1
|
Lee J, Beers JL, Geffert RM, Jackson KD. A Review of CYP-Mediated Drug Interactions: Mechanisms and In Vitro Drug-Drug Interaction Assessment. Biomolecules 2024; 14:99. [PMID: 38254699 PMCID: PMC10813492 DOI: 10.3390/biom14010099] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Drug metabolism is a major determinant of drug concentrations in the body. Drug-drug interactions (DDIs) caused by the co-administration of multiple drugs can lead to alteration in the exposure of the victim drug, raising safety or effectiveness concerns. Assessment of the DDI potential starts with in vitro experiments to determine kinetic parameters and identify risks associated with the use of comedication that can inform future clinical studies. The diverse range of experimental models and techniques has significantly contributed to the examination of potential DDIs. Cytochrome P450 (CYP) enzymes are responsible for the biotransformation of many drugs on the market, making them frequently implicated in drug metabolism and DDIs. Consequently, there has been a growing focus on the assessment of DDI risk for CYPs. This review article provides mechanistic insights underlying CYP inhibition/induction and an overview of the in vitro assessment of CYP-mediated DDIs.
Collapse
Affiliation(s)
- Jonghwa Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.L.B.); (R.M.G.)
| | | | | | - Klarissa D. Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.L.B.); (R.M.G.)
| |
Collapse
|
2
|
Stipp MC, Kulik JD, Corso CR, Galindo CM, Adami ER, Evangelista AG, Luciano FB, Winnischofer SMB, Cadena SMSC, Sassaki GL, Acco A. Influence of red wine polysaccharides on cytochrome P450 enzymes and inflammatory parameters in tumor models. Int J Biol Macromol 2023; 240:124385. [PMID: 37060983 DOI: 10.1016/j.ijbiomac.2023.124385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/17/2023]
Abstract
The soluble fraction of polysaccharides from cabernet franc red wine (SFP) previously showed antitumoral effects by modulating the immune system. The present study tested the hypothesis that the SFP can regulate CYPs in vitro in HepG2 cells and in vivo in Walker-256 tumor-bearing rats. The SFP was used in the following protocols: (i) solid tumor, (ii) liquid tumor, and (iii) chemopreventive solid tumor. The SFP reduced solid tumor growth in both solid tumor protocols but did not inhibit liquid tumor development. The SFP reduced total CYP levels in the solid and liquid tumor protocols and reduced the gene expression of Cyp1a1 and Cyp2e1 in rats and CYP1A2 in HepG2 cells. An increase of N-acetylglucosaminidase activity was observed in all SFP-treated rats, and TNF-α levels increased in the solid tumor protocol in the vehicle, SFP, and vincristine (positive control) groups. The chemopreventive solid tumor protocol did not modify CYP levels in the liver or intestine or N-acetylglucosaminidase and myeloperoxidase activity in the liver. The in vitro digestion and nuclear magnetic resonance analyses suggested that SFP was minimally modified in the gastrointestinal system. In conclusion, SFP inhibited CYPs both in vivo and in vitro, likely as a result of its immunoinflammatory actions.
Collapse
Affiliation(s)
| | - Juliana Danna Kulik
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
| | - Claudia Rita Corso
- Department of Pharmacology, Federal University of Paraná, Curitiba, Brazil
| | | | | | | | | | | | | | - Guilherme Lanzi Sassaki
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
| | - Alexandra Acco
- Department of Pharmacology, Federal University of Paraná, Curitiba, Brazil.
