2025; 39:231-246. [PMID: 39832118 PMCID: PMC11829939 DOI: 10.1007/s12149-025-02014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/05/2025] [Indexed: 01/22/2025]
Abstract
Dynamic positron emission tomography (PET) can be used to non-invasively estimate the blood flow of different organs via compartmental modeling. Out of different PET tracers, water labeled with the radioactive15 O isotope of oxygen (half-life of 2.04 min) is freely diffusable, and therefore, very well-suited for blood flow quantification. While the earlier15 O-water PET research has primarily focused on cerebral or myocardial blood flow quantification, the recent emergence of total-body PET scanners has enabled greater application possibilities for both PET imaging in general and also15 O-water PET based blood flow quantification in particular. However, to validate new methods, it is necessary to compare them to earlier research. To help in this process, we systematically review 53 articles quantifying blood flow via compartmental modeling. We introduce the articles organized within subcategories of cerebral, myocardial, renal, pulmonary, pancreatic, hepatic, muscle, and tumor blood flow and summarize their results so that they can easily be evaluated in terms of population characteristics of the patients such as age or sex ratio and their potential diagnoses. We compare how both the compartment model used and the potential corrections for arterial blood volume, non-perfusable tissue, spill-over from the heart cavities, and time delay caused while the tracer travels between different areas of interest are generally implemented in the articles. We also analyze the differences in the data pre-processing techniques. According to our results, the estimates of cerebral and tumor blood flow vary considerably more between the articles than those of myocardial blood flow. This might be caused by differences in the model approaches or the study populations. We also note that the choice of the unit for these estimates is quite inconsistent as certain researchers seem to prefer mL/min/g over mL/min/mL even if no weight or density parameter is present in the modeling. We encourage more research on sex- and age-based differences in blood flow estimates and organ-specific blood flow quantification studies for kidneys, lungs, liver, and other important organs besides brain and heart.
Collapse
Affiliation(s)
- Oona Rainio
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.
| | - Riku Klén
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
7
|
Rainio O, Jaakkola MK, Klén R. Quantitative evaluation of unsupervised clustering algorithms for dynamic total-body PET image analysis. J Med Eng Technol 2025; 49:37-44. [PMID: 39976472 DOI: 10.1080/03091902.2025.2466834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/28/2025] [Accepted: 02/01/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND Recently, dynamic total-body positron emission tomography (PET) imaging has become possible due to new scanner devices. However, there is still little research systematically evaluating clustering algorithms for processing of dynamic total-body PET images. MATERIALS AND METHODS Here, we compare the performance of 15 unsupervised clustering methods, including K-means either by itself or after principal component analysis (PCA) or independent component analysis (ICA), Gaussian mixture model (GMM), fuzzy c-means (FCM), agglomerative clustering, spectral clustering, and several newer clustering algorithms, for classifying time activity curves (TACs) in dynamic PET images. We use dynamic total-body 15O-water PET images of 30 patients. To evaluate the clustering algorithms in a quantitative way, we use them to classify 5000 TACs from each image based on whether the curve is taken from brain, right heart ventricle, right kidney, lower right lung lobe, or urinary bladder. RESULTS According to our results, the best methods are GMM, FCM, and ICA combined with mini batch K-means, which classified the TACs with a median accuracies of 89%, 83%, and 81%, respectively, in a processing time of half a second or less. CONCLUSION GMM, FCM, and ICA with mini batch K-means show promise for dynamic total-body PET analysis.
