1
|
Wang B, Zhang N, Gong P, Li J, Wang X, Li X, Wang F, Cai K, Zhang X. In vitro assays on the susceptibility of four species of nematophagous fungi to anthelmintics and chemical fungicides/antifungal drug. Lett Appl Microbiol 2021; 73:124-131. [PMID: 33590540 DOI: 10.1111/lam.13462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/01/2022]
Abstract
Using nematophagous fungi for the biological control of animal parasitic nematodes will become one of the most promising strategies in the search for alternative chemical drugs. The purpose of this study was to check the in vitro activity of four anthelmintics, four chemical fungicides and two antifungal drugs on the spore germination of nematophagous fungi: Duddingtonia flagrans (SF170), Arthrobotrys oligospora (447), Arthrobotrys superba (435) and Arthrobotrys sp. (PS011). A modified 24-well cell culture plate assay was conducted to evaluate the susceptibility of nematophagous fungi against drugs tested by calculating the effective middle concentrations (EC50 ) of each tested drug to inhibit the germination of fungal spores. EC50 ranged between 0·7 and 47·2 μg ml-1 for fenbendazole, thiabendazole and ivermectin, except levamisole (546·5-4057·8 μg ml-1 ). EC50 of tested fungicides was 0·6-2·3 μg ml-1 for carbendazim, 55·9-247·4 μg ml-1 for metalaxyl, 24·4-45·2 μg ml-1 for difenoconazole, and 555·9-1438·3 μg ml-1 for pentachloronitrobenzene (PCNB). EC50 of two antifungal drugs was 0·03-3·4 μg ml-1 for amphotericin B and 0·3-10·9 μg ml-1 for ketoconazole. The results showed that 10 tested drugs, except for levamisole and PCNB, had in vitro inhibitory effects on nematophagous fungi. The chlamydospores of D. flagrans had the highest sensitivity to nine tested drugs, except for ketoconazole.
Collapse
Affiliation(s)
- B Wang
- Key Laboratory of Zoonosis Research by Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - N Zhang
- Key Laboratory of Zoonosis Research by Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - P Gong
- Key Laboratory of Zoonosis Research by Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - J Li
- Key Laboratory of Zoonosis Research by Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - X Wang
- Key Laboratory of Zoonosis Research by Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - X Li
- Key Laboratory of Zoonosis Research by Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - F Wang
- Medical College of Yan'an University, Yan'an University, Yan'an, China
| | - K Cai
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - X Zhang
- Key Laboratory of Zoonosis Research by Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
2
|
Li Y, Wang S, Jiang X, Wang X, Zhou X, Wan L, Zhao H, Zhou Z, Gao L, Huang G, Ni Y, He X. Preparation and validation of cyclodextrin-based excipients for radioiodinated hypericin applied in a targeted cancer radiotherapy. Int J Pharm 2021; 599:120393. [PMID: 33639227 DOI: 10.1016/j.ijpharm.2021.120393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Iodine-131 labeled hypericin (131I-Hyp) has been utilized as a necrosis-avid theragnostic tracer in a dual targeting pan-anticancer strategy called OncoCiDia. Widespread use of previously-tested solvent dimethyl sulfoxide (DMSO) is limited by safety concerns. To tackle this, the present study was designed to explore a clinically feasible excipient for the formulation of the hydrophobic 131I-Hyp for intravenous administration. METHOD Solubility of Hyp in serial solutions of already-approved hydroxypropyl-β-cyclodextrin (HP-β-CD) was evaluated by UVspectrophotometry and 50% HP-β-CD was chosen for further experiments. Two novel HP-β-CD-based formulations of 131I-Hyp were compared with previous DMSO-based formulation, with regards to necrosis-targetability and biodistribution, by magnetic resonance imaging, single-photon emission computed tomography (SPECT), gamma counting, autoradiography, fluorescence microscopy and histopathology. RESULTS Hyp solubility was enhanced with increasing HP-β-CD concentrations. The radiochemical purity of 131I-Hyp was higher than 90% in all formulations. The necrosis-targetability of 131I-Hyp in the novel formulations was confirmed in vivo by SPECT and in vitro by autoradiography, fluorescence microscopy and histopathology. The plasma clearance of radioactivity was faster in the novel formulations. CONCLUSION The novel 131I-Hyp formulations with HP-β-CD could be a suitable pharmaceutical excipient for 131I-Hyp for intravenous administration.
