1
|
Boanares D, Da-Silva CJ, Costa KJA, Filgueira JPPS, Salles MLOC, Neto LP, Gastauer M, Valadares R, Medeiros PS, Ramos SJ, Caldeira CF. Exogenous Nitric Oxide Alleviates Water Deficit and Increases the Seed Production of an Endemic Amazonian Canga Grass. Int J Mol Sci 2023; 24:16676. [PMID: 38068998 PMCID: PMC10706291 DOI: 10.3390/ijms242316676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Open pit mining can cause loss in different ecosystems, including damage to habitats of rare and endemic species. Understanding the biology of these species is fundamental for their conservation, and to assist in decision-making. Sporobolus multiramosus is an annual grass endemic to the Amazon canga ecosystems, which comprise rocky outcrop vegetation covering one of the world's largest iron ore reserves. Here, we evaluated whether nitric oxide aids S. multiramosus in coping with water shortages and examined the physiological processes behind these adaptations. nitric oxide application improved the water status, photosynthetic efficiency, biomass production, and seed production and germination of S. multiramosus under water deficit conditions. These enhancements were accompanied by adjustments in leaf and root anatomy, including changes in stomata density and size and root endodermis thickness and vascular cylinder diameter. Proteomic analysis revealed that nitric oxide promoted the activation of several proteins involved in the response to environmental stress and flower and fruit development. Overall, the results suggest that exogenous nitric oxide has the potential to enhance the growth and productivity of S. multiramosus. Enhancements in seed productivity have significant implications for conservation initiatives and can be applied to seed production areas, particularly for the restoration of native ecosystems.
Collapse
Affiliation(s)
- Daniela Boanares
- Instituto Tecnológico Vale, Belém 66055-090, PA, Brazil; (D.B.); (K.J.A.C.); (J.P.P.S.F.); (M.L.O.C.S.); (M.G.); (R.V.); (P.S.M.); (S.J.R.)
| | - Cristiane J. Da-Silva
- Department of Horticulture Science, North Carolina State University, Raleigh, NC 27695-7609, USA;
| | - Keila Jamille Alves Costa
- Instituto Tecnológico Vale, Belém 66055-090, PA, Brazil; (D.B.); (K.J.A.C.); (J.P.P.S.F.); (M.L.O.C.S.); (M.G.); (R.V.); (P.S.M.); (S.J.R.)
| | | | | | - Luiz Palhares Neto
- Department of Biology, Universidade Estadual do Sudoeste da Bahia, Jequié 45083-900, BA, Brazil;
| | - Markus Gastauer
- Instituto Tecnológico Vale, Belém 66055-090, PA, Brazil; (D.B.); (K.J.A.C.); (J.P.P.S.F.); (M.L.O.C.S.); (M.G.); (R.V.); (P.S.M.); (S.J.R.)
| | - Rafael Valadares
- Instituto Tecnológico Vale, Belém 66055-090, PA, Brazil; (D.B.); (K.J.A.C.); (J.P.P.S.F.); (M.L.O.C.S.); (M.G.); (R.V.); (P.S.M.); (S.J.R.)
| | - Priscila Sanjuan Medeiros
- Instituto Tecnológico Vale, Belém 66055-090, PA, Brazil; (D.B.); (K.J.A.C.); (J.P.P.S.F.); (M.L.O.C.S.); (M.G.); (R.V.); (P.S.M.); (S.J.R.)
| | - Silvio Junio Ramos
- Instituto Tecnológico Vale, Belém 66055-090, PA, Brazil; (D.B.); (K.J.A.C.); (J.P.P.S.F.); (M.L.O.C.S.); (M.G.); (R.V.); (P.S.M.); (S.J.R.)
| | - Cecilio Frois Caldeira
- Instituto Tecnológico Vale, Belém 66055-090, PA, Brazil; (D.B.); (K.J.A.C.); (J.P.P.S.F.); (M.L.O.C.S.); (M.G.); (R.V.); (P.S.M.); (S.J.R.)
