1
|
Bellver‐Sanchis A, Ribalta‐Vilella M, Irisarri A, Gehlot P, Choudhary BS, Jana A, Vyas VK, Banerjee DR, Pallàs M, Guerrero A, Griñán‐Ferré C. G9a an Epigenetic Therapeutic Strategy for Neurodegenerative Conditions: From Target Discovery to Clinical Trials. Med Res Rev 2025; 45:985-1015. [PMID: 39763018 PMCID: PMC11976383 DOI: 10.1002/med.22096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 04/09/2025]
Abstract
This review provides a comprehensive overview of the role of G9a/EHMT2, focusing on its structure and exploring the impact of its pharmacological and/or gene inhibition in various neurological diseases. In addition, we delve into the advancements in the design and synthesis of G9a/EHMT2 inhibitors, which hold promise not only as a treatment for neurodegeneration diseases but also for other conditions, such as cancer and malaria. Besides, we presented the discovery of dual therapeutic approaches based on G9a inhibition and different epigenetic enzymes like histone deacetylases, DNA methyltransferases, and other lysine methyltransferases. Hence, findings offer valuable insights into developing novel and promising therapeutic strategies targeting G9a/EHMT2 for managing these neurological conditions.
Collapse
Affiliation(s)
- Aina Bellver‐Sanchis
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Marta Ribalta‐Vilella
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Alba Irisarri
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Pinky Gehlot
- Department of Pharmaceutical ChemistryInstitute of PharmacyNirma UniversityAhmedabadIndia
| | - Bhanwar Singh Choudhary
- Department of PharmacyCentral University of RajasthanAjmerIndia
- Drug Discovery and Development Centre (H3D)University of Cape TownRondeboschSouth Africa
| | - Abhisek Jana
- Department of ChemistryNational Institute of Technology DurgapurDurgapurIndia
| | - Vivek Kumar Vyas
- Department of Pharmaceutical ChemistryInstitute of PharmacyNirma UniversityAhmedabadIndia
| | - Deb Ranjan Banerjee
- Department of ChemistryNational Institute of Technology DurgapurDurgapurIndia
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
- Instituto de Salud Carlos III, Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Ana Guerrero
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Christian Griñán‐Ferré
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
- Instituto de Salud Carlos III, Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| |
Collapse
|
2
|
Karaglani M, Agorastos A, Panagopoulou M, Parlapani E, Athanasis P, Bitsios P, Tzitzikou K, Theodosiou T, Iliopoulos I, Bozikas VP, Chatzaki E. A novel blood-based epigenetic biosignature in first-episode schizophrenia patients through automated machine learning. Transl Psychiatry 2024; 14:257. [PMID: 38886359 PMCID: PMC11183091 DOI: 10.1038/s41398-024-02946-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Schizophrenia (SCZ) is a chronic, severe, and complex psychiatric disorder that affects all aspects of personal functioning. While SCZ has a very strong biological component, there are still no objective diagnostic tests. Lately, special attention has been given to epigenetic biomarkers in SCZ. In this study, we introduce a three-step, automated machine learning (AutoML)-based, data-driven, biomarker discovery pipeline approach, using genome-wide DNA methylation datasets and laboratory validation, to deliver a highly performing, blood-based epigenetic biosignature of diagnostic clinical value in SCZ. Publicly available blood methylomes from SCZ patients and healthy individuals were analyzed via AutoML, to identify SCZ-specific biomarkers. The methylation of the identified genes was then analyzed by targeted qMSP assays in blood gDNA of 30 first-episode drug-naïve SCZ patients and 30 healthy controls (CTRL). Finally, AutoML was used to produce an optimized disease-specific biosignature based on patient methylation data combined with demographics. AutoML identified a SCZ-specific set of novel gene methylation biomarkers including IGF2BP1, CENPI, and PSME4. Functional analysis investigated correlations with SCZ pathology. Methylation levels of IGF2BP1 and PSME4, but not CENPI were found to differ, IGF2BP1 being higher and PSME4 lower in the SCZ group as compared to the CTRL group. Additional AutoML classification analysis of our experimental patient data led to a five-feature biosignature including all three genes, as well as age and sex, that discriminated SCZ patients from healthy individuals [AUC 0.755 (0.636, 0.862) and average precision 0.758 (0.690, 0.825)]. In conclusion, this three-step pipeline enabled the discovery of three novel genes and an epigenetic biosignature bearing potential value as promising SCZ blood-based diagnostics.
Collapse
Affiliation(s)
- Makrina Karaglani
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, GR-68132, Alexandroupolis, Greece
- Institute of Agri-food and Life Sciences, University Research & Innovation Center, H.M.U.R.I.C., Hellenic Mediterranean University, GR-71003, Crete, Greece
| | - Agorastos Agorastos
- Institute of Agri-food and Life Sciences, University Research & Innovation Center, H.M.U.R.I.C., Hellenic Mediterranean University, GR-71003, Crete, Greece
- II. Department of Psychiatry, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, GR-56430, Thessaloniki, Greece
| | - Maria Panagopoulou
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, GR-68132, Alexandroupolis, Greece
- Institute of Agri-food and Life Sciences, University Research & Innovation Center, H.M.U.R.I.C., Hellenic Mediterranean University, GR-71003, Crete, Greece
| | - Eleni Parlapani
- Ι. Department of Psychiatry, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, GR-56429, Thessaloniki, Greece
| | - Panagiotis Athanasis
- II. Department of Psychiatry, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, GR-56430, Thessaloniki, Greece
| | - Panagiotis Bitsios
- Department of Psychiatry and Behavioral Sciences, Faculty of Medicine, University of Crete, GR-71500, Heraklion, Greece
| | - Konstantina Tzitzikou
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, GR-68132, Alexandroupolis, Greece
| | - Theodosis Theodosiou
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, GR-68132, Alexandroupolis, Greece
- ABCureD P.C, GR-68131, Alexandroupolis, Greece
| | - Ioannis Iliopoulos
- Division of Basic Sciences, School of Medicine, University of Crete, GR-71003, Heraklion, Greece
| | - Vasilios-Panteleimon Bozikas
- II. Department of Psychiatry, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, GR-56430, Thessaloniki, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, GR-68132, Alexandroupolis, Greece.
- Institute of Agri-food and Life Sciences, University Research & Innovation Center, H.M.U.R.I.C., Hellenic Mediterranean University, GR-71003, Crete, Greece.
- ABCureD P.C, GR-68131, Alexandroupolis, Greece.
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 70013, Heraklion, Greece.
| |
Collapse
|
3
|
Gore S, Meche B, Shao D, Ginnett B, Zhou K, Azad RK. DiseaseNet: a transfer learning approach to noncommunicable disease classification. BMC Bioinformatics 2024; 25:107. [PMID: 38468193 PMCID: PMC10926612 DOI: 10.1186/s12859-024-05734-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/06/2024] [Indexed: 03/13/2024] Open
Abstract
As noncommunicable diseases (NCDs) pose a significant global health burden, identifying effective diagnostic and predictive markers for these diseases is of paramount importance. Epigenetic modifications, such as DNA methylation, have emerged as potential indicators for NCDs. These have previously been exploited in other contexts within the framework of neural network models that capture complex relationships within the data. Applications of neural networks have led to significant breakthroughs in various biological or biomedical fields but these have not yet been effectively applied to NCD modeling. This is, in part, due to limited datasets that are not amenable to building of robust neural network models. In this work, we leveraged a neural network trained on one class of NCDs, cancer, as the basis for a transfer learning approach to non-cancer NCD modeling. Our results demonstrate promising performance of the model in predicting three NCDs, namely, arthritis, asthma, and schizophrenia, for the respective blood samples, with an overall accuracy (f-measure) of 94.5%. Furthermore, a concept based explanation method called Testing with Concept Activation Vectors (TCAV) was used to investigate the importance of the sample sources and understand how future training datasets for multiple NCD models may be improved. Our findings highlight the effectiveness of transfer learning in developing accurate diagnostic and predictive models for NCDs.