Collapse
Affiliation(s)
- Oona Rainio
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Maria K Jaakkola
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Riku Klén
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
8
|
Cook GJR, Alberts IL, Wagner T, Fischer BM, Nazir MS, Lilburn D. The impact of long axial field of view (LAFOV) PET on oncologic imaging. Eur J Radiol 2025; 183:111873. [PMID: 39647272 PMCID: PMC11904125 DOI: 10.1016/j.ejrad.2024.111873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
The development of long axial field of view (LAFOV) positron emission tomography coupled with computed tomography (PET/CT) scanners might be considered the biggest step forward in PET imaging since it became a mainstream clinical modality. Despite increased capital and maintenance costs and data storage requirements, the improvement in image quality, significantly faster acquisition times and lower radiopharmaceutical administered activities, allow a high quality and more efficient clinical service. This step change in technology overcomes some of the limitations of standard short axial field of view scanners. It allows simultaneous imaging of all body systems, and with the ability to obtain high temporal resolution data, it increases potential research applications, particularly in multisystem disease or for dosimetry measurements of novel radiopharmaceuticals. The improvements in sensitivity and signal-to-noise facilitates the use of tracers with long half-lives and low administered activity (e.g. [89Zr]-labelled monoclonal antibodies) or very short half-lives (e.g. [82Rb]), opening up applications that hitherto have been challenging. It is early in the evolution of LAFOV PET/CT and the advantages these systems offer have still to be fully realised in providing additional impact in clinical practice. In this article we describe the potential advantages of LAFOV PET technology and some of the clinical and research applications where it has been applied as well as some of the future developments that may enhance the modality further.
Collapse
Affiliation(s)
- Gary J R Cook
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College, London SE1 7EH, UK.
| | - Ian L Alberts
- Molecular Imaging and Therapy, BC Cancer Agency, Vancouver, BC, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, Canada.
| | - Thomas Wagner
- Department of Nuclear Medicine, Royal Free London NHS Trust, London NW3 1TX, UK.
| | - B Malene Fischer
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark.
| | - Muhummad Sohaib Nazir
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Cardio-Oncology Centre of Excellence, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| | - David Lilburn
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College, London SE1 7EH, UK.
| |
Collapse
|
9
|
Martinez-Lucio TS, Mendoza-Ibañez OI, Liu W, Mostafapour S, Li Z, Providência L, Salvi de Souza G, Mohr P, Dobrolinska MM, van Leer B, Tingen HSA, van Sluis J, Tsoumpas C, Glaudemans AWJM, Koopmans KP, Lammertsma AA, Slart RHJA. Long Axial Field of View PET/CT: Technical Aspects in Cardiovascular Diseases. Semin Nucl Med 2025; 55:52-66. [PMID: 39537432 DOI: 10.1053/j.semnuclmed.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Positron emission tomography / computed tomography (PET/CT) plays a pivotal role in the assessment of cardiovascular diseases (CVD), particularly in the context of ischemic heart disease. Nevertheless, its application in other forms of CVD, such as infiltrative, infectious, or inflammatory conditions, remains limited. Recently, PET/CT systems with an extended axial field of view (LAFOV) have been developed, offering greater anatomical coverage and significantly enhanced PET sensitivity. These advancements enable head-to-pelvis imaging with a single bed position, and in systems with an axial field of view (FOV) of approximately 2 meters, even total body (TB) imaging is feasible in a single scan session. The application of LAFOV PET/CT in CVD presents a promising opportunity to improve systemic cardiovascular assessments and address the limitations inherent to conventional short axial field of view (SAFOV) devices. However, several technical challenges, including procedural considerations for LAFOV systems in CVD, complexities in data processing, arterial input function extraction, and artefact management, have not been fully explored. This review aims to discuss the technical aspects of LAFOV PET/CT in relation to CVD by highlighting key opportunities and challenges and examining the impact of these factors on the evaluation of most relevant CVD.
Collapse
Affiliation(s)
- Tonantzin Samara Martinez-Lucio
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Oscar Isaac Mendoza-Ibañez
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wanling Liu
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Samaneh Mostafapour
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Zekai Li
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Laura Providência
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Giordana Salvi de Souza
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Philipp Mohr
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Magdalena M Dobrolinska
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Division of Cardiology and Structural Heart Diseases, Medical University of Silesia in Katowice, Katowice, Poland
| | - Bram van Leer
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hendrea S A Tingen
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Joyce van Sluis
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Charalampos Tsoumpas
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Andor W J M Glaudemans
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Klaas Pieter Koopmans
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Adriaan A Lammertsma
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Riemer H J A Slart
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
10
|
Hicks RJ, Ware RE, Callahan J. Total-Body PET/CT: Pros and Cons. Semin Nucl Med 2025; 55:11-20. [PMID: 39289090 DOI: 10.1053/j.semnuclmed.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 09/19/2024]
Abstract
PET/CT devices with an axial field-of-view (FOV) of 1 m allow simultaneous imaging from the head to the upper thighs, the typical axial extent of many "whole-body" oncological studies acquired by moving a patient sequentially through a conventional FOV device, or rapid total-body imaging using the same approach. Increasing the FOV to around 2 m provides true simultaneous total-body imaging. Either approach dramatically increases the sensitivity for detection of annihilation events arising within the body. For the purposes of this review, both configurations are considered to represent "total-body" PET/CT devices because they share both advantages and disadvantages. These pros and cons are discussed in the context of both clinical and research applications from a patient and institutional perspective.
