1
|
Oana K, Shimizu K, Takada T, Makino H, Yamazaki M, Katto M, Ando M, Kurakawa T, Oishi K. Manipulating the growth environment through co-culture to enhance stress tolerance and viability of probiotic strains in the gastrointestinal tract. Appl Environ Microbiol 2023; 89:e0150223. [PMID: 38019024 PMCID: PMC10734474 DOI: 10.1128/aem.01502-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/13/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE The viability of probiotics in the human gastrointestinal tract is important, as some reports indicate that the health benefits of live bacteria are greater than those of dead ones. Therefore, the higher the viability of the probiotic strain, the better it may be. However, probiotic strains lose their viability due to gastrointestinal stress such as gastric acid and bile. This study provides an example of the use of co-culture or pH-controlled monoculture, which uses more stringent conditions (lower pH) than normal monoculture to produce probiotic strains that are more resistant to gastrointestinal stress. In addition, co-cultured beverages showed higher viability of the probiotic strain in the human gastrointestinal tract than monocultured beverages in our human study.
Collapse
Affiliation(s)
- Kosuke Oana
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Kensuke Shimizu
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Toshihiko Takada
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Hiroshi Makino
- Food Research Department, Yakult Central Institute, Tokyo, Japan
| | - Mikiko Yamazaki
- Food Research Department, Yakult Central Institute, Tokyo, Japan
| | - Miyuki Katto
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Minoru Ando
- Safety Research Department, Yakult Central Institute, Tokyo, Japan
| | - Takashi Kurakawa
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Kenji Oishi
- Research Management Center, Yakult Central Institute, Tokyo, Japan
| |
Collapse
|
2
|
Recharla N, Choi J, Puligundla P, Park SJ, Lee HJ. Impact of probiotics on cognition and constipation in the elderly: A meta-analysis. Heliyon 2023; 9:e18306. [PMID: 37539311 PMCID: PMC10395539 DOI: 10.1016/j.heliyon.2023.e18306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
Cognitive decline and constipation are common complications in the elderly. Probiotics are potential therapeutic agents to ameliorate cognitive impairment through gut-brain axis. Several clinical studies have investigated the beneficial effects of probiotics on cognitive impairment and constipation in elderly. However, a quantitative meta-analysis is required to evaluate the efficacy of probiotics on cognitive function and constipation. Thirteen clinical studies were included in this meta-analysis. We examined the risk of bias assessment and heterogeneity of eight studies for cognition and five studies for constipation, followed by group and subgroup meta-analyses using a random-effects model to evaluate the potential of probiotic supplements on cognition function and constipation in aged people. The results of the pooled meta-analysis revealed that probiotic supplementation did not improve the cognitive rating scale assessment for all studies (estimate = 0.13; 95%CI [-0.18, 0.43]; p = 0.41; I2 = 83.51%). However, subgroup analysis of single strain supplementation showed improved cognitive function in elderly people (estimate = 0.35; 95%CI [0.02, 0.69]; p = 0.039; I2 = 19.19%) compared to multiple strains. Probiotics also enhanced defecation frequency in constipated patients (estimate = 0.27; 95%CI [0.05, 0.5]; p = 0.019; I2 = 67.37%). Furthermore, probiotic supplementation resulted in higher fecal Lactobacillus counts than placebo (estimate = 0.37; 95%CI [0.05, 0.69]; p = 0.026; I2 = 21.3%). Subgroup analysis indicated that a probiotic intervention period of ≥4 weeks was more effective (estimate = 0.35; 95%CI [0.01, 0.68]; p = 0.044; I2 = 0%) in reducing constipation symptoms than a short intervention duration. Based on these results, probiotic supplementation could be a potential intervention to reduce constipation symptoms in the elderly population. The heterogeneity between studies is high, and limited trials are available to evaluate the cognitive function of aged individuals using probiotics. Therefore, further studies are required to determine the effect of probiotics on cognition.