| |
Collapse
|
2
|
Growth modulation by nitric oxide donor sodium nitroprusside in in vitro plant tissue cultures – A review. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Jasmonic Acid Methyl Ester Induces Xylogenesis and Modulates Auxin-Induced Xylary Cell Identity with NO Involvement. Int J Mol Sci 2019; 20:ijms20184469. [PMID: 31510080 PMCID: PMC6770339 DOI: 10.3390/ijms20184469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022] Open
Abstract
In Arabidopsis basal hypocotyls of dark-grown seedlings, xylary cells may form from the pericycle as an alternative to adventitious roots. Several hormones may induce xylogenesis, as Jasmonic acid (JA), as well as indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) auxins, which also affect xylary identity. Studies with the ethylene (ET)-perception mutant ein3eil1 and the ET-precursor 1-aminocyclopropane-1-carboxylic acid (ACC), also demonstrate ET involvement in IBA-induced ectopic metaxylem. Moreover, nitric oxide (NO), produced after IBA/IAA-treatments, may affect JA signalling and interact positively/negatively with ET. To date, NO-involvement in ET/JA-mediated xylogenesis has never been investigated. To study this, and unravel JA-effects on xylary identity, xylogenesis was investigated in hypocotyls of seedlings treated with JA methyl-ester (JAMe) with/without ACC, IBA, IAA. Wild-type (wt) and ein3eil1 responses to hormonal treatments were compared, and the NO signal was quantified and its role evaluated by using NO-donors/scavengers. Ectopic-protoxylem increased in the wt only after treatment with JAMe(10 μM), whereas in ein3eil1 with any JAMe concentration. NO was detected in cells leading to either xylogenesis or adventitious rooting, and increased after treatment with JAMe(10 μM) combined or not with IBA(10 μM). Xylary identity changed when JAMe was applied with each auxin. Altogether, the results show that xylogenesis is induced by JA and NO positively regulates this process. In addition, NO also negatively interacts with ET-signalling and modulates auxin-induced xylary identity.
Collapse
|
4
|
Plohovska SH, Krasylenko YA, Yemets AI. Nitric oxide modulates actin filament organization in
Arabidopsis thaliana
primary root cells at low temperatures. Cell Biol Int 2018; 43:1020-1030. [DOI: 10.1002/cbin.10931] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 12/27/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Svitlana H. Plohovska
- Department of Cell Biology and Biotechnology, Institute of Food Biotechnology and GenomicsNational Academy of Sciences of UkraineOsipovskogo St., 2aKyiv04123 Ukraine
| | - Yuliya A. Krasylenko
- Department of Cell Biology and Biotechnology, Institute of Food Biotechnology and GenomicsNational Academy of Sciences of UkraineOsipovskogo St., 2aKyiv04123 Ukraine
| | - Alla I. Yemets
- Department of Cell Biology and Biotechnology, Institute of Food Biotechnology and GenomicsNational Academy of Sciences of UkraineOsipovskogo St., 2aKyiv04123 Ukraine
| |
Collapse
|
5
|
Bulavin IV. Cytoskeleton orientation in epidermis cells of roots generated de novo in leaf explants under clinorotation. CYTOL GENET+ 2016. [DOI: 10.3103/s009545271602002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Sanz L, Albertos P, Mateos I, Sánchez-Vicente I, Lechón T, Fernández-Marcos M, Lorenzo O. Nitric oxide (NO) and phytohormones crosstalk during early plant development. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2857-68. [PMID: 25954048 DOI: 10.1093/jxb/erv213] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
During the past two decades, nitric oxide (NO) has evolved from a mere gaseous free radical to become a new messenger in plant biology with an important role in a plethora of physiological processes. This molecule is involved in the regulation of plant growth and development, pathogen defence and abiotic stress responses, and in most cases this is achieved through its interaction with phytohormones. Understanding the role of plant growth regulators is essential to elucidate how plants activate the appropriate set of responses to a particular developmental stage or a particular stress. The first task to achieve this goal is the identification of molecular targets, especially those involved in the regulation of the crosstalk. The nature of NO targets in these growth and development processes and stress responses remains poorly described. Currently, the molecular mechanisms underlying the effects of NO in these processes and their interaction with other plant hormones are beginning to unravel. In this review, we made a compilation of the described interactions between NO and phytohormones during early plant developmental processes (i.e. seed dormancy and germination, hypocotyl elongation and root development).
