1
|
Moghadamizad Z, Dalimi A, Pirestani M, Ghafarifar F. Designing a multi-epitope vaccine using Toxoplasma ROP5, ROP7, and SAG1 epitopes and immunogenicity evaluation against acute and chronic toxoplasmosis in BABL/c mice. Microb Pathog 2025; 204:107567. [PMID: 40216097 DOI: 10.1016/j.micpath.2025.107567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/29/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
This study designed and evaluated a multi-epitope DNA vaccine targeting Toxoplasma gondii immunodominant antigens-ROP5, ROP7, and SAG1-to assess its protective efficacy against acute and chronic toxoplasmosis in BALB/c mice. A bioengineered multi-epitope vaccine construct (MEVC) was synthesized by integrating computationally predicted B- and T-cell epitopes using SAPGTP linkers to ensure conformational stability and epitope accessibility. In silico analyses confirmed the MEVC's antigenicity (VaxiJen score: 0.96), non-allergenicity, solubility (GRAVY index: 0.45), and physicochemical stability (instability index: 32.14; aliphatic index: 78.3), supporting its suitability for immunization. The codon-optimized sequence (753 bp; 253 amino acids) was cloned into the pcDNA3.1(+) plasmid and amplified in Escherichia coli TOP10 cells. Thirty-six female BALB/c mice (6-8 weeks) were divided into three groups (n = 12/group) and immunized intramuscularly with 100 μg MEVC, empty vector, or phosphate-buffered saline (PBS) at weeks 0, 2, and 4. Post-immunization, mice were challenged with acute (2 × 103 RH strain tachyzoites, intraperitoneal) or chronic (10 PRU strain cysts, oral) infection. Molecular docking simulations demonstrated high-affinity binding of the MEVC to murine toll-like receptor 4 via hydrogen bonds and hydrophobic interactions, suggesting adjuvant-like immunogenicity. In vitro expression in HEK-293 cells confirmed protein synthesis, with Western blot detecting a 26 kDa immunoreactive band. MEVC-immunized mice exhibited significantly elevated anti-Toxoplasma IgG titers (1:12,800), dominated by IgG2a isotypes (P < 0.05), and robust IFN-γ production, indicative of Th1-polarized immunity. IL-4 levels remained low, confirming minimal Th2 skewing. Vaccination reduced cerebral cyst burden by 76 % (P < 0.01) in chronic infection, yet survival post-acute challenge extended only two days compared to controls. These results demonstrate partial protection against toxoplasmosis, with the MEVC eliciting cellular and humoral responses effective against chronic infection but limited efficacy in acute settings.
Collapse
MESH Headings
- Animals
- Toxoplasma/immunology
- Toxoplasma/genetics
- Mice, Inbred BALB C
- Protozoan Proteins/immunology
- Protozoan Proteins/genetics
- Antigens, Protozoan/immunology
- Antigens, Protozoan/genetics
- Female
- Mice
- Protozoan Vaccines/immunology
- Protozoan Vaccines/administration & dosage
- Protozoan Vaccines/genetics
- Antibodies, Protozoan/blood
- Vaccines, DNA/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Toxoplasmosis, Animal/prevention & control
- Toxoplasmosis, Animal/immunology
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- Toxoplasmosis/prevention & control
- Toxoplasmosis/immunology
- Disease Models, Animal
- Immunoglobulin G/blood
- Immunogenicity, Vaccine
- Epitopes/immunology
- Chronic Disease
- Molecular Docking Simulation
- Toll-Like Receptor 4
Collapse
Affiliation(s)
- Zeinab Moghadamizad
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdolhossein Dalimi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Majid Pirestani
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Ghafarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Karimipour-Saryazdi A, Ghaffarifar F, Dalimi A, Foroutan M, Sadraei J, Horton J. Immunogenicity of an in-silico designed multi-epitope DNA vaccine encoding ROP21 and ROP29 of Toxoplasma gondii against both acute and chronic toxoplasmosis in BALB/c mice. Microb Pathog 2025; 200:107321. [PMID: 39855488 DOI: 10.1016/j.micpath.2025.107321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Toxoplasma infections are highly prevalent worldwide and can cause serious complications in immunocompromised individuals and lead to congenital infections in neonates. Despite ongoing efforts to develop T. gondii vaccines, none have been developed. A potential target, the ROP21 protein catalyzes the phosphorylation of additional protein substrates and ROP29 is critical for chronic Toxoplasma gondii infection. In this study, recombinant plasmid with epitopes of ROP21 and ROP29 were used as DNA vaccine. METHODS An immunoinformatics approach was employed to design a multi-epitope DNA vaccine encoding T. gondii ROP21 and ROP29. The bioinformatic outputs supported the immunogenic