Collapse
Affiliation(s)
- Neeraja Recharla
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Jihee Choi
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Pradeep Puligundla
- Department of Food Science and Biotechnology, College of Bionanotechnology, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Seon-Joo Park
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Hae-Jeung Lee
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| |
Collapse
|
3
|
Roselli M, Natella F, Zinno P, Guantario B, Canali R, Schifano E, De Angelis M, Nikoloudaki O, Gobbetti M, Perozzi G, Devirgiliis C. Colonization Ability and Impact on Human Gut Microbiota of Foodborne Microbes From Traditional or Probiotic-Added Fermented Foods: A Systematic Review. Front Nutr 2021; 8:689084. [PMID: 34395494 PMCID: PMC8360115 DOI: 10.3389/fnut.2021.689084] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022] Open
Abstract
A large subset of fermented foods act as vehicles of live environmental microbes, which often contribute food quality assets to the overall diet, such as health-associated microbial metabolites. Foodborne microorganisms also carry the potential to interact with the human gut microbiome via the food chain. However, scientific results describing the microbial flow connecting such different microbiomes as well as their impact on human health, are still fragmented. The aim of this systematic review is to provide a knowledge-base about the scientific literature addressing the connection between foodborne and gut microbiomes, as well as to identify gaps where more research is needed to clarify and map gut microorganisms originating from fermented foods, either traditional or added with probiotics, their possible impact on human gut microbiota composition and to which extent foodborne microbes might be able to colonize the gut environment. An additional aim was also to highlight experimental approaches and study designs which could be better standardized to improve comparative analysis of published datasets. Overall, the results presented in this systematic review suggest that a complex interplay between food and gut microbiota is indeed occurring, although the possible mechanisms for this interaction, as well as how it can impact human health, still remain a puzzling picture. Further research employing standardized and trans-disciplinary approaches aimed at understanding how fermented foods can be tailored to positively influence human gut microbiota and, in turn, host health, are therefore of pivotal importance.
Collapse
Affiliation(s)
- Marianna Roselli
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Fausta Natella
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Paola Zinno
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Barbara Guantario
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Raffaella Canali
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Emily Schifano
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Olga Nikoloudaki
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Giuditta Perozzi
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Chiara Devirgiliis
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| |
Collapse
|
4
|
Zhang X, Chen S, Zhang M, Ren F, Ren Y, Li Y, Liu N, Zhang Y, Zhang Q, Wang R. Effects of Fermented Milk Containing Lacticaseibacillus paracasei Strain Shirota on Constipation in Patients with Depression: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2021; 13:2238. [PMID: 34209804 DOI: 10.3390/nu13072238if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/03/2021] [Accepted: 06/25/2021] [Indexed: 07/26/2024] Open
Abstract
Probiotics have been shown to benefit patients with constipation and depression, but whether they specifically alleviate constipation in patients with depression remains unclear. The aim of this study was to investigate the effect of Lacticaseibacillus paracasei strain Shirota (LcS), formerly Lactobacillus casei strain Shirota, on constipation in patients with depression with specific etiology and gut microbiota and on depressive regimens. Eighty-two patients with constipation were recruited. The subjects consumed 100 mL of a LcS beverage (108 CFU/mL) or placebo every day for 9 weeks. After ingesting beverages for this period, we observed no significant differences in the total patient constipation-symptom (PAC-SYM) scores in the LcS group when compared with the placebo group. However, symptoms/scores in item 7 (rectal tearing or bleeding after a bowel movement) and items 8-12 (stool symptom subscale) were more alleviated in the LcS group than in the placebo group. The Beck Depression Index (BDI) and Hamilton Depression Rating Scale (HAMD) scores were all significantly decreased, and the degree of depression was significantly improved in both the placebo and LcS groups (p < 0.05), but there was no significant difference between the groups. The LcS intervention increased the beneficial Adlercreutzia, Megasphaera and Veillonella levels and decreased the bacterial levels related to mental illness, such as Rikenellaceae_RC9_gut_group, Sutterella and Oscillibacter. Additionally, the interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) levels were significantly decreased in both the placebo and LcS groups (p < 0.05). In particular, the IL-6 levels were significantly lower in the LcS group than the placebo group after the ingestion period (p < 0.05). In conclusion, the daily consumption of LcS for 9 weeks appeared to relieve constipation and improve the potentially depressive symptoms in patients with depression and significantly decrease the IL-6 levels. In addition, the LcS supplementation also appeared to regulate the intestinal microbiota related to mental illness.