Collapse
Affiliation(s)
- Luis Sanz
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Pablo Albertos
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Isabel Mateos
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Inmaculada Sánchez-Vicente
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Tamara Lechón
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - María Fernández-Marcos
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Oscar Lorenzo
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| |
Collapse
|
7
|
Zakhvataev VE. Tidal variations of radon activity as a possible factor synchronizing biological processes. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350915010273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Lipka E, Müller S. Nitrosative stress triggers microtubule reorganization in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4177-89. [PMID: 24803503 PMCID: PMC4112629 DOI: 10.1093/jxb/eru194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Microtubules (MTs) are essential components of the cytoskeleton and fulfil multiple cellular functions in developmental processes, readily responding to intrinsic and external cues. Nitric oxide signalling is well established in plants, and the MT cytoskeleton is one of its potential targets. To mimic low level nitrosative stress, growth medium was supplemented with 3-nitro-L-tyrosine (NO2-Tyr), a nitrated form of the amino acid tyrosine, and concentration-dependent changes in root growth rate and a reduction in cell division frequencies in Arabidopsis thaliana were observed. In addition, it is reported that exposure to low NO2-Tyr concentrations was not detrimental to plant health and caused subtle and reversible defects. In contrast, growth defects caused by high NO2-Tyr concentrations could not be reversed. Live cell imaging of an MT reporter line revealed that treatment with a low concentration of NO2-Tyr correlated with disorganized cortical MT arrays and associated non-polar cell expansion in the elongation zone. NO2-Tyr treatment antagonized the effects of taxol and oryzalin, further supporting the association of NO2-Tyr with MTs. Furthermore, oblique division plane orientations were observed which were probably induced prior to cytokinesis.
Collapse
Affiliation(s)
- Elisabeth Lipka
- ZMBP, Developmental Genetics, University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Sabine Müller
- ZMBP, Developmental Genetics, University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| |
Collapse
|
9
|
Blume YB, Krasylenko YA, Demchuk OM, Yemets AI. Tubulin tyrosine nitration regulates microtubule organization in plant cells. FRONTIERS IN PLANT SCIENCE 2013; 4:530. [PMID: 24421781 PMCID: PMC3872735 DOI: 10.3389/fpls.2013.00530] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/10/2013] [Indexed: 05/21/2023]
Abstract
During last years, selective tyrosine nitration of plant proteins gains importance as well-recognized pathway of direct nitric oxide (NO) signal transduction. Plant microtubules are one of the intracellular signaling targets for NO, however, the molecular mechanisms of NO signal transduction with the involvement of cytoskeletal proteins remain to be elucidated. Since biochemical evidence of plant α-tubulin tyrosine nitration has been obtained recently, potential role of this posttranslational modification in regulation of microtubules organization in plant cell is estimated in current paper. It was shown that 3-nitrotyrosine (3-NO2-Tyr) induced partially reversible Arabidopsis primary root growth inhibition, alterations of root hairs morphology and organization of microtubules in root cells. It was also revealed that 3-NO2-Tyr intensively decorates such highly dynamic microtubular arrays as preprophase bands, mitotic spindles and phragmoplasts of Nicotiana tabacum Bright Yellow-2 (BY-2) cells under physiological conditions. Moreover, 3D models of the mitotic kinesin-8 complexes with the tail of detyrosinated, tyrosinated and tyrosine nitrated α-tubulin (on C-terminal Tyr 450 residue) from Arabidopsis were reconstructed in silico to investigate the potential influence of tubulin nitrotyrosination on the molecular dynamics of α-tubulin and kinesin-8 interaction. Generally, presented data suggest that plant α-tubulin tyrosine nitration can be considered as its common posttranslational modification, the direct mechanism of NO signal transduction with the participation of microtubules under physiological conditions and one of the hallmarks of the increased microtubule dynamics.
Collapse
Affiliation(s)
- Yaroslav B. Blume
- *Correspondence: Yaroslav B. Blume, Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osipovskogo str., 2, Kyiv 04123, Ukraine e-mail:
| | | | | | | |
Collapse
|
10
|
Krasylenko YA, Yemets AI, Sheremet YA, Blume YB. Nitric oxide as a critical factor for perception of UV-B irradiation by microtubules in Arabidopsis. PHYSIOLOGIA PLANTARUM 2012; 145:505-15. [PMID: 21973209 DOI: 10.1111/j.1399-3054.2011.01530.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Influence of ultraviolet-B (UV-B) as an abiotic stress factor on plant microtubules (MTs) and involvement of nitric oxide (NO) as a secondary messenger mediating plant cell response to environmental stimuli were investigated in this study. Taking into account that endogenous NO content in plant cells has been shown to be increased under a broad range of abiotic stress factors, the effects of UV-B irradiation and also the combined action of UV-B and NO donor sodium nitroprusside (SNP) or NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) on the MTs organization in different root cells of Arabidopsis thaliana were tested. Subsequently, realization of the MT-mediated processes such as root growth and development was studied under these conditions. Arabidopsis thaliana seedlings expressing the chimeric gene gfp-map4 were exposed to the enhanced UV-B with or without SNP or c-PTIO pretreatment. The UV-B irradiation alone led to a dose-dependent root growth inhibition and to morphological alterations of the primary root manifested in their swelling and excessive root hair formation. Moreover, dose-dependent randomization and depolymerization of MTs in both epidermal and cortical cells under the enhanced UV-B were found. However, SNP pretreatment of the UV-B irradiated A. thaliana seedlings recovered the UV-B inhibited root growth as compared to c-PTIO pretreatment. It has been shown that in 24 h after UV-B irradiation the organization of MTs in root epidermal cells of SNP-pretreated A. thaliana seedlings was partially recovered, whereas in c-PTIO-pretreated ones the organization of MTs has not been distinctly improved. Therefore, we suppose that the enhanced NO levels in plant cells can protect MTs organization as well as MT-related processes of root growth and development against disrupting effects of UV-B.