| |
Collapse
|
3
|
Stanley LA, Wolf CR. Through a glass, darkly? HepaRG and HepG2 cells as models of human phase I drug metabolism. Drug Metab Rev 2022; 54:46-62. [PMID: 35188018 DOI: 10.1080/03602532.2022.2039688] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The pharmacokinetic and safety assessment of drug candidates is becoming increasingly dependent upon in vitro models of hepatic metabolism and toxicity. Predominant among these is the HepG2 cell line, although HepaRG is becoming increasingly popular because of its perceived closer resemblance to human hepatocytes. We review the functionality of these cell lines in terms of Phase I protein expression, basal cytochrome P450-dependent activity, and utility in P450 induction studies. Our analysis indicates that HepG2 cells are severely compromised: proteomic studies show that they express few key proteins in common with hepatocytes and they lack drug-metabolizing capacity. Differentiated HepaRGs are more hepatocyte-like than HepG2s, but they also have limitations, and it is difficult to assess their utility because of the enormous variability in data reported, possibly arising from the complex differentiation protocols required to obtain hepatocyte-like cells. This is exacerbated by the use of DMSO in the induction protocol, together with proprietary supplements whose composition is a commercial secret. We conclude that, while currently available data on the utility of HepaRG generates a confusing picture, this line does have potential utility in drug metabolism studies. However, to allow studies to be compared directly a standardized, reproducible differentiation protocol is essential and the cell line's functionality in terms of known mechanisms of P450 regulation must be demonstrated. We, therefore, support the development of regulatory guidelines for the use of HepaRGs in induction studies as a first step in generating a database of consistent, reliable data.
Collapse
Affiliation(s)
- Lesley A Stanley
- Consultant in Investigative Toxicology, Linlithgow, UK.,School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - C Roland Wolf
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, UK
| |
Collapse
|
4
|
Tsutsui H, Kato M, Kuramoto S, Sekiguchi N, Shindoh H, Ozeki K. Quantitative evaluation of hepatic and intestinal induction of CYP3A in clinical practice. Xenobiotica 2019; 50:875-884. [PMID: 31885304 DOI: 10.1080/00498254.2019.1710620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This is the first report quantitatively evaluating the clinical induction of CYP3A in the liver and the intestine.To evaluate hepatic induction, we collected literature data on endogenous biomarkers of hepatic CYP3A induction which we then used to calculate the fold-induction (inducer-mediated change in biomarker level). Literature data on decreases in the area under the curve (AUC) of alfentanil, a CYP3A substrate, caused by CYP3A inducers were also collected. We used the hepatic intrinsic clearance of alfentanil to calculate the hepatic induction ratio (inducer-mediated change in intrinsic clearance). For intestinal induction, the intestinal bioavailability (Fg) of alfentanil was used to calculate the intestinal induction ratio. We determined in vivo maximum induction (Emax) and the average unbound plasma concentration (Cav,u) required for half the maximum induction (EC50) for inducers using an Emax model analysis.In our results, fold-induction was comparable to the induction ratio at several inducer concentrations, and almost the maximum induction was achieved by a therapeutic dose. Induction ratios in the intestine were similar to the liver.Our findings suggest that, by knowing only hepatic induction ratios for common inducers, we can quantitatively predict the decreases in the AUC of substrates by CYP3A induction.
Collapse
Affiliation(s)
- Haruka Tsutsui
- Research division, Chugai Pharmaceutical Co., Ltd, Gotemba, Shizuoka, Japan
| | - Motohiro Kato
- Research division, Chugai Pharmaceutical Co., Ltd, Gotemba, Shizuoka, Japan
| | - Shino Kuramoto
- Research division, Chugai Pharmaceutical Co., Ltd, Gotemba, Shizuoka, Japan
| | - Nobuo Sekiguchi
- Research division, Chugai Pharmaceutical Co., Ltd, Gotemba, Shizuoka, Japan
| | - Hidetoshi Shindoh
- Research division, Chugai Pharmaceutical Co., Ltd, Gotemba, Shizuoka, Japan
| | - Kazuhisa Ozeki
- Research division, Chugai Pharmaceutical Co., Ltd, Gotemba, Shizuoka, Japan
| |
Collapse
|
5
|
Endo-Tsukude C, Kato M, Kaneko A, Iida S, Kuramoto S, Ishigai M, Hamada A. Risk of CYP2C9 induction analyzed by a relative factor approach with human hepatocytes. Drug Metab Pharmacokinet 2019; 34:325-333. [DOI: 10.1016/j.dmpk.2019.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/23/2019] [Accepted: 07/10/2019] [Indexed: 10/26/2022]
|
6
|
Chong LH, Ng C, Li H, Tian EF, Ananthanarayanan A, McMillian M, Toh YC. Hepatic Bioactivation of Skin-Sensitizing Drugs to Immunogenic Reactive Metabolites. ACS OMEGA 2019; 4:13902-13912. [PMID: 31497708 PMCID: PMC6714514 DOI: 10.1021/acsomega.9b01551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