Collapse
Affiliation(s)
- Xiaomei Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China
| | - Shanbin Chen
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China
| | - Ming Zhang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Fazheng Ren
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China
| | - Yimei Ren
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government China Agricultural University, Beijing 100083, China
| | - Yixuan Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China
| | - Ning Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China
| | - Yan Zhang
- Hebei Engineering Research Center of Animal Product, Sanhe 065200, China
| | - Qi Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China
| | - Ran Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China
| |
Collapse
|
5
|
Zhang X, Chen S, Zhang M, Ren F, Ren Y, Li Y, Liu N, Zhang Y, Zhang Q, Wang R. Effects of Fermented Milk Containing Lacticaseibacillus paracasei Strain Shirota on Constipation in Patients with Depression: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2021; 13:2238. [PMID: 34209804 PMCID: PMC8308326 DOI: 10.3390/nu13072238] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/03/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Probiotics have been shown to benefit patients with constipation and depression, but whether they specifically alleviate constipation in patients with depression remains unclear. The aim of this study was to investigate the effect of Lacticaseibacillus paracasei strain Shirota (LcS), formerly Lactobacillus casei strain Shirota, on constipation in patients with depression with specific etiology and gut microbiota and on depressive regimens. Eighty-two patients with constipation were recruited. The subjects consumed 100 mL of a LcS beverage (108 CFU/mL) or placebo every day for 9 weeks. After ingesting beverages for this period, we observed no significant differences in the total patient constipation-symptom (PAC-SYM) scores in the LcS group when compared with the placebo group. However, symptoms/scores in item 7 (rectal tearing or bleeding after a bowel movement) and items 8-12 (stool symptom subscale) were more alleviated in the LcS group than in the placebo group. The Beck Depression Index (BDI) and Hamilton Depression Rating Scale (HAMD) scores were all significantly decreased, and the degree of depression was significantly improved in both the placebo and LcS groups (p < 0.05), but there was no significant difference between the groups. The LcS intervention increased the beneficial Adlercreutzia, Megasphaera and Veillonella levels and decreased the bacterial levels related to mental illness, such as Rikenellaceae_RC9_gut_group, Sutterella and Oscillibacter. Additionally, the interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) levels were significantly decreased in both the placebo and LcS groups (p < 0.05). In particular, the IL-6 levels were significantly lower in the LcS group than the placebo group after the ingestion period (p < 0.05). In conclusion, the daily consumption of LcS for 9 weeks appeared to relieve constipation and improve the potentially depressive symptoms in patients with depression and significantly decrease the IL-6 levels. In addition, the LcS supplementation also appeared to regulate the intestinal microbiota related to mental illness.
Collapse
Affiliation(s)
- Xiaomei Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China; (X.Z.); (S.C.); (F.R.); (Y.L.); (N.L.); (Q.Z.)
| | - Shanbin Chen
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China; (X.Z.); (S.C.); (F.R.); (Y.L.); (N.L.); (Q.Z.)
| | - Ming Zhang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China;
| | - Fazheng Ren
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China; (X.Z.); (S.C.); (F.R.); (Y.L.); (N.L.); (Q.Z.)
| | - Yimei Ren
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government China Agricultural University, Beijing 100083, China;
| | - Yixuan Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China; (X.Z.); (S.C.); (F.R.); (Y.L.); (N.L.); (Q.Z.)
| | - Ning Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China; (X.Z.); (S.C.); (F.R.); (Y.L.); (N.L.); (Q.Z.)
| | - Yan Zhang
- Hebei Engineering Research Center of Animal Product, Sanhe 065200, China;
| | - Qi Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China; (X.Z.); (S.C.); (F.R.); (Y.L.); (N.L.); (Q.Z.)
| | - Ran Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China; (X.Z.); (S.C.); (F.R.); (Y.L.); (N.L.); (Q.Z.)
| |
Collapse
|
6
|
Yan R, Wang K, Wang Q, Jiang H, Lu Y, Chen X, Zhang H, Su X, Du Y, Chen L, Li L, Lv L. Probiotic Lactobacillus casei Shirota prevents acute liver injury by reshaping the gut microbiota to alleviate excessive inflammation and metabolic disorders. Microb Biotechnol 2021; 15:247-261. [PMID: 33492728 PMCID: PMC8719798 DOI: 10.1111/1751-7915.13750] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Millions of people die from liver diseases annually, and liver failure is one of the three major outcomes of liver disease. The gut microbiota plays a crucial role in liver diseases. This study aimed to explore the effects of Lactobacillus casei strain Shirota (LcS), a probiotics used widely around the world, on acute liver injury (ALI), as well as the underlying mechanism. Sprague Dawley rats were intragastrically administered LcS suspensions or placebo once daily for 7 days before induction of ALI by intraperitoneal injection of D-galactosamine (D-GalN). Histopathological examination and assessments of liver biochemical markers, inflammatory cytokines, and the gut microbiota, metabolome and transcriptome were conducted. Our results showed that pretreatment with LcS reduced hepatic and intestinal damage and reduced the elevation of serum gamma-glutamyltranspeptidase (GGT), total bile acids, IL-5, IL-10, G-CSF and RANTES. The analysis of the gut microbiota, metabolome and transcriptome showed that LcS lowered the ratio of Firmicutes to Bacteroidetes; reduced the enrichment of metabolites such as chenodeoxycholic acid, deoxycholic acid, lithocholic acid, d-talose and N-acetyl-glucosamine, reduce the depletion of d-glucose and l-methionine; and alleviated the downregulation of retinol metabolism and PPAR signalling and the upregulation of the pyruvate metabolism pathway in the liver. These results indicate the promising prospect of using LcS for the treatment of liver diseases, particularly ALI.