and non-allergic nature of multi-epitope vaccine. The recombinant plasmid was transfected in HEK cells. Thereafter, the protective effect of the DNA vaccine was evaluated in BALB/c mice by way of vaccination and challenge of these mice with acute RH and chronic PRU strains of T. gondii, respectively. The immunological responses of the control and vaccinated groups were assessed using survival time, lymphocyte proliferation assays, cytokine and antibody measurements, and determination of the parasite load in the spleen with real-time PCR. FINDINGS Multiple epitope (ROP21 and ROP29) DNA immunization stimulated cellular and humoral immune reactions in BALB/c mice and lengthened their life following challenge. Multiple epitope proteins increased significantly the total IgG antibody concentrations, triggered increased IFN-γ cytokine production, increased the mixed IgG1/IgG2a response with a predominance of IgG2a, prolonged the survival duration and reduced the number of brain cysts. The in vivo findings indicated that the multi-epitope DNA vaccine elicited significant production of IgG antibodies (122.16 ng/ml) as well as IFN-γ (12.37 pg/ml) (p < 0.05). Moreover, a significantly reduced parasite-burden (CT: 35.62) and prolonged survival time (14 days) were observed in the immunized groups compared to the controls (p < 0.05). Low IL-4 (5.63 pg/ml) values were detected in vaccinated mice compared to the PBS control (p > 0.05). CONCLUSIONS We found that multiepitope protein vaccination could provide more protective immunity against chronic and acute toxoplasmosis infection compared to control.
Collapse
MESH Headings
- Animals
- Toxoplasma/immunology
- Toxoplasma/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/administration & dosage
- Mice, Inbred BALB C
- Mice
- Protozoan Vaccines/immunology
- Protozoan Vaccines/genetics
- Protozoan Vaccines/administration & dosage
- Antibodies, Protozoan/blood
- Protozoan Proteins/immunology
- Protozoan Proteins/genetics
- Toxoplasmosis, Animal/prevention & control
- Toxoplasmosis, Animal/immunology
- Epitopes/immunology
- Epitopes/genetics
- Humans
- Cytokines/metabolism
- Female
- Antigens, Protozoan/immunology
- Antigens, Protozoan/genetics
- Disease Models, Animal
- Toxoplasmosis/prevention & control
- Toxoplasmosis/immunology
- HEK293 Cells
- Parasite Load
- Chronic Disease
- Immunogenicity, Vaccine
- Spleen/parasitology
- Computer Simulation
Collapse
Affiliation(s)
- Amir Karimipour-Saryazdi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Abdolhossein Dalimi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Masoud Foroutan
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran.
| | - Javid Sadraei
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | | |
Collapse
|
3
|
Sang X, Li X, Chen R, Feng Y, He T, Zhang X, El-Ashram S, Al-Olayan E, Yang N. Co-Immunization with DNA Vaccines Expressing SABP1 and SAG1 Proteins Effectively Enhanced Mice Resistance to Toxoplasma gondii Acute Infection. Vaccines (Basel) 2023; 11:1190. [PMID: 37515006 PMCID: PMC10384583 DOI: 10.3390/vaccines11071190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Toxoplasma gondii (T. gondii) has many intermediate hosts, obligately invades nucleated cells, and seriously threatens human and animal health due to a lack of effective drugs and vaccines. Sialic acid-binding protein 1 (SABP1) is a novel invasion-related protein that, like surface antigen 1 (SAG1), is found on the plasma membrane of T. gondii. To investigate the immunogenicity and protective efficacy of DNA vaccines expressing SABP1 and SAG1 proteins against T. gondii acute infection, the recombinant plasmids pVAX1-SABP1 and pVAX1-SAG1 were produced and administered intramuscularly in Balb/c mice. Serum antibody levels and subtypes, lymphocyte proliferation, and cytokines were used to assess immunized mice's humoral and cellular immune responses. Furthermore, the ability of DNA vaccines to protect mice against T. gondii RH tachyzoites was tested. Immunized mice exhibited substantially higher IgG levels, with IgG2a titers higher than IgG1. When the immune group mice's splenocytes were stimulated with T. gondii lysate antigen, Th1-type cytokines (IL-12p70, IFN-γ, and IL-2) and Th2-type cytokine (IL-4) increased significantly. The combined DNA vaccine significantly increased the immunized mouse survival compared to the control group, with an average death time extended by 4.33 ± 0.6 days (p < 0.0001). These findings show that DNA vaccines based on the SABP1 and SAG1 genes induced robust humoral and cellular immunity in mice, effectively protecting against acute toxoplasmosis and potentially serving as a viable option for vaccination to prevent T. gondii infection.