Collapse
Affiliation(s)
- Rodney J Hicks
- The Melbourne Theranostic Innovation Centre, North Melbourne, Victoria 3051, Australia; St Vincent's Hospital, Department of Medicine, The University of Melbourne, Fitzroy, Victoria 3065, Australia.
| | - Robert E Ware
- The Melbourne Theranostic Innovation Centre, North Melbourne, Victoria 3051, Australia
| | - Jason Callahan
- The Melbourne Theranostic Innovation Centre, North Melbourne, Victoria 3051, Australia
| |
Collapse
|
11
|
Jochumsen MR, Christensen NL, Iversen P, Gormsen LC, Sørensen J, Tolbod LP. Whole-body parametric mapping of tumour perfusion in metastatic prostate cancer using long axial field-of-view [ 15O]H 2O PET. Eur J Nucl Med Mol Imaging 2024; 51:4134-4140. [PMID: 38940842 PMCID: PMC11527927 DOI: 10.1007/s00259-024-06799-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
PURPOSE Tumour perfusion is a nutrient-agnostic biomarker for cancer metabolic rate. Use of tumour perfusion for cancer growth assessment has been limited by complicated image acquisition, image analysis and limited field-of-view scanners. Long axial field-of-view (LAFOV) PET scan using [15O]H2O, allows quantitative assessment of whole-body tumour perfusion. We created a tool for automated creation of quantitative parametric whole-body tumour perfusion images in metastatic cancer. METHODS Ten metastatic prostate cancer patients underwent dynamic LAFOV [15O]H2O PET (Siemens, Quadra) followed by [18F]PSMA-1007 PET. Perfusion was measured as [15O]H2O K1 (mL/min/mL) with a single-tissue compartment model and an automatically captured cardiac image-derived input function. Parametric perfusion images were automatically calculated using the basis-function method with initial voxel-wise delay estimation and a leading-edge approach. Subsequently, perfusion of volumes-of-interest (VOI) can be directly extracted from the parametric images. We used a [18F]PSMA-1007 SUV 4 fixed threshold for tumour delineation and transferred these VOIs to the perfusion map. RESULTS For 8 primary tumours, 64 lymph node metastases, and 85 bone metastases, median tumour perfusion were 0.19 (0.15-0.27) mL/min/mL, 0.16 (0.13-0.27) mL/min/mL, and 0.26 (0.21-0.39), respectively. The correlation between calculated perfusion from time-activity-curves and parametric images was excellent (r = 0.99, p < 0.0001). CONCLUSION LAFOV PET imaging using [15O]H2O enables truly quantitative parametric images of whole-body tumour perfusion, a potential biomarker for guiding personalized treatment and monitoring treatment response.
Collapse
Affiliation(s)
- Mads Ryø Jochumsen
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, Aarhus N, 8200, Denmark.