The clinical use of some drugs, such as carbamazepine, phenytoin, and allopurinol, is often associated with adverse cutaneous reactions. The bioactivation of drugs into immunologically reactive metabolites by the liver is postulated to be the first step in initiating a downstream cascade of pathological immune responses. Current mechanistic understanding and the ability to predict such adverse drug cutaneous responses have been partly limited by the lack of appropriate cutaneous drug bioactivation experimental models. Although in vitro human liver models have been extensively investigated for predicting hepatotoxicity and drug-drug interactions, their ability to model the generation of antigenic reactive drug metabolites that are capable of eliciting immunological reactions is not well understood. Here, we employed a human progenitor cell (HepaRG)-derived hepatocyte model and established highly sensitive liquid chromatography-mass spectrometry analytical assays to generate and quantify different reactive metabolite species of three paradigm skin sensitizers, namely, carbamazepine, phenytoin, and allopurinol. We found that the generation of reactive drug metabolites by the HepaRG-hepatocytes was sensitive to the medium composition. In addition, a functional assay based on the activation of U937 myeloid cells into the antigen-presenting cell (APC) phenotype was established to evaluate the immunogenicity potential of the reactive drug metabolites produced by HepaRG-derived hepatocytes. We showed that the reactive drug metabolites of known skin sensitizers could significantly upregulate IL8, IL1β, and CD86 expressions in U937 cells compared to the metabolites from a nonskin sensitizer (i.e., acetaminophen). Thus, the extent of APC activation by HepaRG-hepatocytes conditioned medium containing reactive drug metabolites can potentially be used to predict their skin sensitization potential.
Collapse
Affiliation(s)
- Lor Huai Chong
- Department
of Biomedical Engineering, National University
of Singapore, 4 Engineering Drive 3, #04-08, Singapore 117583
| | - Celine Ng
- School
of Applied Science, Temasek Polytechnic, Tampines Avenue 1, Singapore 529765
| | - Huan Li
- School
of Applied Science, Temasek Polytechnic, Tampines Avenue 1, Singapore 529765
| | - Edmund Feng Tian
- School
of Applied Science, Temasek Polytechnic, Tampines Avenue 1, Singapore 529765
| | | | - Michael McMillian
- Invitrocue
Pte Ltd, 11, Biopolis
Way, Helios #12-07/08, Singapore 138667
- Department
of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, #04-11, Singapore 117597
| | - Yi-Chin Toh
- Department
of Biomedical Engineering, National University
of Singapore, 4 Engineering Drive 3, #04-08, Singapore 117583
- Institute
for Health Innovation and Technology (iHealthtech), National University of Singapore, MD6, 14 Medical Drive, #14-01, Singapore 117599
- The
N.1 Institute for Health, 28 Medical Drive, #05-corridor, Singapore 117456
- NUS
Tissue Engineering Programme, National University
of Singapore, 28 Medical
Drive, Singapore 117456
| |
Collapse
|
7
|
Yuan L, Liu X, Zhang L, Zhang Y, Chen Y, Li X, Wu K, Cao J, Hou W, Que Y, Zhang J, Zhu H, Yuan Q, Tang Q, Cheng T, Xia N. Optimized HepaRG is a suitable cell source to generate the human liver chimeric mouse model for the chronic hepatitis B virus infection. Emerg Microbes Infect 2018; 7:144. [PMID: 30097574 PMCID: PMC6086841 DOI: 10.1038/s41426-018-0143-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/30/2018] [Accepted: 07/06/2018] [Indexed: 12/11/2022]
Abstract
The human liver chimeric mouse with primary human hepatocytes (PHHs) engraftment has been demonstrated to be a useful animal model to study hepatitis B virus (HBV) pathogenesis and evaluate anti-HBV drugs. However, the disadvantages of using PHHs include the inability for cellular expansion in vitro, limited donor availability, individual differences, and ethical issues, necessitating the development of alternatives. To obtain in vitro expandable hepatocytes, we optimized the hepatic differentiation procedure of the human liver progenitor cell line, HepaRG, using four functional small molecules (4SM) and enriched the precursor hepatocyte-like cells (HLCs). HepaRG cells of different hepatic differentiation states were engrafted to immunodeficient mice (FRGS) with weekly 4SM treatment. The HepaRG-engrafted mice were challenged with HBV and/or treated with several antivirals to evaluate their effects. We demonstrated that the 4SM treatment enhanced hepatic differentiation and promoted cell proliferation capacity both in vitro and in vivo. Mice engrafted with enriched HepaRG of prehepatic differentiation and treated with 4SM displayed approximately 10% liver chimerism at week 8 after engraftment and were maintained at this level for another 16 weeks. Therefore, we developed a HepaRG-based human liver chimeric mouse model: HepaRG-FRGS. Our experimental results showed that the liver chimerism of the mice was adequate to support chronic HBV infection for 24 weeks and to evaluate antivirals. We also demonstrated that HBV infection in HepaRG cells was dependent on their hepatic differentiation state and liver chimerism in vivo. Overall, HepaRG-FRGS mice provide a novel human liver chimeric mouse model to study chronic HBV infection and evaluate anti-HBV drugs.