Collapse
Affiliation(s)
- Steven Gore
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Bailey Meche
- Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA, USA
| | - Danyang Shao
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Benjamin Ginnett
- Department of Engineering, Eastern Arizona College, Thatcher, AZ, USA
| | - Kelly Zhou
- Department of Computer Science and Engineering, University of North Texas, Denton, TX, USA
| | - Rajeev K Azad
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, USA.
| |
Collapse
|
4
|
Pal D, Sahu P, Mishra AK, Hagelgans A, Sukocheva O. Histone Deacetylase Inhibitors as Cognitive Enhancers and Modifiers of Mood and Behavior. Curr Drug Targets 2023; 24:728-750. [PMID: 36475351 DOI: 10.2174/1389450124666221207090108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Epigenetic regulation of gene signalling is one of the fundamental molecular mechanisms for the generation and maintenance of cellular memory. Histone acetylation is a common epigenetic mechanism associated with increased gene transcription in the central nervous system (CNS). Stimulation of gene transcription by histone acetylation is important for the development of CNS-based long-term memory. Histone acetylation is a target for cognitive enhancement via the application of histone deacetylase (HDAC) inhibitors. The promising potential of HDAC inhibitors has been observed in the treatment of several neurodevelopmental and neurodegenerative diseases. OBJECTIVE This study assessed the current state of HDAC inhibition as an approach to cognitive enhancement and treatment of neurodegenerative diseases. Our analysis provides insights into the mechanism of action of HDAC inhibitors, associated epigenetic priming, and describes the therapeutic success and potential complications after unsupervised use of the inhibitors. RESULTS AND CONCLUSION Several chromatin-modifying enzymes play key roles in the regulation of cognitive processes. The importance of HDAC signaling in the brain is highlighted in this review. Recent advancements in the field of cognitive epigenetics are supported by the successful development of various HDAC inhibitors, demonstrating effective treatment of mood-associated disorders. The current review discusses the therapeutic potential of HDAC inhibition and observed complications after mood and cognitive enhancement therapies.
Collapse
Affiliation(s)
- Dilipkumar Pal
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G., 495 009, India
| | - Pooja Sahu
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G., 495 009, India
| | | | - Albert Hagelgans
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Olga Sukocheva
- College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park, 5042, SA, Australia
| |
Collapse
|
5
|
Ramos-Rosales DF, Vazquez-Alaniz F, Urtiz-Estrada N, Ramirez-Valles EG, Mendez-Hernádez EM, Salas-Leal AC, Barraza-Salas M. Epigenetic marks in suicide: a review. Psychiatr Genet 2021; 31:145-161. [PMID: 34412082 DOI: 10.1097/ypg.0000000000000297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Suicide is a complex phenomenon and a global public health problem that involves several biological factors that could contribute to the pathophysiology of suicide. There is evidence that epigenetic factors influence some psychiatric disorders, suggesting a predisposition to suicide or suicidal behavior. Here, we review studies of molecular mechanisms of suicide in an epigenetic perspective in the postmortem brain of suicide completers and peripheral blood cells of suicide attempters. Besides, we include studies of gene-specific DNA methylation, epigenome-wide association, histone modification, and interfering RNAs as epigenetic factors. This review provides an overview of the epigenetic mechanisms described in different biological systems related to suicide, contributing to an understanding of the genetic regulation in suicide. We conclude that epigenetic marks are potential biomarkers in suicide, and they could become attractive therapeutic targets due to their reversibility and importance in regulating gene expression.
Collapse
Affiliation(s)
| | - Fernando Vazquez-Alaniz
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango
- Hospital General 450. Servicios de Salud de Durango
| | | | | | - Edna M Mendez-Hernádez
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | - Alma C Salas-Leal
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | | |
Collapse
|
6
|
Early-life stress effects on BDNF DNA methylation in first-episode psychosis and in rats reared in isolation. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110188. [PMID: 33259836 DOI: 10.1016/j.pnpbp.2020.110188] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/26/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022]
Abstract
Stressful events during early-life are risk factors for psychiatric disorders. Brain-derived neurotrophic factor (BDNF) is implicated in psychosis pathophysiology and deficits in BDNF mRNA in animal models of psychiatric disease are reported. DNA methylation can control gene expression and may be influenced by environmental factors such as early-life stress. We investigated BDNF methylation in first-episode psychosis (FEP) patients (n = 58), their unaffected siblings (n = 29) and community-based controls (n = 59), each of whom completed the Childhood Trauma Questionnaire (CTQ); BDNF methylation was also tested in male Wistar rats housed isolated or grouped from weaning. DNA was extracted from human blood and rat brain (prefrontal cortex and hippocampus), bisulphite-converted and the methylation of equivalent sequences within BDNF exon IV determined by pyrosequencing. BDNF methylation did not differ significantly between diagnostic groups; however, individuals who had experienced trauma presented higher levels of methylation. We found association between the mean BDNF methylation and total CTQ score in FEP, as well as between individual CpG sites and subtypes of trauma. No significant correlations were found for controls or siblings with child trauma. These results were independent of age, gender, body mass index, BDNF genotype or LINE-1, a measure of global methylation, which showed no significant association with trauma. Isolation rearing resulted in increased BDNF methylation in both brain regions compared to group-housed animals, a correlate of previously reported changes in gene expression. Our results suggest that childhood maltreatment may result in increased BDNF methylation, providing a mechanism underlying the association between early-life stress and psychosis.
Collapse
|
7
|
Gatta E, Saudagar V, Drnevich J, Forrest MP, Auta J, Clark LV, Sershen H, Smith RC, Grayson DR, Davis JM, Guidotti A. Concordance of Immune-Related Markers in Lymphocytes and Prefrontal Cortex in Schizophrenia. SCHIZOPHRENIA BULLETIN OPEN 2021; 2:sgab002. [PMID: 33585819 PMCID: PMC7865130 DOI: 10.1093/schizbullopen/sgab002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Schizophrenia is a severe neuropsychiatric disorder associated with a wide array of transcriptomic and neurobiochemical changes. Genome-wide transcriptomic profiling conducted in postmortem brain have provided novel insights into the pathophysiology of this disorder, and identified biological processes including immune/inflammatory-related responses, metabolic, endocrine, and synaptic function. However, few studies have investigated whether similar changes are present in peripheral tissue. Here, we used RNA-sequencing to characterize transcriptomic profiles of lymphocytes in 18 nonpsychotic controls and 19 individuals with schizophrenia. We identified 2819 differentially expressed transcripts (P nominal < .05) in the schizophrenia group when compared to controls. Bioinformatic analyses conducted on a subset of 293 genes (P nominal < .01 and |log2 FC| > 0.5) highlighted immune/inflammatory responses as key biological processes in our dataset. Differentially expressed genes in lymphocytes were highly enriched in gene expression profiles associated with cortex layer 5a and immune cells. Thus, we investigated whether the changes in transcripts levels observed in lymphocytes could also be detected in the prefrontal cortex (PFC, BA10) in a second replication cohort of schizophrenia subjects. Remarkably, mRNA levels detected in the PFC and lymphocytes were in strong agreement, and measurements obtained using RNA-sequencing positively correlated with data obtained by reverse transcriptase-quantitative polymerase chain reaction analysis. Collectively, our work supports a role for immune dysfunction in the pathogenesis of schizophrenia and suggests that peripheral markers can be used as accessible surrogates to investigate putative central nervous system disruptions.
Collapse
Affiliation(s)
- Eleonora Gatta
- Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Vikram Saudagar
- Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Jenny Drnevich
- High-Performance Biological Computing, Roy J. Carver Biotechnology Center, University of Illinois-Urbana Champaign, Urbana, IL
| | - Marc P Forrest
- Department of Physiology, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - James Auta
- Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Lindsay V Clark
- High-Performance Biological Computing, Roy J. Carver Biotechnology Center, University of Illinois-Urbana Champaign, Urbana, IL
| | - Henry Sershen
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY
- Department of Psychiatry, NYU Langone Medical Center, New York, NY
| | - Robert C Smith
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY
- Department of Psychiatry, NYU Langone Medical Center, New York, NY
| | - Dennis R Grayson
- Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - John M Davis
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Alessandro Guidotti
- Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
8
|
Omics Application in Animal Science-A Special Emphasis on Stress Response and Damaging Behaviour in Pigs. Genes (Basel) 2020; 11:genes11080920. [PMID: 32796712 PMCID: PMC7464449 DOI: 10.3390/genes11080920] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
Increasing stress resilience of livestock is important for ethical and profitable meat and dairy production. Susceptibility to stress can entail damaging behaviours, a common problem in pig production. Breeding animals with increased stress resilience is difficult for various reasons. First, studies on neuroendocrine and behavioural stress responses in farm animals are scarce, as it is difficult to record adequate phenotypes under field conditions. Second, damaging behaviours and stress susceptibility are complex traits, and their biology is not yet well understood. Dissecting complex traits into biologically better defined, heritable and easily measurable proxy traits and developing biomarkers will facilitate recording these traits in large numbers. High-throughput molecular technologies (“omics”) study the entirety of molecules and their interactions in a single analysis step. They can help to decipher the contributions of different physiological systems and identify candidate molecules that are representative of different physiological pathways. Here, we provide a general overview of different omics approaches and we give examples of how these techniques could be applied to discover biomarkers. We discuss the genetic dissection of the stress response by different omics techniques and we provide examples and outline potential applications of omics tools to understand and prevent outbreaks of damaging behaviours.