- Department of Nuclear Medicine, Gødstrup Hospital, Herning, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Nana L Christensen
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, Aarhus N, 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Peter Iversen
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, Aarhus N, 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lars C Gormsen
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, Aarhus N, 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens Sørensen
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, Aarhus N, 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Surgical Sciences, Uppsala University Hospital, Uppsala, Sweden
| | - Lars P Tolbod
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, Aarhus N, 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Saraste A, Ståhle M, Roivainen A, Knuuti J. Molecular Imaging of Heart Failure: An Update and Future Trends. Semin Nucl Med 2024; 54:674-685. [PMID: 38609753 DOI: 10.1053/j.semnuclmed.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Molecular imaging can detect and quantify pathophysiological processes underlying heart failure, complementing evaluation of cardiac structure and function with other imaging modalities. Targeted tracers have enabled assessment of various cellular and subcellular mechanisms of heart failure aiming for improved phenotyping, risk stratification, and personalized therapy. This review outlines the current status of molecular imaging in heart failure, accompanied with discussion on novel developments. The focus is on radionuclide methods with data from clinical studies. Imaging of myocardial metabolism can identify left ventricle dysfunction caused by myocardial ischemia that may be reversible after revascularization in the presence of viable myocardium. In vivo imaging of active inflammation and amyloid deposition have an established role in the detection of cardiac sarcoidosis and transthyretin amyloidosis. Innervation imaging has well documented prognostic value in predicting heart failure progression and arrhythmias. Tracers specific for inflammation, angiogenesis and myocardial fibrotic activity are in earlier stages of development, but have demonstrated potential value in early characterization of the response to myocardial injury and prediction of cardiac function over time. Early detection of disease activity is a key for transition from medical treatment of clinically overt heart failure towards a personalized approach aimed at supporting repair and preventing progressive cardiac dysfunction.
Collapse
Affiliation(s)
- Antti Saraste
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland; Heart Center, Turku University Hospital and University of Turku, Turku, Finland.
| | - Mia Ståhle
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
13
|
Chung KJ, Chaudhari AJ, Nardo L, Jones T, Chen MS, Badawi RD, Cherry SR, Wang G. Quantitative Total-Body Imaging of Blood Flow with High Temporal Resolution Early Dynamic 18F-Fluorodeoxyglucose PET Kinetic Modeling. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.30.24312867. [PMID: 39252929 PMCID: PMC11383455 DOI: 10.1101/2024.08.30.24312867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Quantitative total-body PET imaging of blood flow can be performed with freely diffusible flow radiotracers such as 15O-water and 11C-butanol, but their short half-lives necessitate close access to a cyclotron. Past efforts to measure blood flow with the widely available radiotracer 18F-fluorodeoxyglucose (FDG) were limited to tissues with high 18F-FDG extraction fraction. In this study, we developed an early-dynamic 18F-FDG PET method with high temporal resolution kinetic modeling to assess total-body blood flow based on deriving the vascular transit time of 18F-FDG and conducted a pilot comparison study against a 11C-butanol reference. Methods The first two minutes of dynamic PET scans were reconstructed at high temporal resolution (60×1 s, 30×2 s) to resolve the rapid passage of the radiotracer through blood vessels. In contrast to existing methods that use blood-to-tissue transport rate (K 1 ) as a surrogate of blood flow, our method directly estimates blood flow using a distributed kinetic model (adiabatic approximation to the tissue homogeneity model; AATH). To validate our 18F-FDG measurements of blood flow against a flow radiotracer, we analyzed total-body dynamic PET images of six human participants scanned with both 18F-FDG and 11C-butanol. An additional thirty-four total-body dynamic 18F-FDG PET scans of healthy participants were analyzed for comparison against literature blood flow ranges. Regional blood flow was estimated across the body and total-body parametric imaging of blood flow was conducted for visual assessment. AATH and standard compartment model fitting was compared by the Akaike Information Criterion at different temporal resolutions. Results 18F-FDG blood flow was in quantitative agreement with flow measured from 11C-butanol across same-subject regional measurements (Pearson R=0.955, p<0.001; linear regression y=0.973x-0.012), which was visually corroborated by total-body blood flow parametric imaging. Our method resolved a wide range of blood flow values across the body in broad agreement with literature ranges (e.g., healthy cohort average: 0.51±0.12 ml/min/cm3 in the cerebral cortex and 2.03±0.64 ml/min/cm3 in the lungs, respectively). High temporal resolution (1 to 2 s) was critical to enabling AATH modeling over standard compartment modeling. Conclusions Total-body blood flow imaging was feasible using early-dynamic 18F-FDG PET with high-temporal resolution kinetic modeling. Combined with standard 18F-FDG PET methods, this method may enable efficient single-tracer flow-metabolism imaging, with numerous research and clinical applications in oncology, cardiovascular disease, pain medicine, and neuroscience.