Collapse
Affiliation(s)
- Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiang Li
- Key Laboratory of Livestock Infectious Diseases, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ting He
- Key Laboratory of Livestock Infectious Diseases, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaohan Zhang
- Key Laboratory of Livestock Infectious Diseases, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Saeed El-Ashram
- Department of Zoology, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Ebtsam Al-Olayan
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Na Yang
- Key Laboratory of Livestock Infectious Diseases, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
4
|
Mamaghani AJ, Fathollahi A, Arab-Mazar Z, kohansal K, Fathollahi M, Spotin A, Bashiri H, Bozorgomid A. Toxoplasma gondii vaccine candidates: a concise review. Ir J Med Sci 2023; 192:231-261. [PMID: 35394635 PMCID: PMC8992420 DOI: 10.1007/s11845-022-02998-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/16/2022] [Indexed: 02/08/2023]
Abstract
Toxoplasma gondii is an obligate intracellular parasite that causes toxoplasmosis. It has been shown that the severity of symptoms depends on the functioning of the host immune system. Although T. gondii infection typically does not lead to severe disease in healthy people and after infection, it induces a stable immunity, but it can contribute to severe and even lethal Toxoplasmosis in immunocompromised individuals (AIDS, bone marrow transplant and neoplasia). The antigens that have been proposed to be used in vaccine candidate in various studies include surface antigens and secretory excretions that have been synthesized and evaluated in different studies. In some studies, secretory antigens play an important role in stimulating the host immune response. Various antigens such as SAG, GRA, ROP, ROM, and MAG have been from different strains of T. gondii have been synthesized and their protective effects have been evaluated in animal models in different vaccine platforms including recombinant antigens, nanoparticles, and DNA vaccine. Four bibliographic databases including Science Direct, PubMed Central (PMC), Scopus, and Google Scholar were searched for articles published up to 2020.The current review article focuses on recent studies on the use and usefulness of recombinant antigens, nanoparticles, and DNA vaccines.
Collapse
Affiliation(s)
- Amirreza Javadi Mamaghani
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anwar Fathollahi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Arab-Mazar
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kobra kohansal
- Department of Medical Parasitology, School of Medicine, Jondishapour University of Medical Sciences, Ahvaz, Iran
| | - Matin Fathollahi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Adel Spotin
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Homayoon Bashiri
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arezoo Bozorgomid
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
5
|
Fan XY, Xu XC, Wu YX, Liu XY, Yang F, Hu YH. Evaluation of anti-tick efficiency in rabbits induced by DNA vaccines encoding Haemaphysalis longicornis lipocalin homologue. MEDICAL AND VETERINARY ENTOMOLOGY 2022; 36:511-515. [PMID: 35801679 DOI: 10.1111/mve.12594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Haemaphysalis longicornis is an obligate haematophagous ectoparasite, transmitting a variety of pathogens, which brings great damage to human health and animal husbandry development. Lipocalins (LIP) are a family of proteins that transport small hydrophobic molecules and also involve in immune regulation, such as the regulation of cell homeostasis, inhibiting the host's inflammatory response and resisting the contractile responses in host blood vessels. Therefore, it is one of the candidate antigens for vaccines. Based on previous studies, we constructed the recombinant plasmid pcDNA3.1-HlLIP of LIP homologue from H. longicornis (HlLIP). ELISA results showed that rabbits immunized with pcDNA3.1-HlLIP produced higher anti-rHlLIP antibody levels compared with the pcDNA3.1 group, indicating that pcDNA3.1-HlLIP induced the humoral immune response of host. Adult H. longicornis infestation trial in rabbits demonstrated that the engorgement weight, oviposition and hatchability of H. longicornis fed on rabbits immunized with pcDNA3.1-HlLIP decreased by 7.07%, 14.30% and 11.70% respectively, compared with that of the pcDNA3.1 group. In brief, DNA vaccine of pcDNA3.1-HlLIP provided immune protection efficiency of 30% in rabbits. This study demonstrated that pcDNA3.1-HlLIP can partially protect rabbits against H. longicornis, and it is possible to develop a new candidate antigen against ticks.