Collapse
Affiliation(s)
- Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Kaicen Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Qiangqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Huiyong Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yingfeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaoxiao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Hua Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaoling Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yiling Du
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lifeng Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
7
|
Takada T, Chinda D, Mikami T, Shimizu K, Oana K, Hayamizu S, Miyazawa K, Arai T, Katto M, Nagara Y, Makino H, Kushiro A, Oishi K, Fukuda S. Dynamic analysis of human small intestinal microbiota after an ingestion of fermented milk by small-intestinal fluid perfusion using an endoscopic retrograde bowel insertion technique. Gut Microbes 2020; 11:1662-1676. [PMID: 32552401 PMCID: PMC7524281 DOI: 10.1080/19490976.2020.1766942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Probiotic products have been shown to have beneficial effects on human hosts, but what happens in the gastrointestinal tract after its ingestion remains unclear. Our aim was to investigate the changes within the small intestines after a single intake of a fermented milk product containing a probiotic. We have periodically collected the small-intestinal fluids from the terminal ileum of seven healthy subjects for up to 7 h after ingestion by small-intestinal fluid perfusion using an endoscopic retrograde bowel insertion technique. The bacterial composition of the terminal ileum clearly revealed that the ingested probiotics (Lactobacillus casei strain Shirota: LcS and Bifidobacterium breve strain Yakult: BbrY) occupied the ileal microbiota for several hours, temporarily representing over 90% of the ileal microbiota in several subjects. Cultivation of ileal fluids showed that under a dramatic pH changes before reaching the terminal ileum, a certain number of the ingested bacteria survived (8.2 ± 6.4% of LcS, 7.8 ± 11.0% of BbrY). This means that more than 1 billion LcS and BbrY cells reached the terminal ileum with their colony-forming ability intact. These results indicate that there is adequate opportunity for the ingested probiotics to continuously stimulate the host cells in the small intestines. Our data suggest that probiotic fermented milk intake affects intestinal microbes and the host, explaining part of the process from the intake of probiotics to the exertion of their beneficial effects on the host.
Collapse
Affiliation(s)
- Toshihiko Takada
- Laboratory of Applied Microbiology, Microbiological Research Department, Yakult Central Institute, Tokyo, Japan,CONTACT Toshihiko Takada Laboratory of Applied Microbiology, Microbiological Research Department, Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo, 186-8650, Japan
| | - Daisuke Chinda
- Laboratory of Gastroenterology and Hematology, Graduate School of Medicine, Hirosaki University, Aomori, Japan
| | - Tatsuya Mikami
- Laboratory of Gastroenterology and Hematology, Graduate School of Medicine, Hirosaki University, Aomori, Japan
| | - Kensuke Shimizu
- Laboratory of Applied Microbiology, Microbiological Research Department, Yakult Central Institute, Tokyo, Japan
| | - Kosuke Oana
- Laboratory of Applied Microbiology, Microbiological Research Department, Yakult Central Institute, Tokyo, Japan
| | - Shiro Hayamizu
- Laboratory of Gastroenterology and Hematology, Graduate School of Medicine, Hirosaki University, Aomori, Japan
| | - Kuniaki Miyazawa
- Laboratory of Gastroenterology and Hematology, Graduate School of Medicine, Hirosaki University, Aomori, Japan
| | - Tetsu Arai
- Laboratory of Gastroenterology and Hematology, Graduate School of Medicine, Hirosaki University, Aomori, Japan
| | - Miyuki Katto
- Laboratory of Applied Microbiology, Microbiological Research Department, Yakult Central Institute, Tokyo, Japan
| | - Yusuke Nagara
- Laboratory of Applied Microbiology, Microbiological Research Department, Yakult Central Institute, Tokyo, Japan
| | - Hiroshi Makino
- Laboratory of Applied Microbiology, Microbiological Research Department, Yakult Central Institute, Tokyo, Japan
| | - Akira Kushiro
- Laboratory of Applied Microbiology, Microbiological Research Department, Yakult Central Institute, Tokyo, Japan
| | - Kenji Oishi
- Laboratory of Applied Microbiology, Microbiological Research Department, Yakult Central Institute, Tokyo, Japan