Collapse
Affiliation(s)
- Kevin J. Chung
- Department of Radiology, University of California Davis Health, Sacramento, CA
| | | | - Lorenzo Nardo
- Department of Radiology, University of California Davis Health, Sacramento, CA
| | - Terry Jones
- Department of Radiology, University of California Davis Health, Sacramento, CA
| | - Moon S. Chen
- Department of Internal Medicine, University of California Davis Health, Sacramento, CA
| | - Ramsey D. Badawi
- Department of Radiology, University of California Davis Health, Sacramento, CA
- Department of Biomedical Engineering, University of California at Davis, Davis, CA
| | - Simon R. Cherry
- Department of Radiology, University of California Davis Health, Sacramento, CA
- Department of Biomedical Engineering, University of California at Davis, Davis, CA
| | - Guobao Wang
- Department of Radiology, University of California Davis Health, Sacramento, CA
| |
Collapse
|
14
|
Wu Q, Gu F, O'Suilleabhain LD, Sari H, Xue S, Shi K, Rominger A, O'Sullivan F. Mapping 18F-FDG Kinetics Together with Patient-Specific Bootstrap Assessment of Uncertainties: An Illustration with Data from a PET/CT Scanner with a Long Axial Field of View. J Nucl Med 2024; 65:971-979. [PMID: 38604759 PMCID: PMC11149602 DOI: 10.2967/jnumed.123.266686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/13/2024] [Indexed: 04/13/2024] Open
Abstract
The purpose of this study was to examine a nonparametric approach to mapping kinetic parameters and their uncertainties with data from the emerging generation of dynamic whole-body PET/CT scanners. Methods: Dynamic PET 18F-FDG data from a set of 24 cancer patients studied on a long-axial-field-of-view PET/CT scanner were considered. Kinetics were mapped using a nonparametric residue mapping (NPRM) technique. Uncertainties were evaluated using an image-based bootstrapping methodology. Kinetics and bootstrap-derived uncertainties are reported for voxels, maximum-intensity projections, and volumes of interest (VOIs) corresponding to several key organs and lesions. Comparisons between NPRM and standard 2-compartment (2C) modeling of VOI kinetics are carefully examined. Results: NPRM-generated kinetic maps were of good quality and well aligned with vascular and metabolic 18F-FDG patterns, reasonable for the range of VOIs considered. On a single 3.2-GHz processor, the specification of the bootstrapping model took 140 min; individual bootstrap replicates required 80 min each. VOI time-course data were much more accurately represented, particularly in the early time course, by NPRM than by 2C modeling constructs, and improvements in fit were statistically highly significant. Although 18F-FDG flux values evaluated by NPRM and 2C modeling were generally similar, significant deviations between vascular blood and distribution volume estimates were found. The bootstrap enables the assessment of quite complex summaries of mapped kinetics. This is illustrated with maximum-intensity maps of kinetics and their uncertainties. Conclusion: NPRM kinetics combined with image-domain bootstrapping is practical with large whole-body dynamic 18F-FDG datasets. The information provided by bootstrapping could support more sophisticated uses of PET biomarkers used in clinical decision-making for the individual patient.