Collapse
Affiliation(s)
- Yue Li
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Shuncong Wang
- KU Leuven, Biomedical Group, Campus Gasthuisberg, Leuven 3000, Belgium.
| | - Xiao Jiang
- PET/CT Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, China; China Institute of Atomic Energy, Beijing 102413, China
| | - Xiaoxiong Wang
- PET/CT Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, China; China Institute of Atomic Energy, Beijing 102413, China
| | - Xiang Zhou
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Liangrong Wan
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Haitao Zhao
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Zhaoli Zhou
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - LingJie Gao
- KU Leuven, Biomedical Group, Campus Gasthuisberg, Leuven 3000, Belgium.
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Yicheng Ni
- KU Leuven, Biomedical Group, Campus Gasthuisberg, Leuven 3000, Belgium.
| | - Xiaoyan He
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| |
Collapse
|
3
|
Matsumoto H, Yoshii Y, Baden A, Kaneko E, Hashimoto H, Suzuki H, Kawamura K, Zhang MR, Higashi T, Kurihara H. Preclinical Pharmacokinetic and Safety Studies of Copper-Diacetyl-Bis(N 4-Methylthiosemicarbazone) (Cu-ATSM): Translational Studies for Internal Radiotherapy. Transl Oncol 2019; 12:1206-1212. [PMID: 31252311 PMCID: PMC6600784 DOI: 10.1016/j.tranon.2019.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 11/25/2022] Open
Abstract
Hypoxia plays important roles in the prognosis of malignant brain tumors such as glioblastoma because it causes drug delivery deficiencies and the induction of hypoxia-inducible factor-1α in tumor cells. Extensive hypoxic areas are associated with poor prognosis of these fatal diseases. We previously reported that multiple administrations of the hypoxia-targeted internal radiotherapy agent 64Cu-diacetyl-bis(N4-methylthiosemicarbazone) (64Cu-ATSM), four times at intervals of 1 or 2 weeks, show antitumor effects in glioblastoma without treatment-related adverse events. Before initiating clinical trials, preclinical safety studies using Cu-ATSM composed of stable isotopes and its precursor ATSM were required to understand the potential risks of systemic and repeated chemical exposure of our investigational drug. In this study, the concentrations of Cu-ATSM and ATSM in mouse plasma after intravenous administration were determined by liquid chromatography–tandem mass spectrometry, and the half-lives were estimated to be 21.5 and 22.4 minutes for Cu-ATSM and ATSM, respectively. Based on this result, approach 2 of the current ICH M3 [R2] guideline was adopted, and a 7-day intravenous toxicity study was conducted in mice. Cu-ATSM and ATSM in a ratio of 2:25 mimicking our current investigational drug was used, and no adverse effects were observed when Cu-ATSM and ATSM were administered at 81 μg/kg. These results and those of previous studies suggest that our current investigational drug formulation containing Cu-ATSM and ATSM at a dose of 15 μg can be safely administered to patients once per week for 4 weeks for treatment with 64Cu-ATSM.
Collapse
Affiliation(s)
- Hiroki Matsumoto
- Research Centre, Nihon Medi-Physics Co., Ltd., Sodegaura 299-0266, Japan
| | - Yukie Yoshii
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan.
| | - Atsumi Baden
- Research Centre, Nihon Medi-Physics Co., Ltd., Sodegaura 299-0266, Japan
| | - Emi Kaneko
- Research Centre, Nihon Medi-Physics Co., Ltd., Sodegaura 299-0266, Japan
| | - Hiroki Hashimoto
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Hisashi Suzuki
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Kazunori Kawamura
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Ming-Rong Zhang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Tatsuya Higashi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Hiroaki Kurihara
- Department of Diagnostic Radiology, National Cancer Center Hospital, 104-0045, Tokyo, Japan
| |
Collapse
|
4
|
Liu X, Jiang C, Zhang D, Gao M, Peng F, Huang D, Sun Z, Ni Y, Zhang J, Yin Z. Tumor necrosis targeted radiotherapy of non-small cell lung cancer using radioiodinated protohypericin in a mouse model. Oncotarget 2015; 6:26400-10. [PMID: 26305548 PMCID: PMC4694910 DOI: 10.18632/oncotarget.4568] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/10/2015] [Indexed: 12/31/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death. About 80% of lung cancers are non-small cell lung cancers (NSCLC). Radiotherapy is widely used in treatment of NSCLC. However, the outcome of NSCLC remains unsatisfactory. In this study, a vascular disrupting agent (VDA) combretastatin-A4-phosphate (CA4P) was used to provide massive necrosis targets. (131)I labeled necrosis-avid agent protohypericin ((131)I-prohy) was explored for therapy of NSCLC using tumor necrosis targeted radiotherapy (TNTR). Gamma counting, autoradiography, fluorescence microscopy and histopathology were used for biodistribution analysis. Magnetic resonance imaging (MRI) was used to monitor tumor volume, ratios of necrosis and tumor doubling time (DT). The biodistribution data revealed 131I-prohy was delivered efficiently to tumors. Tracer uptake peaked at 24 h in necrotic tumor of (131)I-prohy with and without combined CA4P (3.87 ± 0.38 and 2.96 ± 0.34%ID/g). (131)I-prohy + CA4P enhanced the uptake of (131)I-prohy in necrotic tumor compared to (131)I-prohy alone. The TNTR combined with CA4P prolonged survival of tumor bearing mice relative to vehicle control group, CA4P control group and (131)I-prohy control group with median survival of 35, 20, 22 and 27 days respectively. In conclusion, TNTR appeared to be effective for the treatment of NSCLC.