Collapse
|
9
|
Land MA, Ramesh D, Miller AL, Pyles RB, Cunningham KA, Moeller FG, Anastasio NC. Methylation Patterns of the HTR2A Associate With Relapse-Related Behaviors in Cocaine-Dependent Participants. Front Psychiatry 2020; 11:532. [PMID: 32587535 PMCID: PMC7299072 DOI: 10.3389/fpsyt.2020.00532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/22/2020] [Indexed: 11/16/2022] Open
Abstract
Relapse during abstinence in cocaine use disorder (CUD) is often hastened by high impulsivity (predisposition toward rapid unplanned reactions to stimuli without regard to negative consequences) and high cue reactivity (e.g., attentional bias towards drug reward stimuli). A deeper understanding of the degree to which individual biological differences predict or promote problematic behaviors may afford opportunities for clinical refinement and optimization of CUD diagnostics and/or therapies. Preclinical evidence implicates serotonin (5-HT) neurotransmission through the 5-HT2A receptor (5-HT2AR) as a driver of individual differences in these relapse-related behaviors. Regulation of 5-HT2AR function occurs through many mechanisms, including DNA methylation of the HTR2A gene, an epigenetic modification linked with the memory of gene-environment interactions. In the present study, we tested the hypothesis that methylation of the HTR2A may associate with relapse-related behavioral vulnerability in cocaine-dependent participants versus healthy controls. Impulsivity was assessed by self-report (Barratt Impulsiveness Scale; BIS-11) and the delay discounting task, while levels of cue reactivity were determined by performance in the cocaine-word Stroop task. Genomic DNA was extracted from lymphocytes and the bisulfite-treated DNA was subjected to pyrosequencing to determine degree of methylation at four cytosine residues of the HTR2A promoter (-1439, -1420, -1224, -253). We found that the percent methylation at site -1224 after correction for age trended towards a positive correlation with total BIS-11 scores in cocaine users, but not healthy controls. Percent methylation at site -1420 negatively correlated with rates of delay discounting in healthy controls, but not cocaine users. Lastly, the percent methylation at site -253 positively correlated with attentional bias toward cocaine-associated cues. DNA methylation at these cytosine residues of the HTR2A promoter may be differentially associated with impulsivity or cocaine-associated environmental cues. Taken together, these data suggest that methylation of the HTR2A may contribute to individual differences in relapse-related behaviors in CUD.
Collapse
Affiliation(s)
- Michelle A. Land
- Center for Addiction Research, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Divya Ramesh
- Department of Psychiatry and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, United States
| | - Aaron L. Miller
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Richard B. Pyles
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Kathryn A. Cunningham
- Center for Addiction Research, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - F. Gerard Moeller
- Department of Psychiatry and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, United States
| | - Noelle C. Anastasio
- Center for Addiction Research, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
10
|
Peedicayil J. Identification of Biomarkers in Neuropsychiatric Disorders Based on Systems Biology and Epigenetics. Front Genet 2019; 10:985. [PMID: 31681422 PMCID: PMC6801306 DOI: 10.3389/fgene.2019.00985] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022] Open
Abstract
Clinically useful biomarkers are available for some neuropsychiatric disorders like fragile X syndrome, Rett syndrome, and Huntington’s disease. Despite many decades of research on the pathogenesis of neuropsychiatric disorders like schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD), the exact pathogenesis of these disorders remains unclear, and there are no clinically useful biomarkers for these disorders. However, there is increasing evidence that abnormal epigenetic mechanisms of gene expression contribute to the pathogenesis of SZ, BD, and MDD. Both systems (or network) biology and epigenetics (a component of systems biology) attempt to make sense of biological systems that are highly dynamic and multi-compartmental. This article suggests that systems biology, emphasizing the epigenetic component of systems biology, could help identify clinically useful biomarkers in neuropsychiatric disorders like SZ, BD, and MDD.
Collapse
Affiliation(s)
- Jacob Peedicayil
- Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore, India
| |
Collapse
|
11
|
Chase KA, Feiner B, Ramaker MJ, Hu E, Rosen C, Sharma RP. Examining the effects of the histone methyltransferase inhibitor BIX-01294 on histone modifications and gene expression in both a clinical population and mouse models. PLoS One 2019; 14:e0216463. [PMID: 31185023 PMCID: PMC6559633 DOI: 10.1371/journal.pone.0216463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 04/08/2019] [Indexed: 01/03/2023] Open
Abstract
Schizophrenia has been consistently characterized by abnormal patterns of gene down-regulation, increased restrictive chromatin assemblies, and reduced transcriptional activity. Histone methyltransferase (HMT) mRNA and H3K9me2 levels are elevated in postmortem brain and peripheral blood cells of persons with schizophrenia. Moreover, this epigenomic state likely contributes to the disease, as HMT levels correlate with clinical symptomatology. This manuscript sought to establish the potential therapeutic value of the HMT inhibitor BIX-01294 (BIX). Human peripheral mononuclear cells (PBMC) from 24 individuals with schizophrenia and 24 healthy individuals were cultured in the presence of BIX (5uM or 10uM). Mice were given once daily intraperitoneal injections of BIX (0.5 or 1mg/kg) for one week. Cultured cells, mouse cortex, or striatum was harvested, RNA extracted and RT-PCR conducted for several schizophrenia candidate genes: IL-6, Gad1, Nanog, KLF4, Reln, and Bdnf9a. Total H3K9me2 levels were measured using western blot while H3K9me2 binding to selected genes of interest was conducted using chromatin immunoprecipitation (ChIP). Neuronal subtype-specific BDNF conditional knockdown was conducted using the cre/lox system of mutant animals. Treatment with BIX decreased H3K9me2 and increased selected mRNA levels in cultured PBMCs from both normal controls and participants with schizophrenia. In mice, peripheral administration of BIX decreased cortical H3K9me2 levels and increased schizophrenia candidate gene expression. In BDNF conditional knockdown animals, BIX administration was able to significantly rescue Bdnf9a mRNA levels in ChAT and D1 Bdnf conditional knockdown mice. The results presented in this manuscript demonstrate a potential for further research into the clinical effectiveness of histone modifying pharmacology in the treatment of schizophrenia.
Collapse
Affiliation(s)
- Kayla A. Chase
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States of America
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States of America
| | - Benjamin Feiner
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Marcia J. Ramaker
- Department of Psychiatry, University of California, La Jolla, CA, United States of America
| | - Edward Hu
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Cherise Rosen
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Rajiv P. Sharma
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States of America
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
12
|
Orenay-Boyacioglu S, Caliskan M, Boyacioglu O, Coskunoglu A, Bozkurt G, Cam FS. Chronic tinnitus and BDNF/GDNF CpG promoter methylations: a case-control study. Mol Biol Rep 2019; 46:3929-3936. [PMID: 31041673 DOI: 10.1007/s11033-019-04837-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 04/25/2019] [Indexed: 01/12/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) and Glial-derived neurotrophic factor (GDNF) are neurotrophic factors that play key roles in the auditory pathway. While the relationship between serum levels and polymorphisms of BDNF/GDNF and chronic tinnitus is emphasized in the literature, there is no study showing the link between the promoter methylations of these genes and tinnitus. For this purpose, the relationship between chronic tinnitus and peripheral blood derived BDNF/GDNF promoter methylations was investigated to identify their role in the pathophysiology of tinnitus. In this case-control study, we examined the possible effects of BDNF/GDNF methylations in the blood samples of patients with tinnitus complaints for more than 3 months. Sixty tinnitus subjects between the ages of 18-55 and 50 healthy control subjects in the same age group who were free of any otorhinolaryngology and systemic disease were selected for examination. Methylation of total 12 CpG sites in BDNF and GDNF promoter regions were determined by the bisulfite-pyrosequencing method. Statistically significant differences were detected between BDNF CpG6 and GDNF CpG3-5-6 methylation ratios in the comparison of control group and the chronic tinnitus patients (P = 0.002, 0.0005, 0.00003, and 0.0029, respectively). To our knowledge, this is the first study in the literature investigating the relationship between chronic tinnitus and peripheral blood derived BDNF/GDNF promoter methylations. It is believed that the current results might be supported by investigating the relationships between BDNF/GDNF methylations and genotypes in future research using higher sample sizes.
Collapse
Affiliation(s)
- Seda Orenay-Boyacioglu
- Department of Medical Genetics, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey.
| | - Metin Caliskan
- Department of Medical Genetics, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Olcay Boyacioglu
- Faculty of Engineering, Aydin Adnan Menderes University, Aydin, Turkey
| | - Aysun Coskunoglu
- Department of Medical Genetics, State Hospital of Sivas, Sivas, Turkey
| | - Gokay Bozkurt
- Department of Medical Genetics, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - F Sirri Cam
- Department of Medical Genetics, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
13
|
Abstract
Schizophrenia (SZ) is a severe psychotic disorder that is highly heritable and common in the general population. The genetic heterogeneity of SZ is substantial, with contributions from common, rare, and de novo variants, in addition to environmental factors. Large genome-wide association studies have detected many variants that are associated with SZ, yet the pathways by which these variants influence risk remain largely unknown. SZ is also clinically heterogeneous, with patients exhibiting a broad range of deficits and symptom severity that vary over the course of illness and treatment, which has complicated efforts to identify risk variants. However, the underlying brain dysfunction forms a more stable trait marker that quantitative neurocognitive and neurophysiological endophenotypes may be able to objectively measure. These endophenotypes are less likely to be heterogeneous than the disorder and provide a neurobiological context to detect risk variants and underlying pathways among genes associated with SZ diagnosis. Furthermore, many endophenotypes are translational into animal model systems, allowing for direct evaluation of the neural circuit dysfunctions and neurobiological substrates. We review a selection of the most promising SZ endophenotypes, including prepulse inhibition, mismatch negativity, oculomotor antisaccade, letter-number sequencing, and continuous performance tests. We also highlight recent findings from large consortia that suggest the potential role of genes, particularly in the neuregulin and glutamate pathways, in several of these endophenotypes. Although endophenotypes require additional time and effort to assess, the insight into the underlying neurobiology that they provide may ultimately reveal the underlying genetic architecture for SZ and suggest novel treatment targets.