Collapse
Affiliation(s)
- Qi Wu
- Department of Statistics, School of Mathematical Sciences, University College Cork, Cork, Ireland
| | - Fengyun Gu
- Department of Statistics, School of Mathematical Sciences, University College Cork, Cork, Ireland
| | - Liam D O'Suilleabhain
- Department of Statistics, School of Mathematical Sciences, University College Cork, Cork, Ireland
| | - Hasan Sari
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland; and
| | - Song Xue
- Department of Nuclear Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Finbarr O'Sullivan
- Department of Statistics, School of Mathematical Sciences, University College Cork, Cork, Ireland;
| |
Collapse
|
15
|
Shiyam Sundar LK, Gutschmayer S, Maenle M, Beyer T. Extracting value from total-body PET/CT image data - the emerging role of artificial intelligence. Cancer Imaging 2024; 24:51. [PMID: 38605408 PMCID: PMC11010281 DOI: 10.1186/s40644-024-00684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/03/2024] [Indexed: 04/13/2024] Open
Abstract
The evolution of Positron Emission Tomography (PET), culminating in the Total-Body PET (TB-PET) system, represents a paradigm shift in medical imaging. This paper explores the transformative role of Artificial Intelligence (AI) in enhancing clinical and research applications of TB-PET imaging. Clinically, TB-PET's superior sensitivity facilitates rapid imaging, low-dose imaging protocols, improved diagnostic capabilities and higher patient comfort. In research, TB-PET shows promise in studying systemic interactions and enhancing our understanding of human physiology and pathophysiology. In parallel, AI's integration into PET imaging workflows-spanning from image acquisition to data analysis-marks a significant development in nuclear medicine. This review delves into the current and potential roles of AI in augmenting TB-PET/CT's functionality and utility. We explore how AI can streamline current PET imaging processes and pioneer new applications, thereby maximising the technology's capabilities. The discussion also addresses necessary steps and considerations for effectively integrating AI into TB-PET/CT research and clinical practice. The paper highlights AI's role in enhancing TB-PET's efficiency and addresses the challenges posed by TB-PET's increased complexity. In conclusion, this exploration emphasises the need for a collaborative approach in the field of medical imaging. We advocate for shared resources and open-source initiatives as crucial steps towards harnessing the full potential of the AI/TB-PET synergy. This collaborative effort is essential for revolutionising medical imaging, ultimately leading to significant advancements in patient care and medical research.
Collapse
Affiliation(s)
| | - Sebastian Gutschmayer
- Quantitative Imaging and Medical Physics (QIMP) Team, Medical University of Vienna, Vienna, Austria
| | - Marcel Maenle
- Quantitative Imaging and Medical Physics (QIMP) Team, Medical University of Vienna, Vienna, Austria
| | - Thomas Beyer
- Quantitative Imaging and Medical Physics (QIMP) Team, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Putkinen V, Zhou X, Gan X, Yang L, Becker B, Sams M, Nummenmaa L. Bodily maps of musical sensations across cultures. Proc Natl Acad Sci U S A 2024; 121:e2308859121. [PMID: 38271338 PMCID: PMC10835118 DOI: 10.1073/pnas.2308859121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/01/2023] [Indexed: 01/27/2024] Open
Abstract
Emotions, bodily sensations and movement are integral parts of musical experiences. Yet, it remains unknown i) whether emotional connotations and structural features of music elicit discrete bodily sensations and ii) whether these sensations are culturally consistent. We addressed these questions in a cross-cultural study with Western (European and North American, n = 903) and East Asian (Chinese, n = 1035). We precented participants with silhouettes of human bodies and asked them to indicate the bodily regions whose activity they felt changing while listening to Western and Asian musical pieces with varying emotional and acoustic qualities. The resulting bodily sensation maps (BSMs) varied as a function of the emotional qualities of the songs, particularly in the limb, chest, and head regions. Music-induced emotions and corresponding BSMs were replicable across Western and East Asian subjects. The BSMs clustered similarly across cultures, and cluster structures were similar for BSMs and self-reports of emotional experience. The acoustic and structural features of music were consistently associated with the emotion ratings and music-induced bodily sensations across cultures. These results highlight the importance of subjective bodily experience in music-induced emotions and demonstrate consistent associations between musical features, music-induced emotions, and bodily sensations across distant cultures.
Collapse
Affiliation(s)
- Vesa Putkinen
- Turku PET Centre, University of Turku, Turku 20520, Finland
- Turku Institute for Advanced Studies, Department of Psychology, University of Turku, Turku 20014, Finland
| | - Xinqi Zhou
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Xianyang Gan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Linyu Yang
- College of Mathematics, Sichuan University, Chengdu 610064, China
| | - Benjamin Becker
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Mikko Sams
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo 00076, Finland
| | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Turku 20520, Finland
- Department of Psychology, University of Turku, Turku 20520, Finland
| |
Collapse
|