Collapse
Affiliation(s)
- Xuejiao Liu
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, P.R.China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, P.R.China
| | - Cuihua Jiang
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, P.R.China
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, P.R.China
| | - Dongjian Zhang
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, P.R.China
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, P.R.China
| | - Meng Gao
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, P.R.China
| | - Fei Peng
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, P.R.China
| | - Dejian Huang
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, P.R.China
| | - Ziping Sun
- Shandong Academy of Medical Sciences, Jinan 250062, Shandong, P.R.China
| | - Yicheng Ni
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, P.R.China
- Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, 3000 Leuven, Belgium
| | - Jian Zhang
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, P.R.China
| | - Zhiqi Yin
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, P.R.China
| |
Collapse
|
5
|
Liu X, Jiang C, Li Y, Liu W, Yao N, Gao M, Ji Y, Huang D, Yin Z, Sun Z, Ni Y, Zhang J. Evaluation of hypericin: effect of aggregation on targeting biodistribution. J Pharm Sci 2014; 104:215-22. [PMID: 25395358 DOI: 10.1002/jps.24230] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 09/30/2014] [Accepted: 10/08/2014] [Indexed: 12/20/2022]
Abstract
Hypericin (Hy) has shown great promise as a necrosis-avid agent in cancer imaging and therapy. Given the highly hydrophobic and π-conjugated planarity characteristics, Hy tends to form aggregates. To investigate the effect of aggregation on targeting biodistribution, nonaggregated formulation (Non-Ag), aggregated formulation with overconcentrated Hy in dimethyl sulfoxide (Ag-DMSO) solution, and aggregated formulation in water solution (Ag-water) were selected by fluorescence measurement. They were labeled with ¹³¹I and evaluated for the necrosis affinity in rat model of reperfused hepatic infarction by gamma counting and autoradiography. The radioactivity ratio of necrotic liver/normal liver was 17.1, 7.9, and 6.4 for Non-Ag, Ag-DMSO, and Ag-water, respectively. The accumulation of two aggregated formulations (Ag-DMSO and Ag-water) in organs of mononuclear phagocyte system (MPS) was 2.62 ± 0.22 and 3.96 ± 0.30 %ID/g in the lung, and 1.44 ± 0.29 and 1.51 ± 0.23 %ID/g in the spleen, respectively. The biodistribution detected by autoradiography showed the same trend as by gamma counting. In conclusion, the Non-Ag showed better targeting biodistribution and less accumulation in MPS organs than aggregated formulations of Hy. The two aggregated formulations showed significantly lower and higher accumulation in targeting organ and MPS organs, respectively.