Collapse
Affiliation(s)
- Yuliya A Krasylenko
- Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kiev 04123, Ukraine
| | | | | | | |
Collapse
|
11
|
Sheremet YA, Yemets AI, Blume YB. Inhibitors of tyrosine kinases and phosphatases as a tool for the investigation of microtubule role in plant cold response. CYTOL GENET+ 2012. [DOI: 10.3103/s0095452712010112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Yemets AI, Krasylenko YA, Lytvyn DI, Sheremet YA, Blume YB. Nitric oxide signalling via cytoskeleton in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:545-54. [PMID: 21893251 DOI: 10.1016/j.plantsci.2011.04.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 04/25/2011] [Accepted: 04/27/2011] [Indexed: 05/19/2023]
Abstract
Nitric oxide (NO) in plant cell mediates processes of growth and development starting from seed germination to pollination, as well as biotic and abiotic stress tolerance. However, proper understanding of the molecular mechanisms of NO signalling in plants has just begun to emerge. Accumulated evidence suggests that in eukaryotic cells NO regulates functions of proteins by their post-translational modifications, namely tyrosine nitration and S-nitrosylation. Among the candidates for NO-downstream effectors are cytoskeletal proteins because of their involvement in many processes regulated by NO. This review discusses new insights in plant NO signalling focused mainly on the involvement of cytoskeleton components into NO-cascades. Herein, examples of NO-related post-translational modifications of cytoskeletal proteins, and also indirect NO impact, are discussed. Special attention is paid to plant α-tubulin tyrosine nitration as an emerging topic in plant NO research.
Collapse
Affiliation(s)
- Alla I Yemets
- Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osipovskogo Str., 2a, Kyiv 04123, Ukraine.
| | | | | | | | | |
Collapse
|
13
|
Clark G, Wu M, Wat N, Onyirimba J, Pham T, Herz N, Ogoti J, Gomez D, Canales AA, Aranda G, Blizard M, Nyberg T, Terry A, Torres J, Wu J, Roux SJ. Both the stimulation and inhibition of root hair growth induced by extracellular nucleotides in Arabidopsis are mediated by nitric oxide and reactive oxygen species. PLANT MOLECULAR BIOLOGY 2010; 74:423-35. [PMID: 20820881 DOI: 10.1007/s11103-010-9683-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 08/24/2010] [Indexed: 05/20/2023]
Abstract
Root hairs secrete ATP as they grow, and extracellular ATP and ADP can trigger signaling pathways that regulate plant cell growth. In several plant tissues the level of extracellular nucleotides is limited in part by ectoapyrases (ecto-NTPDases), and the growth of these tissues is strongly influenced by their level of ectoapyrase expression. Both chemical inhibition of ectoapyrase activity and suppression of the expression of two ectoapyrase enzymes by RNAi in Arabidopsis resulted in inhibition of root hair growth. As assayed by a dose-response curve, different concentrations of the poorly hydrolysable nucleotides, ATPγS and ADPβS, could either stimulate (at 7.5-25 μM) or inhibit (at ≥ 150 μM) the growth rate of root hairs in less than an hour. Equal amounts of AMPS, used as a control, had no effect on root hair growth. Root hairs of nia1nia2 mutants, which are suppressed in nitric oxide (NO) production, and of atrbohD/F mutants, which are suppressed in the production of H(2)O(2), did not show growth responses to applied nucleotides, indicating that the growth changes induced by these nucleotides in wild-type plants were likely transduced via NO and H(2)O(2) signals. Consistent with this interpretation, treatment of root hairs with different concentrations of ATPγS induced different accumulations of NO and H(2)O(2) in root hair tips. Two mammalian purinoceptor antagonists also blocked the growth responses induced by extracellular nucleotides, suggesting that they were initiated by a receptor-based mechanism.
Collapse
Affiliation(s)
- Greg Clark
- Section of Molecular Cell and Developmental Biology, University of Texas, 78712, Austin, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|