Collapse
|
14
|
Feiner B, Chase KA, Melbourne JK, Rosen C, Sharma RP. Risperidone effects on heterochromatin: the role of kinase signaling. Clin Exp Immunol 2019; 196:67-75. [PMID: 30714144 DOI: 10.1111/cei.13250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2018] [Indexed: 01/03/2023] Open
Abstract
Epigenetic effects of anti-psychotic medications are poorly understood. We have appropriated a model whereby heterochromatin is established through 24- or 48-h lipopolysaccharide (LPS) treatment, and tested the epigenetic effects of risperidone along the adenylyl cyclase/protein kinase A (AC/PKA) pathway in human liposarcoma cells that express the LPS-sensitive Toll-like receptor (TLR)-4. Human SW872 cells were cultured with LPS and mRNA expression levels and epigenetic modifications of dimethylated lysine 9 of histone 2 (H3K9me2), geterochromatin protein 1γ (HP1γ) and phospho-H3S10 at promoters of interleukin (IL)-6, tumor necrosis factor (TNF)-α and IL1β were measured. Pharmacological manipulation of the AC/PKA pathway was achieved through treatment with a PKA inhibitor (H89), mitogen- and stress-activated kinase 1 (MSK1) inhibitor (SB-747651A) or forskolin. Twenty-four and 48-h LPS treatment establishes heterochromatin at selected promoters, corresponding to decreased mRNA expression. Concurrent risperidone treatment with LPS treatment can both 'block' and 'reverse' heterochromatin formation. Forskolin treatment resulted in a similar disassembling effect on heterochromatin. Conversely, inhibition of PKA by H89 or MSK1 both blocked 'normalizing' effects of risperidone on LPS-induced heterochromatin. Our results demonstrate that risperidone can disassemble heterochromatin, exerting this effect along the G-protein/AC/PKA pathway. This approach can also be utilized to investigate functional outcomes of single or combined pharmacological treatments on chromatin assemblies in human cells.
Collapse
Affiliation(s)
- B Feiner
- The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, USA
| | - K A Chase
- The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - J K Melbourne
- The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, USA
| | - C Rosen
- The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, USA
| | - R P Sharma
- The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
15
|
Matrisciano F, Dong E, Nicoletti F, Guidotti A. Epigenetic Alterations in Prenatal Stress Mice as an Endophenotype Model for Schizophrenia: Role of Metabotropic Glutamate 2/3 Receptors. Front Mol Neurosci 2018; 11:423. [PMID: 30564095 PMCID: PMC6289213 DOI: 10.3389/fnmol.2018.00423] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/30/2018] [Indexed: 01/13/2023] Open
Abstract
Mice subjected to prenatal restraint stress (PRS mice) showed biochemical and behavioral abnormalities consistent with a schizophrenia-like phenotype (Matrisciano et al., 2016). PRS mice are characterized by increased DNA-methyltransferase 1 (DNMT1) and ten-eleven methylcytosine dioxygenase 1 (TET1) expression levels and exhibit an enrichment of 5-methylcytosine (5MC) and 5-hydroxymethylcytosine (5HMC) at neocortical GABAergic and glutamatergic gene promoters. Activation of group II metabotropic glutamate receptors (mGlu2 and−3 receptors) showed a potential epigenetically-induced antipsychotic activity by reversing the molecular and behavioral changes observed in PRS mice. This effect was most likely caused by the increase in the expression of growth arrest and DNA damage 45-β (Gadd45-β) protein, a molecular player of DNA demethylation, induced by the activation of mGlu2/3 receptors. This effect was mimicked by clozapine and valproate but not by haloperidol. Treatment with the selective mGlu2/3 receptors agonist LY379268 also increased the amount of Gadd45-β bound to specific promoter regions of reelin, BDNF, and GAD67. A meta-analysis of several clinical trials showed that treatment with an orthosteric mGlu2/3 receptor agonist improved both positive and negative symptoms of schizophrenia, but only in patients who were early-in-disease and had not been treated with atypical antipsychotic drugs (Kinon et al., 2015). Our findings show that PRS mice are valuable model for the study of epigenetic mechanisms involved in the pathogenesis of schizophrenia and support the hypothesis that pharmacological modulation of mGlu2/3 receptors could impact the early phase of schizophrenia and related neurodevelopmental disorders by regulating epigenetic processes that lie at the core of the disorders.
Collapse
Affiliation(s)
- Francesco Matrisciano
- Department of Psychiatry, Psychiatric Institute, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Erbo Dong
- Department of Psychiatry, Center for Alcohol Research in Epigenetics College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, University of Rome "Sapienza", Rome, Italy.,IRCCS, Neuromed, Pozzilli, Italy
| | - Alessandro Guidotti
- Department of Psychiatry, Psychiatric Institute, College of Medicine, University of Illinois Chicago, Chicago, IL, United States.,Department of Psychiatry, Center for Alcohol Research in Epigenetics College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
16
|
Alfimova MV, Kondratiev NV, Golov AK, Golimbet VE. Methylation of the Reelin Gene Promoter in Peripheral Blood and Its Relationship with the Cognitive Function of Schizophrenia Patients. Mol Biol 2018. [DOI: 10.1134/s0026893318050023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Abstract
This commentary reviews the concept of experience-dependent epigenetic modifications in the CNS as a core mechanism underlying individuality and individuation at the behavioral level. I use the term individuation to refer to the underlying neurobiological processes that result in individuality, with the discussion focusing on individuality of cognitive, emotional, and behavioral repertoire. The review describes recent work supporting the concept of neuroepigenetic mechanisms underlying individuation, possible roles of transgenerational effects, and implications for precision medicine.
Collapse
Affiliation(s)
- J David Sweatt
- Department of Pharmacology, Vanderbilt University, Nashville, TN
| |
Collapse
|
18
|
Li C, Tao H, Yang X, Zhang X, Liu Y, Tang Y, Tang A. Assessment of a combination of Serum Proteins as potential biomarkers to clinically predict Schizophrenia. Int J Med Sci 2018; 15:900-906. [PMID: 30008602 PMCID: PMC6036096 DOI: 10.7150/ijms.24346] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/27/2018] [Indexed: 12/25/2022] Open
Abstract
Schizophrenia (SZ) is a devastating psychiatric disorder. Validation of potential serum biomarkers during first-episode psychosis (FEP) is especially helpful to understand the onset and prognosis of this disorder. To address this question, we examined multiple blood biomarkers and assessed the efficacy to diagnose SZ. The expression levels of Neuregulin1 (NRG1), ErbB4, brain-derived neurotrophic factor (BDNF), DNA methyltransferases 1 (DNMT1) and ten-eleven translocation 1 (TET1) proteins in peripheral blood of 53 FEP patients and 57 healthy controls were determined by enzyme-linked immunosorbent assay (ELISA). Multivariable logistic regression including biomarker concentration as covariates was used to predict SZ. Differentiating performance of these five serum protein levels was analyzed by Receiver Operating Characteristic (ROC) curve analysis. We found that patients with SZ present a higher concentration of DNMT1, and TET1 in peripheral blood, but a lower concentration of NRG1, ErbB4 and BDNF than controls. Multivariable logistic regression showed that ErbB4, BDNF and TET1 were independent predictors of SZ, and when combined, provided high diagnostic accuracy for SZ. Together, our findings highlight that altered expression of NRG1, ErbB4, BDNF, DNMT1 and TET1 are involved in schizophrenia development and they may serve as potential biomarkers for the diagnosis of the schizophrenia. Therefore, our study provides evidence that combination of ErbB4, BDNF and TET1 biomarkers could greatly improve the diagnostic performance.