Collapse
Affiliation(s)
- Xuejiao Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210023, People's Republic of China; Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, 210028, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
An overview of translational (radio)pharmaceutical research related to certain oncological and non-oncological applications. World J Methodol 2013; 3:45-64. [PMID: 25237623 PMCID: PMC4145570 DOI: 10.5662/wjm.v3.i4.45] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/03/2013] [Accepted: 10/18/2013] [Indexed: 02/06/2023] Open
Abstract
Translational medicine pursues the conversion of scientific discovery into human health improvement. It aims to establish strategies for diagnosis and treatment of diseases. Cancer treatment is difficult. Radio-pharmaceutical research has played an important role in multiple disciplines, particularly in translational oncology. Based on the natural phenomenon of necrosis avidity, OncoCiDia has emerged as a novel generic approach for treating solid malignancies. Under this systemic dual targeting strategy, a vascular disrupting agent first selectively causes massive tumor necrosis that is followed by iodine-131 labeled-hypericin (123I-Hyp), a necrosis-avid compound that kills the residual cancer cells by crossfire effect of beta radiation. In this review, by emphasizing the potential clinical applicability of OncoCiDia, we summarize our research activities including optimization of radioiodinated hypericin Hyp preparations and recent studies on the biodistribution, dosimetry, pharmacokinetic and, chemical and radiochemical toxicities of the preparations. Myocardial infarction is a global health problem. Although cardiac scintigraphy using radioactive perfusion tracers is used in the assessment of myocardial viability, searching for diagnostic imaging agents with authentic necrosis avidity is pursued. Therefore, a comparative study on the biological profiles of the necrosis avid 123I-Hyp and the commercially available 99mTc-Sestamibi was conducted and the results are demonstrated. Cholelithiasis or gallstone disease may cause gallbladder inflammation, infection and other severe complications. While studying the mechanisms underlying the necrosis avidity of Hyp and derivatives, their naturally occurring fluorophore property was exploited for targeting cholesterol as a main component of gallstones. The usefulness of Hyp as an optical imaging agent for cholelithiasis was studied and the results are presented. Multiple uses of automatic contrast injectors may reduce costs and save resources. However, cross-contaminations with blood-borne pathogens of infectious diseases may occur. We developed a radioactive method for safety evaluation of a new replaceable patient-delivery system. By mimicking pathogens with a radiotracer, we assessed the feasibility of using the system repeatedly without septic risks. This overview is deemed to be interesting to those involved in the related fields for translational research.
Collapse
|
7
|
CONA MARLEINMIRANDA, KOOLE MICHEL, FENG YUANBO, LIU YEWEI, VERBRUGGEN ALFONS, OYEN RAYMOND, NI YICHENG. Biodistribution and radiation dosimetry of radioiodinated hypericin as a cancer therapeutic. Int J Oncol 2013; 44:819-29. [DOI: 10.3892/ijo.2013.2217] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/01/2013] [Indexed: 12/26/2022] Open
|
8
|
Cona MM, Alpizar YA, Li J, Bauwens M, Feng Y, Sun Z, Zhang J, Chen F, Talavera K, de Witte P, Verbruggen A, Oyen R, Ni Y. Radioiodinated hypericin: its biodistribution, necrosis avidity and therapeutic efficacy are influenced by formulation. Pharm Res 2013; 31:278-90. [PMID: 23934256 DOI: 10.1007/s11095-013-1159-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 07/22/2013] [Indexed: 12/22/2022]
Abstract
PURPOSE To study whether formulation influences biodistribution, necrosis avidity and tumoricidal effects of the radioiodinated hypericin, a necrosis avid agent for a dual-targeting anticancer radiotherapy. METHODS Iodine-123- and 131-labeled hypericin ((123)I-Hyp and (131)I-Hyp) were prepared with Iodogen as oxidant, and formulated in dimethyl sulfoxide (DMSO)/PEG400 (polyethylene glycol 400)/water (25/60/15, v/v/v) or DMSO/saline (20:80, v/v). The formulations with excessive Hyp were optically characterized. Biodistribution, necrosis avidity and tumoricidal effects were studied in rats (n = 42) without and with reperfused liver infarction and implanted rhabdomyosarcomas (R1). To induce tumor necrosis, R1-rats were pre-treated with a vascular disrupting agent. Magnetic resonance imaging, tissue-gamma counting, autoradiography and histology were used. RESULTS The two formulations differed significantly in fluorescence and precipitation. (123)I-Hyp/Hyp in DMSO/PEG400/water exhibited high uptake in necrosis but lower concentration in the lung, spleen and liver (p < 0.01). Tumor volumes of 0.9 ± 0.3 cm(3) with high radioactivity (3.1 ± 0.3% ID/g) were detected 6 days post-treatment. By contrast, (131)I-Hyp/Hypin DMSO/saline showed low uptake in necrosis but high retention in the spleen and liver (p < 0.01). Tumor volumes reached 2.6 ± 0.7 cm(3) with low tracer accumulation (0.1 ± 0.04%ID/g). CONCLUSIONS The formulation of radioiodinated hypericin/hypericin appears crucial for its physical property, biodistribution, necrosis avidity and tumoricidal effects.