Collapse
Affiliation(s)
- Lunzhi Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Xuan Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Liang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Yali Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Yao Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Xiaoling Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Kun Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Jiali Cao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Wangheng Hou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Yuqiong Que
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| | - Hua Zhu
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 070101, USA
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China.
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC, 20059, USA.
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, School of Public Health, Xiamen University, 361102, Xiamen, P. R. China
| |
Collapse
|
8
|
Ren Z, Chen S, Ning B, Guo L. Use of Liver-Derived Cell Lines for the Study of Drug-Induced Liver Injury. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2018. [DOI: 10.1007/978-1-4939-7677-5_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Kuramoto S, Kato M, Shindoh H, Kaneko A, Ishigai M, Miyauchi S. Simple Evaluation Method for CYP3A4 Induction from Human Hepatocytes: The Relative Factor Approach with an Induction Detection Limit Concentration Based on the Emax Model. Drug Metab Dispos 2017; 45:1139-1145. [PMID: 28821485 DOI: 10.1124/dmd.117.076349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/03/2017] [Indexed: 01/31/2023] Open
Abstract
We investigated the robustness and utility of the relative factor (RF) approach based on the maximum induction effect (Emax) model, using the mRNA induction data of 10 typical CYP3A4 inducers in cryopreserved human hepatocytes. The RF value is designated as the ratio of the induction detection limit concentration (IDLC) for a standard inducer, such as rifampicin (RIF) or phenobarbital (PB), to that for the compound (e.g., RFRIF is IDLCRIF/IDLCcpd; RFPB is IDLCPB/IDLCcpd). An important feature of the RF approach is that the profiles of the induction response curves on the logarithmic scale remain unchanged irrespective of inducers but are shifted parallel depending on the EC50 values. A key step in the RF approach is to convert the induction response curve by finding the IDLC of a standard inducer. The relative induction score was estimated not only from Emax and EC50 values but also from those calculated by the RF approach. These values showed good correlation, with a correlation coefficient of more than 0.974, which revealed the RF approach to be a robust analysis irrespective of its simplicity. Furthermore, the relationship between RFRIF or RFPB multiplied by the steady-state unbound plasma concentration and the in vivo induction ratio plotted using 10 typical inducers gives adequate thresholds for CYP3A4 drug-drug interaction risk assessment. In light of these findings, the simple RF approach using the IDLC value could be a useful method to adequately assess the risk of CYP3A4 induction in humans during drug discovery and development without evaluation of Emax and EC50.