Collapse
Affiliation(s)
- Cunyan Li
- Department of Laboratory Medicine, Hunan Provincial People's Hospital, The first affiliated hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Huai Tao
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Xiudeng Yang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Xianghui Zhang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Mental Health Institute of Central South University & Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China; China National Clinical Research Center on Mental Disorders (Xiangya) & China National Technology Institute on Mental Disorders, China
| | - Yong Liu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Mental Health Institute of Central South University & Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China; China National Clinical Research Center on Mental Disorders (Xiangya) & China National Technology Institute on Mental Disorders, China
| | - Yamei Tang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Aiguo Tang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
19
|
Schizophrenia: A review of potential biomarkers. J Psychiatr Res 2017; 93:37-49. [PMID: 28578207 DOI: 10.1016/j.jpsychires.2017.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/10/2017] [Accepted: 05/22/2017] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Understanding the biological process and progression of schizophrenia is the first step to developing novel approaches and new interventions. Research on new biomarkers is extremely important when the goal is an early diagnosis (prediction) and precise theranostics. The objective of this review is to understand the research on biomarkers and their effects in schizophrenia to synthesize the role of these new advances. METHODS In this review, we search and review publications in databases in accordance with established limits and specific objectives. We look at particular endpoints such as the category of biomarkers, laboratory techniques and the results/conclusions of the selected publications. RESULTS The investigation of biomarkers and their potential as a predictor, diagnosis instrument and therapeutic orientation, requires an appropriate methodological strategy. In this review, we found different laboratory techniques to identify biomarkers and their function in schizophrenia. CONCLUSION The consolidation of this information will provide a large-scale application network of schizophrenia biomarkers.
Collapse
|
20
|
Sweatt JD, Tamminga CA. An epigenomics approach to individual differences and its translation to neuropsychiatric conditions. DIALOGUES IN CLINICAL NEUROSCIENCE 2017. [PMID: 27757063 PMCID: PMC5067146 DOI: 10.31887/dcns.2016.18.3/dsweatt] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review concerns epigenetic mechanisms and their roles in conferring interindividual differences, especially as related to experientially acquired and genetically driven changes in central nervous system (CNS) function. In addition, the review contains commentary regarding the possible ways in which epigenomic changes may contribute to neuropsychiatric conditions and disorders and ways in which epigenotyping might be cross-correlated with clinical phenotyping in the context of precision medicine. The review begins with a basic description of epigenetic marking in the CNS and how these changes are powerful regulators of gene readout. Means for characterizing the individual epigenotype are briefly described, with a focus on DNA cytosine methylation as a readily measurable, stable epigenetic mark. This background enables a discussion of how “epigenotyping” might be integrated along with genotyping and deep phenotyping as a means of implementing advanced precision medicine. Finally, the commentary addresses two exemplars when considering how epigenotype may correlate with and modulate cognitive and behavioral phenotype: schizophrenia and Rett syndrome. These two disorders provide an interesting compare-and-contrast example regarding possible epigenotypic regulation of behavior: whereas Rett syndrome is clearly established as being caused by disruption of the function of an epigenetic “reader” of the DNA cytosine methylome—methyl-CpG-binding protein 2 (MeCP2)—the case for a role for epigenetic mechanisms in schizophrenia is still quite speculative.
Collapse
Affiliation(s)
- J David Sweatt
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
21
|
Schmitt A, Martins-de-Souza D, Akbarian S, Cassoli JS, Ehrenreich H, Fischer A, Fonteh A, Gattaz WF, Gawlik M, Gerlach M, Grünblatt E, Halene T, Hasan A, Hashimoto K, Kim YK, Kirchner SK, Kornhuber J, Kraus TFJ, Malchow B, Nascimento JM, Rossner M, Schwarz M, Steiner J, Talib L, Thibaut F, Riederer P, Falkai P. Consensus paper of the WFSBP Task Force on Biological Markers: Criteria for biomarkers and endophenotypes of schizophrenia, part III: Molecular mechanisms. World J Biol Psychiatry 2017; 18:330-356. [PMID: 27782767 DOI: 10.1080/15622975.2016.1224929] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Despite progress in identifying molecular pathophysiological processes in schizophrenia, valid biomarkers are lacking for both the disease and treatment response. METHODS This comprehensive review summarises recent efforts to identify molecular mechanisms on the level of protein and gene expression and epigenetics, including DNA methylation, histone modifications and micro RNA expression. Furthermore, it summarises recent findings of alterations in lipid mediators and highlights inflammatory processes. The potential that this research will identify biomarkers of schizophrenia is discussed. RESULTS Recent studies have not identified clear biomarkers for schizophrenia. Although several molecular pathways have emerged as potential candidates for future research, a complete understanding of these metabolic pathways is required to reveal better treatment modalities for this disabling condition. CONCLUSIONS Large longitudinal cohort studies are essential that pair a thorough phenotypic and clinical evaluation for example with gene expression and proteome analysis in blood at multiple time points. This approach might identify biomarkers that allow patients to be stratified according to treatment response and ideally also allow treatment response to be predicted. Improved knowledge of molecular pathways and epigenetic mechanisms, including their potential association with environmental influences, will facilitate the discovery of biomarkers that could ultimately be effective tools in clinical practice.
Collapse
Affiliation(s)
- Andrea Schmitt
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany.,b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Daniel Martins-de-Souza
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil.,c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Schahram Akbarian
- d Division of Psychiatric Epigenomics, Departments of Psychiatry and Neuroscience , Mount Sinai School of Medicine , New York , USA
| | - Juliana S Cassoli
- c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Hannelore Ehrenreich
- e Clinical Neuroscience , Max Planck Institute of Experimental Medicine, DFG Centre for Nanoscale Microscopy & Molecular Physiology of the Brain , Göttingen , Germany
| | - Andre Fischer
- f Research Group for Epigenetics in Neurodegenerative Diseases , German Centre for Neurodegenerative Diseases (DZNE), Göttingen , Germany.,g Department of Psychiatry and Psychotherapy , University Medical Centre Göttingen , Germany
| | - Alfred Fonteh
- h Neurosciences , Huntington Medical Research Institutes , Pasadena , CA , USA
| | - Wagner F Gattaz
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Michael Gawlik
- i Department of Psychiatry and Psychotherapy , University of Würzburg , Germany
| | - Manfred Gerlach
- j Centre for Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , University of Würzburg , Germany
| | - Edna Grünblatt
- i Department of Psychiatry and Psychotherapy , University of Würzburg , Germany.,k Department of Child and Adolescent Psychiatry and Psychotherapy , Psychiatric Hospital, University of Zürich , Switzerland.,l Neuroscience Centre Zurich , University of Zurich and the ETH Zurich , Switzerland.,m Zurich Centre for Integrative Human Physiology , University of Zurich , Switzerland
| | - Tobias Halene
- d Division of Psychiatric Epigenomics, Departments of Psychiatry and Neuroscience , Mount Sinai School of Medicine , New York , USA
| | - Alkomiet Hasan
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | - Kenij Hashimoto
- n Division of Clinical Neuroscience , Chiba University Centre for Forensic Mental Health , Chiba , Japan
| | - Yong-Ku Kim
- o Department of Psychiatry , Korea University, College of Medicine , Republic of Korea
| | | | - Johannes Kornhuber
- p Department of Psychiatry and Psychotherapy , Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| | | | - Berend Malchow
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | - Juliana M Nascimento
- c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Moritz Rossner
- r Department of Psychiatry, Molecular and Behavioural Neurobiology , LMU Munich , Germany.,s Research Group Gene Expression , Max Planck Institute of Experimental Medicine , Göttingen , Germany
| | - Markus Schwarz
- t Institute for Laboratory Medicine, LMU Munich , Germany
| | - Johann Steiner
- u Department of Psychiatry , University of Magdeburg , Magdeburg , Germany
| | - Leda Talib
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Florence Thibaut
- v Department of Psychiatry , University Hospital Cochin (site Tarnier), University of Paris-Descartes, INSERM U 894 Centre Psychiatry and Neurosciences , Paris , France
| | - Peter Riederer
- w Center of Psychic Health; Department of Psychiatry, Psychosomatics and Psychotherapy , University Hospital of Würzburg , Germany
| | - Peter Falkai
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | | |
Collapse
|
22
|
Iatrou A, Kenis G, Rutten BPF, Lunnon K, van den Hove DLA. Epigenetic dysregulation of brainstem nuclei in the pathogenesis of Alzheimer's disease: looking in the correct place at the right time? Cell Mol Life Sci 2017; 74:509-523. [PMID: 27628303 PMCID: PMC5241349 DOI: 10.1007/s00018-016-2361-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/15/2016] [Accepted: 09/07/2016] [Indexed: 12/20/2022]
Abstract
Even though the etiology of Alzheimer's disease (AD) remains unknown, it is suggested that an interplay among genetic, epigenetic and environmental factors is involved. An increasing body of evidence pinpoints that dysregulation in the epigenetic machinery plays a role in AD. Recent developments in genomic technologies have allowed for high throughput interrogation of the epigenome, and epigenome-wide association studies have already identified unique epigenetic signatures for AD in the cortex. Considerable evidence suggests that early dysregulation in the brainstem, more specifically in the raphe nuclei and the locus coeruleus, accounts for the most incipient, non-cognitive symptomatology, indicating a potential causal relationship with the pathogenesis of AD. Here we review the advancements in epigenomic technologies and their application to the AD research field, particularly with relevance to the brainstem. In this respect, we propose the assessment of epigenetic signatures in the brainstem as the cornerstone of interrogating causality in AD. Understanding how epigenetic dysregulation in the brainstem contributes to AD susceptibility could be of pivotal importance for understanding the etiology of the disease and for the development of novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- A Iatrou
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6200 MD, Maastricht, The Netherlands
| | - G Kenis
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6200 MD, Maastricht, The Netherlands
| | - B P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6200 MD, Maastricht, The Netherlands
| | - K Lunnon
- University of Exeter Medical School, RILD, University of Exeter, Barrack Road, Devon, UK
| | - D L A van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6200 MD, Maastricht, The Netherlands.
- Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Fuechsleinstrasse 15, 97080, Würzburg, Germany.
| |
Collapse
|
23
|
Huang JH, Park H, Iaconelli J, Berkovitch SS, Watmuff B, McPhie D, Öngür D, Cohen BM, Clish CB, Karmacharya R. Unbiased Metabolite Profiling of Schizophrenia Fibroblasts under Stressful Perturbations Reveals Dysregulation of Plasmalogens and Phosphatidylcholines. J Proteome Res 2016; 16:481-493. [DOI: 10.1021/acs.jproteome.6b00628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Joanne H. Huang
- Center
for Experimental Drugs and Diagnostics, Psychiatric and Neurodevelopmental
Genetics Unit, Center for Human Genetic Research, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Chemical
Biology Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Hyoungjun Park
- Institute
of Neuroinformatics, ETH Zurich and University of Zurich, CH-8057, Zurich, Switzerland
| | - Jonathan Iaconelli
- Center
for Experimental Drugs and Diagnostics, Psychiatric and Neurodevelopmental
Genetics Unit, Center for Human Genetic Research, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Chemical
Biology Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Shaunna S. Berkovitch
- Center
for Experimental Drugs and Diagnostics, Psychiatric and Neurodevelopmental
Genetics Unit, Center for Human Genetic Research, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Chemical
Biology Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Bradley Watmuff
- Center
for Experimental Drugs and Diagnostics, Psychiatric and Neurodevelopmental
Genetics Unit, Center for Human Genetic Research, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Chemical
Biology Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Donna McPhie
- Schizophrenia
and Bipolar Disorder Program, Harvard Medical School and McLean Hospital, Belmont, Massachusetts 02478, United States
| | - Dost Öngür
- Schizophrenia
and Bipolar Disorder Program, Harvard Medical School and McLean Hospital, Belmont, Massachusetts 02478, United States
| | - Bruce M. Cohen
- Schizophrenia
and Bipolar Disorder Program, Harvard Medical School and McLean Hospital, Belmont, Massachusetts 02478, United States
| | - Clary B. Clish
- Chemical
Biology Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Rakesh Karmacharya
- Center
for Experimental Drugs and Diagnostics, Psychiatric and Neurodevelopmental
Genetics Unit, Center for Human Genetic Research, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Chemical
Biology Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
- Schizophrenia
and Bipolar Disorder Program, Harvard Medical School and McLean Hospital, Belmont, Massachusetts 02478, United States
| |
Collapse
|
24
|
Matrisciano F, Panaccione I, Grayson DR, Nicoletti F, Guidotti A. Metabotropic Glutamate 2/3 Receptors and Epigenetic Modifications in Psychotic Disorders: A Review. Curr Neuropharmacol 2016; 14:41-7. [PMID: 26813121 PMCID: PMC4787284 DOI: 10.2174/1570159x13666150713174242] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 01/08/2023] Open
Abstract
Schizophrenia and Bipolar Disorder are chronic psychiatric disorders, both considered as “major psychosis”; they are thought to share some pathogenetic factors involving a dysfunctional gene x environment interaction. Alterations in the glutamatergic transmission have been suggested to be involved in the pathogenesis of psychosis. Our group developed an epigenetic model of schizophrenia originated by Prenatal Restraint Stress (PRS) paradigm in mice. PRS mice developed some behavioral alterations observed in schizophrenic patients and classic animal models of schizophrenia, i.e. deficits in social interaction, locomotor activity and prepulse inhibition. They also showed specific changes in promoter DNA methylation activity of genes related to schizophrenia such as reelin, BDNF and GAD67, and altered expression and function of mGlu2/3 receptors in the frontal cortex. Interestingly, behavioral and molecular alterations were reversed by treatment with mGlu2/3 agonists. Based on these findings, we speculate that pharmacological modulation of these receptors could have a great impact on early phase treatment of psychosis together with the possibility to modulate specific epigenetic key protein involved in the development of psychosis. In this review, we will discuss in more details the specific features of the PRS mice as a suitable epigenetic model for
major psychosis. We will then focus on key proteins of chromatin remodeling machinery as potential target for new
pharmacological treatment through the activation of metabotropic glutamate receptors.
Collapse
Affiliation(s)
- Francesco Matrisciano
- Psychiatry and Behavioral Science, Northwestern University, Feinberg School of Medicine, 303E Chicago Ave, Chicago, IL 60611.
| | | | | | | | | |
Collapse
|
25
|
Howard TD, Hsu FC, Chen H, Quandt SA, Talton JW, Summers P, Arcury TA. Changes in DNA methylation over the growing season differ between North Carolina farmworkers and non-farmworkers. Int Arch Occup Environ Health 2016; 89:1103-10. [PMID: 27349971 DOI: 10.1007/s00420-016-1148-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/20/2016] [Indexed: 11/29/2022]
Abstract
PURPOSE The occupational risk to farmworkers, particularly chronic exposure to pesticides, is an acknowledged environmental and work-related health problem. Epigenetics has recently been shown to contribute to a number of complex diseases and traits, including measures of cognitive function and preclinical neurodegenerative disease. We sought to determine whether changes in DNA methylation existed between farmworker and non-farmworker populations and to identify the genes most likely involved in those changes. METHODS Eighty-three farmworkers and 60 non-farmworkers were selected from PACE4, a community-based, participatory research project comparing occupational exposures between immigrant Latino farmworker and non-farmworker manual workers. Measurements of DNA methylation were performed with the Infinium HumanMethylation450 BeadChip, at the beginning and end of the 2012 growing season. Bonferroni adjustment was used to identify significant findings (p = 1.03 × 10(-7), based on 485,000 tested methylation sites), although less stringent criteria (i.e., p ≤ 1 × 10(-6)) were used to identify sites of interest. Expression quantitative trait locus (eQTL) databases were used to help identify the most likely functional genes for each associated methylation site. RESULTS Methylation at 36 CpG sites, located in or near 72 genes, differed between the two groups (p ≤ 1 × 10(-6)). The difference between the two groups was generally due to an increase in methylation in the farmworkers and a slight decrease in methylation in the non-farmworkers. Enrichment was observed in several biological pathways, including those involved in the immune response, as well as growth hormone signaling, role of BRCA1 in DNA damage response, p70S6K signaling, and PI3K signaling in B lymphocytes. CONCLUSIONS We identified considerable changes in DNA methylation at 36 CpG sites over the growing season that differed between farmworkers and non-farmworkers. Dominant pathways included immune-related (HLA) processes, as well as a number of diverse biological systems. Further studies are necessary to determine which exposures or behaviors are responsible for the observed changes, and whether these changes eventually lead to disease-related phenotypes in this population.
Collapse
Affiliation(s)
- Timothy D Howard
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| | - Fang-Chi Hsu
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Haiying Chen
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Sara A Quandt
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Jennifer W Talton
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Phillip Summers
- Department of Family and Community Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Thomas A Arcury
- Department of Family and Community Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| |
Collapse
|
26
|
Huang JH, Berkovitch SS, Iaconelli J, Watmuff B, Park H, Chattopadhyay S, McPhie D, Öngür D, Cohen BM, Clish CB, Karmacharya R. Perturbational Profiling of Metabolites in Patient Fibroblasts Implicates α-Aminoadipate as a Potential Biomarker for Bipolar Disorder. MOLECULAR NEUROPSYCHIATRY 2016; 2:97-106. [PMID: 27606323 DOI: 10.1159/000446654] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 05/04/2016] [Indexed: 12/27/2022]
Abstract
Many studies suggest the presence of aberrations in cellular metabolism in bipolar disorder. We studied the metabolome in bipolar disorder to gain insight into cellular pathways that may be dysregulated in bipolar disorder and to discover evidence of novel biomarkers. We measured polar and nonpolar metabolites in fibroblasts from subjects with bipolar I disorder and matched healthy control subjects, under normal conditions and with two physiologic perturbations: low-glucose media and exposure to the stress-mediating hormone dexamethasone. Metabolites that were significantly different between bipolar and control subjects showed distinct separation by principal components analysis methods. The most statistically significant findings were observed in the perturbation experiments. The metabolite with the lowest p value in both the low-glucose and dexamethasone experiments was α-aminoadipate, whose intracellular level was consistently lower in bipolar subjects. Our study implicates α-aminoadipate as a possible biomarker in bipolar disorder that manifests under cellular stress. This is an intriguing finding given the known role of α-aminoadipate in the modulation of kynurenic acid in the brain, especially as abnormal kynurenic acid levels have been implicated in bipolar disorder.