| | - Shinsaku Fukuda
- Laboratory of Gastroenterology and Hematology, Graduate School of Medicine, Hirosaki University, Aomori, Japan
| |
Collapse
|
8
|
Nikbakht E, Jamaluddin R, Redzwan SM, Khalesi S. Oral administration of Lactobacillus casei Shirota can ameliorate the adverse effect of an acute aflatoxin exposure in Sprague Dawley rats. INT J VITAM NUTR RES 2019; 88:199-208. [PMID: 31056010 DOI: 10.1024/0300-9831/a000513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aflatoxin B1(AFB1) is a toxic compound commonly found in some crops with an adverse health effect on human and animals. Some beneficial microorganisms (or probiotics) such as lactic acid bacteria have shown the ability to reduce the bioavailability of aflatoxins and its intestinal absorption. However, the dose and duration of aflatoxins exposure and probiotic treatment can influence the ability of probiotics to remove aflatoxins. Therefore, this research aimed to investigate the efficacy of oral probiotic Lactobacillus casei Shirota strain (LcS) induction in an acute exposure to AFB1 in rats. Experimentally, Sprague Dawley rats were divided into three groups: AFB1 only (n = 9); AFB1 treated with LcS (n = 9); and control (no AFB1 exposure) (n = 6) groups. The blood AFB1 level of rats treated with LcS was slightly lower than the untreated AFB1 induced rats (11.12 ± 0.71 vs 10.93 ± 0.69 ng g-1). Also, LcS treatment slightly moderated the liver and kidney biomarkers in AFB1 induced rats. However, a trend for a significant difference was only observed in ALT of AFB1 induced rats treated with LcS compared to their counterparts (126.11 ± 36.90 vs 157.36 ± 15.46, p = 0.06). Rats' body weight decreased in all animals force-fed with AFB1 with no significant difference between LcS treatment compared to the counterpart. In conclusion, this experiment indicated that probiotic LsC was able to slightly ameliorate the adverse effect of an acute exposure to AFB1 in rats. However, future studies with longer probiotics treatment or higher probiotics dose is required to confirm these findings.
Collapse
Affiliation(s)
- Elham Nikbakht
- 1 Menzies Health Institute Queensland, School of Medical Science, Griffith University, Gold Coast, Australia
| | - Rosita Jamaluddin
- 2 Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - S Mohd Redzwan
- 2 Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Saman Khalesi
- 3 Physical Activity Research Group, Appleton Institute and School of Health, Medical and Applied Sciences, Central Queensland University, Brisbane, Australia
| |
Collapse
|
9
|
Ou Y, Chen S, Ren F, Zhang M, Ge S, Guo H, Zhang H, Zhao L. Lactobacillus casei Strain Shirota Alleviates Constipation in Adults by Increasing the Pipecolinic Acid Level in the Gut. Front Microbiol 2019; 10:324. [PMID: 30846982 PMCID: PMC6394200 DOI: 10.3389/fmicb.2019.00324] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/07/2019] [Indexed: 12/26/2022] Open
Abstract
The benefits of probiotics for constipation are widely accepted, but the mechanisms involving gut metabolites are unclear. In this study, we investigated the effects of Lactobacillus casei strain Shirota (LcS) on constipated patients and revealed that a metabolite mediator is involved in the LcS-induced constipation alleviation. Sixteen constipated patients and 22 non-constipated participants were recruited. The subjects consumed 100 mL of an LcS beverage (108 CFU/mL) per day for 28 days. The fecal non-volatile metabolites were determined by GC/MS, and the targeted metabolites were further verified in a constipated mouse model. In constipated patients, LcS intervention significantly improved defecation frequency (from 4.81 to 7.81 times per week, p < 0.05), stool consistency (from 2.52 to 3.68, p < 0.05) and constipation-related symptoms. A total of 14 non-volatile fecal metabolites were obtained as potential constipation-related metabolites that were regulated by LcS. Among these metabolites, pipecolinic acid (PIPA) had a significant positive correlation with defecation frequency in constipated patients. PIPA significantly promoted the small intestinal propulsive rate (from 25.45 to 39.68%) and increased the number of fecal pellets (from 30.38 to 57.38 pellets) in constipated mice (p < 0.05). The 5-hydroxytryptamine (5-HT) and acetylcholine (ACh) in colonic tissue may be partly involved in PIPA-mediated constipation alleviation. In conclusion, PIPA was a metabolic mediator in the gut that participated in LcS-induced constipation alleviation.