Collapse
Affiliation(s)
- Shino Kuramoto
- Research Division, Chugai Pharmaceutical Co. Ltd., Kanagawa, Japan (S.K., M.K., H.S., A.K., M.I.); and Department of Pharmacokinetics, Toho University School of Pharmaceutical Sciences, Chiba, Japan (S.M.)
| | - Motohiro Kato
- Research Division, Chugai Pharmaceutical Co. Ltd., Kanagawa, Japan (S.K., M.K., H.S., A.K., M.I.); and Department of Pharmacokinetics, Toho University School of Pharmaceutical Sciences, Chiba, Japan (S.M.)
| | - Hidetoshi Shindoh
- Research Division, Chugai Pharmaceutical Co. Ltd., Kanagawa, Japan (S.K., M.K., H.S., A.K., M.I.); and Department of Pharmacokinetics, Toho University School of Pharmaceutical Sciences, Chiba, Japan (S.M.)
| | - Akihisa Kaneko
- Research Division, Chugai Pharmaceutical Co. Ltd., Kanagawa, Japan (S.K., M.K., H.S., A.K., M.I.); and Department of Pharmacokinetics, Toho University School of Pharmaceutical Sciences, Chiba, Japan (S.M.)
| | - Masaki Ishigai
- Research Division, Chugai Pharmaceutical Co. Ltd., Kanagawa, Japan (S.K., M.K., H.S., A.K., M.I.); and Department of Pharmacokinetics, Toho University School of Pharmaceutical Sciences, Chiba, Japan (S.M.)
| | - Seiji Miyauchi
- Research Division, Chugai Pharmaceutical Co. Ltd., Kanagawa, Japan (S.K., M.K., H.S., A.K., M.I.); and Department of Pharmacokinetics, Toho University School of Pharmaceutical Sciences, Chiba, Japan (S.M.)
| |
Collapse
|
10
|
Jones BC, Rollison H, Johansson S, Kanebratt KP, Lambert C, Vishwanathan K, Andersson TB. Managing the Risk of CYP3A Induction in Drug Development: A Strategic Approach. Drug Metab Dispos 2017; 45:35-41. [PMID: 27777246 DOI: 10.1124/dmd.116.072025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/19/2016] [Indexed: 12/21/2022] Open
Abstract
Induction of cytochrome P450 (P450) can impact the efficacy and safety of drug molecules upon multiple dosing with coadministered drugs. This strategy is focused on CYP3A since the majority of clinically relevant cases of P450 induction are related to these enzymes. However, the in vitro evaluation of induction is applicable to other P450 enzymes; however, the in vivo relevance cannot be assessed because the scarcity of relevant clinical data. In the preclinical phase, compounds are screened using pregnane X receptor reporter gene assay, and if necessary structure-activity relationships (SAR) are developed. When projects progress toward the clinical phase, induction studies in a hepatocyte-derived model using HepaRG cells will generate enough robust data to assess the compound's induction liability in vivo. The sensitive CYP3A biomarker 4β-hydroxycholesterol is built into the early clinical phase I studies for all candidates since rare cases of in vivo induction have been found without any induction alerts from the currently used in vitro methods. Using this model, the AstraZeneca induction strategy integrates in vitro assays and in vivo studies to make a comprehensive assessment of the induction potential of new chemical entities. Convincing data that support the validity of both the in vitro models and the use of the biomarker can be found in the scientific literature. However, regulatory authorities recommend the use of primary human hepatocytes and do not advise the use of sensitive biomarkers. Therefore, primary human hepatocytes and midazolam studies will be conducted during the clinical program as required for regulatory submission.
Collapse
Affiliation(s)
- Barry C Jones
- Oncology Innovative Medicines and Early Development Biotech Unit (B.C.J.) and Drug Safety and Metabolism (H.R.), AstraZeneca, Cambridge, United Kingdom; Quantitative Clinical Pharmacology (S.J.), and Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit (K.P.K., T.B.A.), AstraZeneca, Mölndal, Sweden; Quantitative Clinical Pharmacology, AstraZeneca, Hertfordshire, United Kingdom (C.L.); Quantitative Clinical Pharmacology, AstraZeneca, Waltham, Massachusetts (K.V.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.).