Collapse
Affiliation(s)
- Marlein Miranda Cona
- Department of Imaging & Pathology, Faculty of Medicine Biomedical Sciences Group, KU Leuven, Herestraat 49, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Li J, Cona MM, Chen F, Feng Y, Zhou L, Zhang G, Nuyts J, de Witte P, Zhang J, Yu J, Oyen R, Verbruggen A, Ni Y. Sequential systemic administrations of combretastatin A4 Phosphate and radioiodinated hypericin exert synergistic targeted theranostic effects with prolonged survival on SCID mice carrying bifocal tumor xenografts. Theranostics 2013; 3:127-37. [PMID: 23423247 PMCID: PMC3575593 DOI: 10.7150/thno.5790] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 01/22/2013] [Indexed: 12/20/2022] Open
Abstract
Objectives: Based on the soil-to-seeds principle, we explored the small-molecular sequential dual-targeting theranostic strategy (SMSDTTS) for prolonged survival and imaging detectability in a xenograft tumor model. Materials and Methods: Thirty severe combined immunodeficiency (SCID) mice bearing bilateral radiation-induced fibrosarcoma-1 (RIF-1) subcutaneously were divided into group A of SMSDTTS with sequential intravenous injections of combretastatin A4 phosphate (CA4P) and 131I-iodohypericin (131I-Hyp) at a 24 h interval; group B of single targeting control with CA4P and vehicle of 131I-Hyp; and group C of vehicle control (10 mice per group). Tumoricidal events were monitored by in vivo magnetic resonance imaging (MRI) and planar gamma scintiscan, and validated by ex vivo autoradiography and histopathology. Besides, 9 mice received sequential intravenous injections of CA4P and 131I-Hyp were subjected to biodistribution analysis at 24, 72 and 120 h. Results: Gamma counting revealed fast clearance of 131I-Hyp from normal organs but intense accumulation in necrotic tumor over 120 h. After only one treatment, significantly prolonged survival (p<0.001) was found in group A compared to group B and C with median survival of 33, 22, and 21 days respectively. Tumor volume on day 15 was 2.0 ± 0.89, 5.66 ± 1.66, and 5.02 ± 1.0 cm3 with tumor doubling time 7.8 ± 2.8, 4.4 ± 0.67, and 4.5 ± 0.5 days respectively. SMSDTTS treated tumors were visualized as hot spots on gamma scintiscans, and necrosis over tumor ratio remained consistently high on MRI, autoradiography and histology. Conclusion: The synergistic antitumor effects, multifocal targetability, simultaneous theranostic property, and good tolerance of the SMSDTTS were evident in this experiment, which warrants further development for preclinical and clinical applications.
Collapse
|
10
|
Li J, Oyen R, Verbruggen A, Ni Y. Small Molecule Sequential Dual-Targeting Theragnostic Strategy (SMSDTTS): from Preclinical Experiments towards Possible Clinical Anticancer Applications. J Cancer 2013; 4:133-45. [PMID: 23412554 PMCID: PMC3572405 DOI: 10.7150/jca.5635] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/03/2013] [Indexed: 01/02/2023] Open
Abstract
Hitting the evasive tumor cells proves challenging in targeted cancer therapies. A general and unconventional anticancer approach namely small molecule sequential dual-targeting theragnostic strategy (SMSDTTS) has recently been introduced with the aims to target and debulk the tumor mass, wipe out the residual tumor cells, and meanwhile enable cancer detectability. This dual targeting approach works in two steps for systemic delivery of two naturally derived drugs. First, an anti-tubulin vascular disrupting agent, e.g., combretastatin A4 phosphate (CA4P), is injected to selectively cut off tumor blood supply and to cause massive necrosis, which nevertheless always leaves peripheral tumor residues. Secondly, a necrosis-avid radiopharmaceutical, namely 131I-hypericin (131I-Hyp), is administered the next day, which accumulates in intratumoral necrosis and irradiates the residual cancer cells with beta particles. Theoretically, this complementary targeted approach may biologically and radioactively ablate solid tumors and reduce the risk of local recurrence, remote metastases, and thus cancer mortality. Meanwhile, the emitted gamma rays facilitate radio-scintigraphy to detect tumors and follow up the therapy, hence a simultaneous theragnostic approach. SMSDTTS has now shown promise from multicenter animal experiments and may demonstrate unique anticancer efficacy in upcoming preliminary clinical trials. In this short review article, information about the two involved agents, the rationale of SMSDTTS, its preclinical antitumor efficacy, multifocal targetability, simultaneous theragnostic property, and toxicities of the dose regimens are summarized. Meanwhile, possible drawbacks, practical challenges and future improvement with SMSDTTS are discussed, which hopefully may help to push forward this strategy from preclinical experiments towards possible clinical applications.
Collapse
Affiliation(s)
- Junjie Li
- 1. Department of Imaging and Pathology, Biomedical Sciences Group; KU Leuven, Belgium. ; 2. Molecular Small Animal Imaging Center, Faculty of Medicine; KU Leuven, Belgium
| | | | | | | |
Collapse
|