Collapse
Affiliation(s)
- Yangwenshan Ou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shanbin Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ming Zhang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Shaoyang Ge
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Hebei Engineering Research Center of Animal Product, Sanhe, China
| | - Huiyuan Guo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Liang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Tsuji H, Matsuda K, Nomoto K. Counting the Countless: Bacterial Quantification by Targeting rRNA Molecules to Explore the Human Gut Microbiota in Health and Disease. Front Microbiol 2018; 9:1417. [PMID: 30008707 PMCID: PMC6033970 DOI: 10.3389/fmicb.2018.01417] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 06/08/2018] [Indexed: 12/12/2022] Open
Abstract
Over the past decade, the advent of next-generation-sequencing tools has revolutionized our approach to understanding the human gut microbiota. However, numerical data on the gut bacterial groups-particularly low-cell-count microbiota, such as indigenous pathobionts, that are otherwise important components of the microbiota-are relatively limited and disparate. As a result, the comprehensive quantitative structure of the human gut microbiota still needs to be fully defined and standardized. With the aim of filling this knowledge gap, we have established a highly sensitive quantitative analytical system that is based on reverse transcription-quantitative PCR and targets microbial rRNA molecules. The system has already been validated in the precise, sensitive, and absolute quantification of more than 70 target bacterial groups belonging to various human gut bacterial clades, including predominant obligate and facultative anaerobes. The system demonstrates sensitivity several hundred times greater than that of other rRNA-gene-targeting methods. It is thus an efficient and valuable tool for exhaustive analysis of gut microbiota over a wide dynamic range. Using this system, we have to date quantified the gut microbiota of about 2,000 healthy Japanese subjects ranging in age from 1 day to over 80 years. By integrating and analyzing this large database, we came across several novel and interesting features of the gut microbiota, which we discuss here. For instance, we demonstrated for the first time that the fecal counts of not only the predominant bacterial groups but also those at lower cell counts conform to a logarithmically normal distribution. In addition, we revealed several interesting quantitative differences in the gut microbiota of people from different age groups and countries and with different diseases. Because of its high analytic sensitivity, the system has also been applied successfully to other body niches, such as in characterizing the vaginal microbiota, detecting septicemia, and monitoring bacterial translocation. Here, we present a quantitative perspective on the human gut microbiota and review some of the novel microbial insights revealed by employing this promising analytical approach.
Collapse
Affiliation(s)
- Hirokazu Tsuji
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Kazunori Matsuda
- Yakult Honsha European Research Center for Microbiology ESV, Gent-Zwijnaarde, Belgium
| | - Koji Nomoto
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| |
Collapse
|
11
|
Maki R, Matsukawa M, Matsuduka A, Hashinaga M, Anai H, Yamaoka Y, Hanada K, Fujii C. Therapeutic effect of lyophilized, Kefir-fermented milk on constipation among persons with mental and physical disabilities. Jpn J Nurs Sci 2017; 15:218-225. [PMID: 29105976 DOI: 10.1111/jjns.12189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 08/08/2017] [Accepted: 08/21/2017] [Indexed: 01/19/2023]
Abstract
AIM Constipation is a serious problem for persons with mental and physical disabilities in Japan. However, prophylaxis is extremely difficult because the major causes of constipation in these individuals are related to their mental and physical disabilities. Constipation can be successfully treated with glycerol enemas (GEs) and other aperients. As constipation is a lifetime issue for these persons, dietary regimens to prevent constipation can be important. METHODS This study evaluated the probiotic effects of kefir-fermented milk for preventing constipation in 42 persons with mental and physical disabilities. The participants were administered 2 g of lyophilized kefir with each meal for 12 weeks and their bowel movements, the administration of GE and other aperients, and stool shape were recorded. RESULTS The intake of kefir significantly reduced constipation, compared with the baseline status. Some individuals showed complete relief of constipation, whereas others showed no effect. CONCLUSION Despite individual variations, consuming kefir daily could prevent constipation.
Collapse
Affiliation(s)
- Rumiko Maki
- Department of Nursing, Beppu Developmental Medical Center, Beppu, Japan
| | - Mayumi Matsukawa
- Department of Nursing, Beppu Developmental Medical Center, Beppu, Japan
| | - Atsuko Matsuduka
- Department of Nursing, Beppu Developmental Medical Center, Beppu, Japan
| | - Masahiko Hashinaga
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Hirofumi Anai
- Clinical Engineering Research Center, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Katsuhiro Hanada
- Clinical Engineering Research Center, Faculty of Medicine, Oita University, Yufu, Japan
| | - Chieko Fujii
- Department of Nursing, Beppu Developmental Medical Center, Beppu, Japan
| |
Collapse
|
12
|
Abstract
This narrative review summarises the benefits, risks and appropriate use of acid-suppressing drugs (ASDs), proton pump inhibitors and histamine-2 receptor antagonists, advocating a rationale balanced and individualised approach aimed to minimise any serious adverse consequences. It focuses on current controversies on the potential of ASDs to contribute to infections-bacterial, parasitic, fungal, protozoan and viral, particularly in the elderly, comprehensively and critically discusses the growing body of observational literature linking ASD use to a variety of enteric, respiratory, skin and systemic infectious diseases and complications (Clostridium difficile diarrhoea, pneumonia, spontaneous bacterial peritonitis, septicaemia and other). The proposed pathogenic mechanisms of ASD-associated infections (related and unrelated to the inhibition of gastric acid secretion, alterations of the gut microbiome and immunity), and drug-drug interactions are also described. Both probiotics use and correcting vitamin D status may have a significant protective effect decreasing the incidence of ASD-associated infections, especially in the elderly. Despite the limitations of the existing data, the importance of individualised therapy and caution in long-term ASD use considering the balance of benefits and potential harms, factors that may predispose to and actions that may prevent/attenuate adverse effects is evident. A six-step practical algorithm for ASD therapy based on the best available evidence is presented.