Collapse
Affiliation(s)
- Joanne H Huang
- Center for Experimental Drugs and Diagnostics, Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Harvard Medical School and Massachusetts General Hospital, Boston, Mass., USA; Chemical Biology Program, Broad Institute of Harvard and MIT, Mass., USA
| | - Shaunna S Berkovitch
- Center for Experimental Drugs and Diagnostics, Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Harvard Medical School and Massachusetts General Hospital, Boston, Mass., USA; Chemical Biology Program, Broad Institute of Harvard and MIT, Mass., USA
| | - Jonathan Iaconelli
- Center for Experimental Drugs and Diagnostics, Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Harvard Medical School and Massachusetts General Hospital, Boston, Mass., USA; Chemical Biology Program, Broad Institute of Harvard and MIT, Mass., USA
| | - Bradley Watmuff
- Center for Experimental Drugs and Diagnostics, Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Harvard Medical School and Massachusetts General Hospital, Boston, Mass., USA; Chemical Biology Program, Broad Institute of Harvard and MIT, Mass., USA
| | - Hyoungjun Park
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Mass., USA
| | - Shrikanta Chattopadhyay
- MGH Cancer Center, Boston, Mass., USA; Chemical Biology Program, Broad Institute of Harvard and MIT, Mass., USA
| | - Donna McPhie
- Schizophrenia and Bipolar Disorder Program, Harvard Medical School and McLean Hospital, Belmont, Mass., USA
| | - Dost Öngür
- Schizophrenia and Bipolar Disorder Program, Harvard Medical School and McLean Hospital, Belmont, Mass., USA
| | - Bruce M Cohen
- Schizophrenia and Bipolar Disorder Program, Harvard Medical School and McLean Hospital, Belmont, Mass., USA
| | - Clary B Clish
- Chemical Biology Program, Broad Institute of Harvard and MIT, Mass., USA
| | - Rakesh Karmacharya
- Center for Experimental Drugs and Diagnostics, Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Harvard Medical School and Massachusetts General Hospital, Boston, Mass., USA; Chemical Biology Program, Broad Institute of Harvard and MIT, Mass., USA; Chemical Biology Program, Broad Institute of Harvard and MIT, Mass., USA
| |
Collapse
|
27
|
Lintas C, Sacco R, Persico AM. Differential methylation at the RELN gene promoter in temporal cortex from autistic and typically developing post-puberal subjects. J Neurodev Disord 2016; 8:18. [PMID: 27134686 PMCID: PMC4850686 DOI: 10.1186/s11689-016-9151-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 04/12/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Reelin plays a pivotal role in neurodevelopment and in post-natal synaptic plasticity and has been implicated in the pathogenesis of autism spectrum disorder (ASD). The reelin (RELN) gene expression is significantly decreased in ASD, both in the brain and peripherally. Methylation at the RELN gene promoter is largely triggered at puberty, and hypermethylation has been found in post-mortem brains of schizophrenic and bipolar patients. METHODS In this study, we assessed RELN gene methylation status in post-mortem temporocortical tissue samples (BA41/42 or 22) of six pairs of post-puberal individuals with ASD and typically developing subjects, matched for sex (male:female, M:F = 5:1), age, and post-mortem interval. RESULTS ASD patients display a significantly higher number of methylated CpG islands and heavier methylation in the 5' region of the RELN gene promoter, spanning from -458 to -223 bp, whereas controls have more methylated CpG positions and greater extent of methylation at the 3' promoter region, spanning from -222 to +1 bp. The most upstream promoter region (-458 to -364 bp) is methylated only in ASD brains, while the most downstream region (-131 to +1 bp) is methylated exclusively in control brains. Within this general framework, three different methylation patterns are discernible, each correlated with different extents of reduction in reelin gene expression among ASD individuals compared to controls. CONCLUSIONS The methylation pattern is different in ASD and control post-mortem brains. ASD-specific CpG positions, located in the most upstream gene promoter region, may exert a functional role potentially conferring ASD risk by blunting RELN gene expression.
Collapse
Affiliation(s)
- Carla Lintas
- Unit of Child and Adolescent Neuropsychiatry, University Campus Bio-Medico, Rome, Italy ; Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Rome, Italy
| | - Roberto Sacco
- Unit of Child and Adolescent Neuropsychiatry, University Campus Bio-Medico, Rome, Italy ; Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Rome, Italy
| | - Antonio M Persico
- Unit of Child and Adolescent Neuropsychiatry, "Gaetano Martino" University Hospital, University of Messina, via Consolare Valeria 1, I-98125 Messina, Italy ; Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy
| |
Collapse
|
28
|
Lai CY, Scarr E, Udawela M, Everall I, Chen WJ, Dean B. Biomarkers in schizophrenia: A focus on blood based diagnostics and theranostics. World J Psychiatry 2016; 6:102-17. [PMID: 27014601 PMCID: PMC4804259 DOI: 10.5498/wjp.v6.i1.102] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/20/2015] [Accepted: 12/17/2015] [Indexed: 02/05/2023] Open
Abstract
Identifying biomarkers that can be used as diagnostics or predictors of treatment response (theranostics) in people with schizophrenia (Sz) will be an important step towards being able to provide personalized treatment. Findings from the studies in brain tissue have not yet been translated into biomarkers that are practical in clinical use because brain biopsies are not acceptable and neuroimaging techniques are expensive and the results are inconclusive. Thus, in recent years, there has been search for blood-based biomarkers for Sz as a valid alternative. Although there are some encouraging preliminary data to support the notion of peripheral biomarkers for Sz, it must be acknowledged that Sz is a complex and heterogeneous disorder which needs to be further dissected into subtype using biological based and clinical markers. The scope of this review is to critically examine published blood-based biomarker of Sz, focusing on possible uses for diagnosis, treatment response, or their relationship with schizophrenia-associated phenotype. We sorted the studies into six categories which include: (1) brain-derived neurotrophic factor; (2) inflammation and immune function; (3) neurochemistry; (4) oxidative stress response and metabolism; (5) epigenetics and microRNA; and (6) transcriptome and proteome studies. This review also summarized the molecules which have been conclusively reported as potential blood-based biomarkers for Sz in different blood cell types. Finally, we further discusses the pitfall of current blood-based studies and suggest that a prediction model-based, Sz specific, blood oriented study design as well as standardize blood collection conditions would be useful for Sz biomarker development.
Collapse
|
29
|
Abstract
Despite a lack of recent progress in the treatment of schizophrenia, our understanding of its genetic and environmental causes has considerably improved, and their relationship to aberrant patterns of neurodevelopment has become clearer. This raises the possibility that 'disease-modifying' strategies could alter the course to - and of - this debilitating disorder, rather than simply alleviating symptoms. A promising window for course-altering intervention is around the time of the first episode of psychosis, especially in young people at risk of transition to schizophrenia. Indeed, studies performed in both individuals at risk of developing schizophrenia and rodent models for schizophrenia suggest that pre-diagnostic pharmacotherapy and psychosocial or cognitive-behavioural interventions can delay or moderate the emergence of psychosis. Of particular interest are 'hybrid' strategies that both relieve presenting symptoms and reduce the risk of transition to schizophrenia or another psychiatric disorder. This Review aims to provide a broad-based consideration of the challenges and opportunities inherent in efforts to alter the course of schizophrenia.