| | - Helen Rollison
- Oncology Innovative Medicines and Early Development Biotech Unit (B.C.J.) and Drug Safety and Metabolism (H.R.), AstraZeneca, Cambridge, United Kingdom; Quantitative Clinical Pharmacology (S.J.), and Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit (K.P.K., T.B.A.), AstraZeneca, Mölndal, Sweden; Quantitative Clinical Pharmacology, AstraZeneca, Hertfordshire, United Kingdom (C.L.); Quantitative Clinical Pharmacology, AstraZeneca, Waltham, Massachusetts (K.V.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| | - Susanne Johansson
- Oncology Innovative Medicines and Early Development Biotech Unit (B.C.J.) and Drug Safety and Metabolism (H.R.), AstraZeneca, Cambridge, United Kingdom; Quantitative Clinical Pharmacology (S.J.), and Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit (K.P.K., T.B.A.), AstraZeneca, Mölndal, Sweden; Quantitative Clinical Pharmacology, AstraZeneca, Hertfordshire, United Kingdom (C.L.); Quantitative Clinical Pharmacology, AstraZeneca, Waltham, Massachusetts (K.V.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| | - Kajsa P Kanebratt
- Oncology Innovative Medicines and Early Development Biotech Unit (B.C.J.) and Drug Safety and Metabolism (H.R.), AstraZeneca, Cambridge, United Kingdom; Quantitative Clinical Pharmacology (S.J.), and Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit (K.P.K., T.B.A.), AstraZeneca, Mölndal, Sweden; Quantitative Clinical Pharmacology, AstraZeneca, Hertfordshire, United Kingdom (C.L.); Quantitative Clinical Pharmacology, AstraZeneca, Waltham, Massachusetts (K.V.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| | - Craig Lambert
- Oncology Innovative Medicines and Early Development Biotech Unit (B.C.J.) and Drug Safety and Metabolism (H.R.), AstraZeneca, Cambridge, United Kingdom; Quantitative Clinical Pharmacology (S.J.), and Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit (K.P.K., T.B.A.), AstraZeneca, Mölndal, Sweden; Quantitative Clinical Pharmacology, AstraZeneca, Hertfordshire, United Kingdom (C.L.); Quantitative Clinical Pharmacology, AstraZeneca, Waltham, Massachusetts (K.V.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| | - Karthick Vishwanathan
- Oncology Innovative Medicines and Early Development Biotech Unit (B.C.J.) and Drug Safety and Metabolism (H.R.), AstraZeneca, Cambridge, United Kingdom; Quantitative Clinical Pharmacology (S.J.), and Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit (K.P.K., T.B.A.), AstraZeneca, Mölndal, Sweden; Quantitative Clinical Pharmacology, AstraZeneca, Hertfordshire, United Kingdom (C.L.); Quantitative Clinical Pharmacology, AstraZeneca, Waltham, Massachusetts (K.V.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| | - Tommy B Andersson
- Oncology Innovative Medicines and Early Development Biotech Unit (B.C.J.) and Drug Safety and Metabolism (H.R.), AstraZeneca, Cambridge, United Kingdom; Quantitative Clinical Pharmacology (S.J.), and Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit (K.P.K., T.B.A.), AstraZeneca, Mölndal, Sweden; Quantitative Clinical Pharmacology, AstraZeneca, Hertfordshire, United Kingdom (C.L.); Quantitative Clinical Pharmacology, AstraZeneca, Waltham, Massachusetts (K.V.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| |
Collapse
|
11
|
Nagai M, Konno Y, Satsukawa M, Yamashita S, Yoshinari K. Establishment of In Silico Prediction Models for CYP3A4 and CYP2B6 Induction in Human Hepatocytes by Multiple Regression Analysis Using Azole Compounds. Drug Metab Dispos 2016; 44:1390-8. [PMID: 27208383 DOI: 10.1124/dmd.115.068619] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 05/18/2016] [Indexed: 11/22/2022] Open
Abstract
Drug-drug interactions (DDIs) via cytochrome P450 (P450) induction are one clinical problem leading to increased risk of adverse effects and the need for dosage adjustments and additional therapeutic monitoring. In silico models for predicting P450 induction are useful for avoiding DDI risk. In this study, we have established regression models for CYP3A4 and CYP2B6 induction in human hepatocytes using several physicochemical parameters for a set of azole compounds with different P450 induction as characteristics as model compounds. To obtain a well-correlated regression model, the compounds for CYP3A4 or CYP2B6 induction were independently selected from the tested azole compounds using principal component analysis with fold-induction data. Both of the multiple linear regression models obtained for CYP3A4 and CYP2B6 induction are represented by different sets of physicochemical parameters. The adjusted coefficients of determination for these models were of 0.8 and 0.9, respectively. The fold-induction of the validation compounds, another set of 12 azole-containing compounds, were predicted within twofold limits for both CYP3A4 and CYP2B6. The concordance for the prediction of CYP3A4 induction was 87% with another validation set, 23 marketed drugs. However, the prediction of CYP2B6 induction tended to be overestimated for these marketed drugs. The regression models show that lipophilicity mostly contributes to CYP3A4 induction, whereas not only the lipophilicity but also the molecular polarity is important for CYP2B6 induction. Our regression models, especially that for CYP3A4 induction, might provide useful methods to avoid potent CYP3A4 or CYP2B6 inducers during the lead optimization stage without performing induction assays in human hepatocytes.