Collapse
Affiliation(s)
- Leon Fisher
- Frankston Hospital, Peninsula Health, Melbourne, Australia.
| | - Alexander Fisher
- The Canberra Hospital, ACT Health, Canberra, Australia
- Australian National University Medical School, Canberra, Australia
| |
Collapse
|
13
|
Jones R. The Use of Lactobacillus casei and Lactobacillus paracasei in Clinical Trials for the Improvement of Human Health. THE MICROBIOTA IN GASTROINTESTINAL PATHOPHYSIOLOGY 2017:99-108. [DOI: 10.1016/b978-0-12-804024-9.00009-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Gastroenterology Disease and Lifestyle Medicine. LIFESTYLE MEDICINE 2016. [DOI: 10.1007/978-3-319-24687-1_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
15
|
Aktas B, De Wolfe TJ, Tandee K, Safdar N, Darien BJ, Steele JL. The Effect of Lactobacillus casei 32G on the Mouse Cecum Microbiota and Innate Immune Response Is Dose and Time Dependent. PLoS One 2015; 10:e0145784. [PMID: 26714177 PMCID: PMC4705108 DOI: 10.1371/journal.pone.0145784] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 12/08/2015] [Indexed: 01/12/2023] Open
Abstract
Lactobacilli have been associated with a variety of immunomodulatory effects and some of these effects have been related to changes in gastrointestinal microbiota. However, the relationship between probiotic dose, time since probiotic consumption, changes in the microbiota, and immune system requires further investigation. The objective of this study was to determine if the effect of Lactobacillus casei 32G on the murine gastrointestinal microbiota and immune function are dose and time dependent. Mice were fed L. casei 32G at doses of 106, 107, or 108 CFU/day/mouse for seven days and were sacrificed 0.5h, 3.5h, 12h, or 24h after the last administration. The ileum tissue and the cecal content were collected for immune profiling by qPCR and microbiota analysis, respectively. The time required for L. casei 32G to reach the cecum was monitored by qPCR and the 32G bolus reaches the cecum 3.5h after the last administration. L. casei 32G altered the cecal microbiota with the predominance of Lachnospiraceae IS, and Oscillospira decreasing significantly (p < 0.05) in the mice receiving 108 CFU/mouse 32G relative to the control mice, while a significant (p < 0.05) increase was observed in the prevalence of lactobacilli. The lactobacilli that increased were determined to be a commensal lactobacilli. Interestingly, no significant difference in the overall microbiota composition, regardless of 32G doses, was observed at the 12h time point. A likely explanation for this observation is the level of feed derived-nutrients resulting from the 12h light/dark cycle. 32G results in consistent increases in Clec2h expression and reductions in TLR-2, alpha-defensins, and lysozyme. Changes in expression of these components of the innate immune system are one possible explanation for the observed changes in the cecal microbiota. Additionally, 32G administration was observed to alter the expression of cytokines (IL-10rb and TNF-α) in a manner consistent with an anti-inflammatory response.
Collapse
Affiliation(s)
- Busra Aktas
- Department of Food Science, University of Wisconsin, Madison, WI, United States of America
| | - Travis J. De Wolfe
- Department of Food Science, University of Wisconsin, Madison, WI, United States of America
| | - Kanokwan Tandee
- Food Science and Technology, Maejo University, Chiangmai, Thailand
| | - Nasia Safdar
- Infectious Diseases Division, Department of Medicine, University of Wisconsin, Madison, WI, United States of America
- William S. Middleton Veterans Affairs Hospital, Madison, WI, United States of America
| | - Benjamin J. Darien
- Animal Health and Biomedical Sciences, University of Wisconsin, Madison, WI, United States of America
| | - James L. Steele
- Department of Food Science, University of Wisconsin, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
16
|
Fang X. Potential role of gut microbiota and tissue barriers in Parkinson's disease and amyotrophic lateral sclerosis. Int J Neurosci 2015; 126:771-6. [PMID: 26381230 DOI: 10.3109/00207454.2015.1096271] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative diseases with pathophysiology that may be related to the gastrointestinal tract. It is well established that tissue barriers maintain homeostasis and health. Furthermore, gut microbiota may have an impact on brain activity through the gut-microbiota-brain axis under both physiological and pathological conditions. In this review, we highlight the current knowledge regarding the role of gut microbiota and tissue barriers in PD and ALS. To our knowledge, this is the first review of the key issues involving both the altered gut microbiota and impaired tissue barriers in the pathophysiology of PD and ALS.