Collapse
Affiliation(s)
- Xiang-Yuan Fan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, PR China
| | - Xiao-Can Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, PR China
| | - Ya-Xue Wu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, PR China
| | - Xiao-Ya Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, PR China
| | - Feng Yang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, PR China
| | - Yong-Hong Hu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, PR China
| |
Collapse
|
6
|
Protective immunity induced with a DNA vaccine encoding B- and T-cells multi-epitope SAG1, ROP16, MIC4, GRA12, M2AP, and multi-epitope ROP8 against acute and chronic toxoplasmosis in BALB/c mice. Exp Parasitol 2022; 242:108385. [PMID: 36162598 DOI: 10.1016/j.exppara.2022.108385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND T. gondii infection is characterized by a high global prevalence. Nearly, 16-40% of people have been infected by T. gondii. Although T. gondii often causes subclinical infection, it may cause severe complications in newborns with congenital infection and immunocompromised individuals. Constant attempts of scientists have made valuable findings in the development of T. gondii candidate vaccines. However, an effective vaccine has not been successfully developed yet. In this study, multi-epitope SAG1, MIC4, ROP16, M2AP, GRA12, and multi-epitope ROP8 were injected into BALB/c mice intramuscularly, as cocktailed plasmids or as single-gene plasmids to assess the immune response against chronic and acute Toxoplasma infection. METHODS BALB/c mice were immunized on days 0, 21, and 42. The immune responses of both vaccinated and control groups were evaluated using cytokine and antibody measurements, lymphocyte proliferation assay, survival time, and average number of cysts in each brain. RESULTS The results indicated that DNA vaccination using multi-epitope ROP8 and multi-epitope SAG1, ROP16, MIC4, GRA12, M2AP could elicit both cellular and humoral immune responses, and enhanced the survival time in BALB/c mice. Also, the administration of multi-epitope ROP8 plus multi-epitope SAG1, ROP16, MIC4, GRA12, M2AP could enhance the concentrations of IgG antibody, elicit a mixed IgG1/IgG2a reaction with the predominance of the IgG2a, increase the release of IFN-γ cytokine, prolonge the survival time, and reduce the brain cysts. CONCLUSIONS Here, we report that vaccination using cocktailed plasmids could induce better protective immunity compared to single plasmid for acute and chronic T. gondii infection.
Collapse
|
7
|
Multi-epitope vaccine expressed in Leishmania tarentolae confers protective immunity to Toxoplasma gondii in BALB/c mice. Microb Pathog 2021; 155:104925. [PMID: 33933602 DOI: 10.1016/j.micpath.2021.104925] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022]
Abstract
Current study deals with a novel multi-epitope vaccine designed in silico and its confirmation experiments for potential efficacy in BALB/c mice. Major histocompatibility complex (MHC)-binding and B-cell binding epitopes of five Toxoplasma antigens (SAG1, ROP16, GRA12, MIC4 and M2AP) were predicted. Selected epitopes were fused together using SAPGTP linker, and antigenicity, allergenicity, physico-chemical features, secondary and tertiary structures and validations were all performed via bioinformatics servers. Then, vaccine construct was cloned into pLEXSY-neo 2.1 vector. After Leishmania tarentolae transfection, live recombinant and wild parasites were subcutaneously injected into 6-8 week female BALB/c mice and immune responses were measured. Results showed that the peptide possessed 282 amino acid residues with average molecular weight of 28.06 kDa. About 90% of the peptide residues were incorporated in favored and allowed regions of the Ramachandran plot. Vaccinated mice showed remarkably elevated levels of specific antibodies (P < 0.05) with predominance of IgG2a production. Also, a Th1 immune response with production of IFN-γ and relatively increased survival rate against intraperitoneal challenge with RH strain was demonstrated in immunized mice than control groups (P < 0.05). Also, very low levels of IL-4 were demonstrated, which showed statistically significant association with controls (P < 0.05). The findings clarified that multi-epitope vaccine expressed in Leishmania tarentolae induced significant immune responses against acute toxoplasmosis.