Collapse
Affiliation(s)
- Mika Nagai
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical, Kyoto, Japan (M.N., Y.K., M.S.); Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (M.N., K.Y.); and Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan (S.Y.)
| | - Yoshihiro Konno
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical, Kyoto, Japan (M.N., Y.K., M.S.); Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (M.N., K.Y.); and Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan (S.Y.)
| | - Masahiro Satsukawa
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical, Kyoto, Japan (M.N., Y.K., M.S.); Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (M.N., K.Y.); and Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan (S.Y.)
| | - Shinji Yamashita
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical, Kyoto, Japan (M.N., Y.K., M.S.); Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (M.N., K.Y.); and Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan (S.Y.)
| | - Kouichi Yoshinari
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical, Kyoto, Japan (M.N., Y.K., M.S.); Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (M.N., K.Y.); and Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan (S.Y.)
| |
Collapse
|
12
|
Ferreira A, Rodrigues M, Silvestre S, Falcão A, Alves G. HepaRG cell line as an in vitro model for screening drug–drug interactions mediated by metabolic induction: Amiodarone used as a model substance. Toxicol In Vitro 2014; 28:1531-5. [DOI: 10.1016/j.tiv.2014.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 07/16/2014] [Accepted: 08/10/2014] [Indexed: 02/01/2023]
|
13
|
Guo H, Liu C, Li J, Zhang M, Hu M, Xu P, Liu L, Liu X. A mechanistic physiologically based pharmacokinetic-enzyme turnover model involving both intestine and liver to predict CYP3A induction-mediated drug-drug interactions. J Pharm Sci 2013; 102:2819-36. [PMID: 23760985 DOI: 10.1002/jps.23613] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 04/25/2013] [Accepted: 04/25/2013] [Indexed: 01/03/2023]
Abstract
Cytochrome P450 (CYP) 3A induction-mediated drug-drug interaction (DDI) is one of the major concerns in drug development and clinical practice. The aim of the present study was to develop a novel mechanistic physiologically based pharmacokinetic (PBPK)-enzyme turnover model involving both intestinal and hepatic CYP3A induction to quantitatively predict magnitude of CYP3A induction-mediated DDIs from in vitro data. The contribution of intestinal P-glycoprotein (P-gp) was also incorporated into the PBPK model. First, the pharmacokinetic profiles of three inducers and 14 CYP3A substrates were predicted successfully using the developed model, with the predicted area under the plasma concentration-time curve (AUC) [area under the plasma concentration-time curve] and the peak concentration (Cmax ) [the peak concentration] in accordance with reported values. The model was further applied to predict DDIs between the three inducers and 14 CYP3A substrates. Results showed that predicted AUC and Cmax ratios in the presence and absence of inducer were within twofold of observed values for 17 (74%) of the 23 DDI studies, and for 14 (82%) of the 17 DDI studies, respectively. All the results gave us a conclusion that the developed mechanistic PBPK-enzyme turnover model showed great advantages on quantitative prediction of CYP3A induction-mediated DDIs.