Collapse
Affiliation(s)
- Xin Fang
- a Department of Neurology, The First Affiliated Hospital of Nanchang University , Nanchang , China
| |
Collapse
|
17
|
Akoglu B, Loytved A, Nuiding H, Zeuzem S, Faust D. Probiotic Lactobacillus casei Shirota improves kidney function, inflammation and bowel movements in hospitalized patients with acute gastroenteritis – A prospective study. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.05.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
18
|
Attenuation of Colitis by Lactobacillus casei BL23 Is Dependent on the Dairy Delivery Matrix. Appl Environ Microbiol 2015; 81:6425-35. [PMID: 26162873 DOI: 10.1128/aem.01360-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/02/2015] [Indexed: 02/07/2023] Open
Abstract
The role of the food delivery matrix in probiotic performance in the intestine is not well understood. Because probiotics are often provided to consumers in dairy products, we investigated the contributions of milk to the health-benefiting performance of Lactobacillus casei BL23 in a dextran sulfate sodium (DSS)-induced murine model of ulcerative colitis. L. casei BL23 protected against the development of colitis when ingested in milk but not in a nutrient-free buffer simulating consumption as a nutritional supplement. Consumption of (acidified) milk alone also provided some protection against weight loss and intestinal inflammation but was not as effective as L. casei and milk in combination. In contrast, L. casei mutants deficient in DltD (lipoteichoic acid d-alanine transfer protein) or RecA (recombinase A) were unable to protect against DSS-induced colitis, even when consumed in the presence of milk. Mice fed either L. casei or milk contained reduced quantities of colonic proinflammatory cytokines, indicating that the L. casei DltD(-) and RecA(-) mutants as well as L. casei BL23 in nutrient-free buffer were effective at modulating immune responses. However, there was not a direct correlation between colitis and quantities of these cytokines at the time of sacrifice. Identification of the cecal microbiota by 16S rRNA gene sequencing showed that L. casei in milk enriched for Comamonadaceae and Bifidobacteriaceae; however, the consumption of neither L. casei nor milk resulted in the restoration of the microbiota to resemble that of healthy animals. These findings strongly indicate that probiotic strain efficacy can be influenced by the food/supplement delivery matrix.
Collapse
|
19
|
Zambelli P, Tamborini L, Cazzamalli S, Pinto A, Arioli S, Balzaretti S, Plou FJ, Fernandez-Arrojo L, Molinari F, Conti P, Romano D. An efficient continuous flow process for the synthesis of a non-conventional mixture of fructooligosaccharides. Food Chem 2015. [PMID: 26213017 DOI: 10.1016/j.foodchem.2015.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A sustainable and scalable process for the production of a new mixture of fructooligosaccharides (FOS) was developed using a continuous-flow approach based on an immobilized whole cells-packed bed reactor. The technological transfer from a classical batch system to an innovative flow environment allowed a significant improvement of the productivity. Moreover, the stability of this production system was ascertained by up to 7 days of continuous working. These results suggest the suitability of the proposed method for a large-scale production of the desired FOS mixture, in view of a foreseeable use as a novel prebiotic preparation.
Collapse
Affiliation(s)
- Paolo Zambelli
- Department of Food Environmental and Nutritional Science (DeFENS), University of Milan, Via Mangiagalli, 20133 Milan, Italy
| | - Lucia Tamborini
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, Via Mangiagalli 25, 20133 Milan, Italy.
| | - Samuele Cazzamalli
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Andrea Pinto
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Stefania Arioli
- Department of Food Environmental and Nutritional Science (DeFENS), University of Milan, Via Mangiagalli, 20133 Milan, Italy
| | - Silvia Balzaretti
- Department of Food Environmental and Nutritional Science (DeFENS), University of Milan, Via Mangiagalli, 20133 Milan, Italy
| | - Francisco J Plou
- Instituto de Catálisis y Petroleoquímica, CSIC, 28049 Madrid, Spain
| | | | - Francesco Molinari
- Department of Food Environmental and Nutritional Science (DeFENS), University of Milan, Via Mangiagalli, 20133 Milan, Italy
| | - Paola Conti
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Diego Romano
- Department of Food Environmental and Nutritional Science (DeFENS), University of Milan, Via Mangiagalli, 20133 Milan, Italy.
| |
Collapse
|