Collapse
|
8
|
Immunogenicity of in-silico designed multi-epitope DNA vaccine encoding SAG1, SAG3 and SAG5 of Toxoplasma gondii adjuvanted with CpG-ODN against acute toxoplasmosis in BALB/c mice. Acta Trop 2021; 216:105836. [PMID: 33485872 DOI: 10.1016/j.actatropica.2021.105836] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/13/2020] [Accepted: 01/11/2021] [Indexed: 12/17/2022]
Abstract
The causative agent of toxoplasmosis, Toxoplasma gondii (T. gondii), is able to influence the health of humans and other vertebrates. Toxoplasma may cause severe illness in the fetus and immunocompromised individuals. The high incidence and intense damages of Toxoplasma infection clearly shows the need to achieve the safe and suitable vaccine. In this study, an immunoinformatics approach was employed to design a multi-epitope DNA vaccine encoding the T. gondii SAG1, SAG3 and SAG5. The bioinformatic outputs supported the immunogenic and non-allergic natures of multi-epitope vaccine. Thereafter, the protective efficacy of the vaccine was evaluated with/without CpG-ODN adjuvant in a laboratory animal model. BALB/c mice were immunized subcutaneously with multi-epitope DNA vaccine. The in vivo findings indicated that the multi-epitope DNA vaccine elicited significant production of IgG antibodies (472.90 ± 2.74 ng/ml) as well as IFN-γ (173.71 ± 26.39 pg/ml) (p < 0.001). Moreover, a significant reduced parasite-burden (17,470 per mg of spleen) and prolonged survival time (9 days) were observed in the immunized groups compared to the controls (p < 0.05). The low values of IL-4 (22.5 ± 0.16 pg/ml) were detected in vaccinated mice compared to the control (PBS) (p > 0.05). In addition, CpG-ODN as an adjuvant increased the immune efficacy of the multi-epitope DNA vaccine. In multi-epitope vaccine+CpG-ODN group, the values of IgG antibodies (535.90 ±7.29 ng/ml) and IFN-γ (358.21 ± 32.70 pg/ml) were significanly higher than the multi-epitope vaccine group. Meanwhile, an increased survival time (10 days) and fewer parasite load (15,485 per mg of spleen) were observed in multi-epitope vaccine+CpG-ODN group. The results revealed that the DNA vaccine containing epitopes of SAG1, SAG3 and SAG5 adjuvanted with CpG-ODN might be a new model for further investigations against acute T. gondii infection.
Collapse
|
9
|
Foroutan M, Barati M, Ghaffarifar F. Enhancing immune responses by a novel multi-epitope ROP8 DNA vaccine plus interleukin-12 plasmid as a genetic adjuvant against acute Toxoplasma gondii infection in BALB/c mice. Microb Pathog 2020; 147:104435. [PMID: 32768514 DOI: 10.1016/j.micpath.2020.104435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/27/2020] [Accepted: 08/02/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND Toxoplasmosis is a widespread zoonotic infection, caused by an obligate intracellular protozoan. The infection is often asymptomatic in immunocompetent individuals, although in persons with impaired immune system may lead to severe and progressive complications. Constant attempts of scientists have made valuable findings in the development of Toxoplasma gondii (T. gondii) candidate vaccines. However, an effective vaccine has not been successfully developed yet. In the current study, we tested the co-delivery of a novel multi-epitope pcROP8 DNA vaccine with a plasmid encoding IL-12 (pcIL-12) to assess the immune responses in BALB/c mice against acute T. gondii infection. METHODS BALB/c mice were immunized on days 0, 21, and 42. The immune responses of both vaccinated and control groups were evaluated using cytokine and antibody measurements, lymphocyte proliferation assay, and survival time. RESULTS The findings demonstrated that immunization with multi-epitope pcROP8 significantly enhanced the level of anti-T. gondii antibodies, TH1-type cellular immune responses, lymphocyte proliferation, and prolonged survival time, compared to control groups (P < 0.05). Furthermore, the use of pcIL-12 as a genetic adjuvant led to enhancements of the above-mentioned immune responses in BALB/c mice (P < 0.05). CONCLUSIONS The co-administration of pcIL-12 with multi-epitope pcROP8 vaccine, could successfully enhance the level of protection. Thus, this immunization regimen may represent an effective vaccine strategy against acute T. gondii infection.
Collapse
Affiliation(s)
- Masoud Foroutan
- Infectious Diseases Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Barati
- Infectious Diseases Research Center, AJA University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
10
|
Foroutan M, Ghaffarifar F, Sharifi Z, Dalimi A. Vaccination with a novel multi-epitope ROP8 DNA vaccine against acute Toxoplasma gondii infection induces strong B and T cell responses in mice. Comp Immunol Microbiol Infect Dis 2020; 69:101413. [DOI: 10.1016/j.cimid.2020.101413] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 10/25/2022]
|