Collapse
Affiliation(s)
- Haifang Guo
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kotani N, Maeda K, Debori Y, Camus S, Li R, Chesne C, Sugiyama Y. Expression and transport function of drug uptake transporters in differentiated HepaRG cells. Mol Pharm 2012; 9:3434-41. [PMID: 22897388 DOI: 10.1021/mp300171p] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
HepaRG cells have the ability to differentiate into hepatocyte-like cells. Many papers have shown that these hepatocyte-like cells share several functional properties with intact human hepatocytes. However, although previous studies have indicated the partial maintenance of mRNA expression of drug transporters, their expression and function have not been quantitatively characterized. In the present study, the mRNA and protein expression levels and transport activities of hepatic uptake transporters, organic anion transporting polypeptides (OATPs) and Na(+)-taurocholate cotransporting polypeptide (NTCP) in HepaRG cells were compared with those in cryopreserved human hepatocytes. The mRNA expression levels of OATP1B1, OATP1B3, OATP2B1, and NTCP in HepaRG cells were 22-38%, 2-15%, 82-113%, and 191-247% of those in human hepatocytes, respectively. The relative protein expression of these transporters was comparable with their mRNA expression. We observed saturable uptake of typical substrates of NTCP and OATPs except for cholecystokinin octapeptide (OATP1B3-selective substrate), and Na(+)-dependent uptake of taurocholate was confirmed. Their relative uptake clearances were well explained by their mRNA and protein expression levels. Additionally, inhibition potencies of 12 OATP1B1 inhibitors were investigated both in HepaRG cells and in OATP1B1-expressing HEK293 cells to demonstrate the usefulness of HepaRG cells for the characterization of OATP1B1-mediated drug-drug interactions. The Ki values in both cell lines were comparable and showed significant correlation. These results suggest that the hepatic uptake transport function of OATP and NTCP transporters was relatively well maintained in HepaRG, although OATP1B3 function was too low to be detected.
Collapse
Affiliation(s)
- Naoki Kotani
- Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, 3-1, 7-Chome Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Cali JJ, Ma D, Wood MG, Meisenheimer PL, Klaubert DH. Bioluminescent assays for ADME evaluation: dialing in CYP selectivity with luminogenic substrates. Expert Opin Drug Metab Toxicol 2012; 8:1115-30. [DOI: 10.1517/17425255.2012.695345] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Optimization of the HepaRG cell model for drug metabolism and toxicity studies. Toxicol In Vitro 2012; 26:1278-85. [PMID: 22643240 DOI: 10.1016/j.tiv.2012.05.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 05/15/2012] [Accepted: 05/18/2012] [Indexed: 01/08/2023]
Abstract
The HepaRG cell line is the first human cell line able to differentiate in vitro into mature hepatocyte-like cells. Our main objective within the framework of the EEC-LIINTOP project was to optimize the use of this cell line for drug metabolism and toxicity studies, especially after repeat treatments. The main results showed that differentiated HepaRG cells: (i) retained their drug metabolism capacity (major CYPs, phase 2 enzymes, transporters and nuclear receptors) and responsiveness to prototypical inducers at relatively stable levels for several weeks at confluence. The levels of several functions, including some CYPs such as CYP3A4, were dependent on the addition of dimethyl sulfoxide in the culture medium; (ii) sustained the different types of chemical-induced hepatotoxicity, including steatosis, phospholipidosis and cholestasis, after acute and/or repeat treatment with reference drugs. In particular, drug-induced vesicular steatosis was demonstrated in vitro for the first time. In conclusion, our results from the LIINTOP project, together with other studies reported concomitantly or more recently in the literature, support the conclusion that the metabolically competent human HepaRG cells represent a surrogate to primary human hepatocytes for investigating drug metabolism parameters and both acute and chronic effects of xenobiotics in human liver.
Collapse
|
17
|
Kaneko A, Kato M, Endo C, Nakano K, Ishigai M, Takeda K. Prediction of clinical CYP3A4 induction using cryopreserved human hepatocytes. Xenobiotica 2010; 40:791-9. [DOI: 10.3109/00498254.2010.517277] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
18
|
Nakagawa T. [Prediction of the pharmacokinetics of clinical candidates in humans from in vitro data]. Nihon Yakurigaku Zasshi 2010; 135:84-86. [PMID: 20154417 DOI: 10.1254/fpj.135.84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|