Collapse
|
30
|
Koo SH, Lo YL, Yee JY, Lee EJD. Genetic and/or non-genetic causes for inter-individual and inter-cellular variability in transporter protein expression: implications for understanding drug efficacy and toxicity. Expert Opin Drug Metab Toxicol 2015; 11:1821-37. [DOI: 10.1517/17425255.2015.1104298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
López-Moreno JA, Marcos M, Calleja-Conde J, Echeverry-Alzate V, Bühler KM, Costa-Alba P, Bernardo E, Laso FJ, Rodríguez de Fonseca F, Nadal R, Viveros MP, Maldonado R, Giné E. Histone Deacetylase Gene Expression Following Binge Alcohol Consumption in Rats and Humans. Alcohol Clin Exp Res 2015; 39:1939-50. [PMID: 26365275 DOI: 10.1111/acer.12850] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/22/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Alcohol binge drinking is one of the most common patterns of excessive alcohol use and recent data would suggest that histone deacetylases (HDACs) gene expression profiling could be useful as a biomarker for psychiatric disorders. METHODS This study aimed to characterize the gene expression patterns of Hdac 1-11 in samples of rat peripheral blood, liver, heart, prefrontal cortex, and amygdala following repeated binge alcohol consumption and to determine the parallelism of Hdac gene expression between rats and humans in peripheral blood. To accomplish this goal, we examined Hdac gene expression following 1, 4, or 8 alcohol binges (3 g/kg, orally) in the rat, in patients who were admitted to the hospital emergency department for acute alcohol intoxication, and in rats trained in daily operant alcohol self-administration. RESULTS We primarily found that acute alcohol binging reduced gene expression (Hdac1-10) in the peripheral blood of alcohol-naïve rats and that this effect was attenuated following repeated alcohol binges. There was also a reduction of Hdac gene expression in the liver (Hdac2,4,5), whereas there was increased expression in the heart (Hdac1,7,8) and amygdala (Hdac1,2,5). Additionally, increased blood alcohol concentrations were measured in rat blood at 1 to 4 hours following repeated alcohol binging, and the only group that developed hepatic steotosis (fatty liver) were those animals exposed to 8 alcohol binge events. Finally, both binge consumption of alcohol in humans and daily operant alcohol self-administration in rats increased Hdac gene expression in peripheral blood. CONCLUSIONS Our results suggest that increases in HDAC gene expression within the peripheral blood are associated with chronic alcohol consumption, whereas HDAC gene expression is reduced following initial exposure to alcohol.
Collapse
Affiliation(s)
| | - Miguel Marcos
- Alcoholism Unit, Department of Internal Medicine, University Hospital of Salamanca, Salamanca, Spain
| | - Javier Calleja-Conde
- Department of Psychobiology, School of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Victor Echeverry-Alzate
- Department of Psychobiology, School of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Kora M Bühler
- Department of Psychobiology, School of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Pilar Costa-Alba
- Emergency Department, University Hospital of Salamanca, Salamanca, Spain
| | - Edgar Bernardo
- Department of Vascular Biology and Inflammation, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Francisco-Javier Laso
- Alcoholism Unit, Department of Internal Medicine, University Hospital of Salamanca, Salamanca, Spain
| | | | - Roser Nadal
- Psychobiology Unit, School of Psychology, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Paz Viveros
- Department of Physiology (Animal Physiology II), School of Biology, Complutense University of Madrid, Madrid, Spain
| | - Rafael Maldonado
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Elena Giné
- Department of Cellular Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
32
|
Shorter KR, Miller BH. Epigenetic mechanisms in schizophrenia. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:1-7. [PMID: 25958205 DOI: 10.1016/j.pbiomolbio.2015.04.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 01/03/2023]
Abstract
Epigenetic modifications, including DNA methylation, histone modifications, and non-coding RNAs, have been implicated in a number of complex diseases. Schizophrenia and other major psychiatric and neurodevelopmental disorders are associated with abnormalities in multiple epigenetic mechanisms, resulting in altered gene expression during development and adulthood. Polymorphisms and copy number variants in schizophrenia risk genes contribute to the high heritability of the disease, but environmental factors that lead to epigenetic modifications may either reduce or exacerbate the expression of molecular and behavioral phenotypes associated with schizophrenia and related disorders. In the present paper, we will review the current understanding of molecular dysregulation in schizophrenia, including disruption of the dopamine, NMDA, and GABA signaling pathways, and discuss the role of epigenetic factors underlying disease pathology.
Collapse
Affiliation(s)
- Kimberly R Shorter
- McKnight Brain Institute and Departments of Psychiatry and Medicine, University of Florida College of Medicine, Gainesville, FL 32607, USA
| | - Brooke H Miller
- McKnight Brain Institute and Departments of Psychiatry and Medicine, University of Florida College of Medicine, Gainesville, FL 32607, USA.
| |
Collapse
|
33
|
Haider SA, Faisal M. Human aging in the post-GWAS era: further insights reveal potential regulatory variants. Biogerontology 2015; 16:529-41. [PMID: 25895066 DOI: 10.1007/s10522-015-9575-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 04/07/2015] [Indexed: 12/27/2022]
Abstract
Human aging involves a gradual decrease in cellular integrity that contributes to multiple complex disorders such as neurodegenerative disorders, cancer, diabetes, and cardiovascular diseases. Genome-wide association studies (GWAS) play a key role in discovering genetic variations that may contribute towards disease vulnerability. However, mostly disease-associated SNPs lie within non-coding part of the genome; majority of the variants are also present in linkage disequilibrium (LD) with the genome-wide significant SNPs (GWAS lead SNPs). Overall 600 SNPs were analyzed, out of which 291 returned RegulomeDB scores of 1-6. It was observed that just 4 out of those 291 SNPs show strong evidence of regulatory effects (RegulomeDB score <3), while none of them includes any GWAS lead SNP. Nevertheless, this study demonstrates that by combining ENCODE project data along with GWAS reported information will provide important insights on the impact of a genetic variant-moving from GWAS towards understanding disease pathways. It is noteworthy that both genome-wide significant SNPs as well as the SNPs in LD must be considered for future studies; this may prove to be crucial in deciphering the potential regulatory elements involved in complex disorders and aging in particular.
Collapse
Affiliation(s)
- Syed Aleem Haider
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | |
Collapse
|
34
|
Affiliation(s)
- Wei-Dong Yao
- Guest Editor, New England Primate Research Center, Harvard Medical School Southborough , Massachusetts , USA
| | | |
Collapse
|
35
|
Smith AK, Kilaru V, Klengel T, Mercer KB, Bradley B, Conneely KN, Ressler KJ, Binder EB. DNA extracted from saliva for methylation studies of psychiatric traits: evidence tissue specificity and relatedness to brain. Am J Med Genet B Neuropsychiatr Genet 2015; 168B:36-44. [PMID: 25355443 PMCID: PMC4610814 DOI: 10.1002/ajmg.b.32278] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/29/2014] [Indexed: 12/12/2022]
Abstract
DNA methylation has become increasingly recognized in the etiology of psychiatric disorders. Because brain tissue is not accessible in living humans, epigenetic studies are most often conducted in blood. Saliva is often collected for genotyping studies but is rarely used to examine DNA methylation because the proportion of epithelial cells and leukocytes varies extensively between individuals. The goal of this study was to evaluate whether saliva DNA is informative for studies of psychiatric disorders. DNA methylation (HumanMethylation450 BeadChip) was assessed in saliva and blood samples from 64 adult African Americans. Analyses were conducted using linear regression adjusted for appropriate covariates, including estimated cellular proportions. DNA methylation from brain tissues (cerebellum, frontal cortex, entorhinal cortex, and superior temporal gyrus) was obtained from a publically available dataset. Saliva and blood methylation was clearly distinguishable though there was positive correlation overall. There was little correlation in CpG sites within relevant candidate genes. Correlated CpG sites were more likely to occur in areas of low CpG density (i.e., CpG shores and open seas). There was more variability in CpG sites from saliva than blood, which may reflect its heterogeneity. Finally, DNA methylation in saliva appeared more similar to patterns from each of the brain regions examined overall than methylation in blood. Thus, this study provides a framework for using DNA methylation from saliva and suggests that DNA methylation of saliva may offer distinct opportunities for epidemiological and longitudinal studies of psychiatric traits.
Collapse
Affiliation(s)
- Alicia K. Smith
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia,Genetics and Molecular Biology Program, Emory University, Atlanta, Georgia,Correspondence to: Alicia K. Smith, Ph.D., Assistant Professor, Psychiatry & Behavioral Sciences, Emory University SOM, 101 Woodruff Circle NE; Ste 4113, Atlanta, GA 30322.
| | - Varun Kilaru
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Torsten Klengel
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia,Max-Planck Institute of Psychiatry, Munich, Germany
| | - Kristina B. Mercer
- Genetics and Molecular Biology Program, Emory University, Atlanta, Georgia
| | - Bekh Bradley
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia,Clinical psychologist, Mental Health Service Line, Atlanta VA Medical Center, Decatur, Georgia
| | - Karen N. Conneely
- Genetics and Molecular Biology Program, Emory University, Atlanta, Georgia,Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Kerry J. Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia,Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Elisabeth B. Binder
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia,Max-Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
36
|
Greenberg Z, Ramshaw H, Schwarz Q. Time Windows of Interneuron Development: Implications to Our Understanding of the Aetiology and Treatment of Schizophrenia. AIMS Neurosci 2015. [DOI: 10.3934/neuroscience.2015.4.294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
37
|
Coppedè F, Lopomo A, Migliore L. Epigenetic Biomarkers in Personalized Medicine. PERSONALIZED EPIGENETICS 2015:183-220. [DOI: 10.1016/b978-0-12-420135-4.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
38
|
Stenz L, Zewdie S, Laforge-Escarra T, Prados J, La Harpe R, Dayer A, Paoloni-Giacobino A, Perroud N, Aubry JM. BDNF promoter I methylation correlates between post-mortem human peripheral and brain tissues. Neurosci Res 2014; 91:1-7. [PMID: 25450314 DOI: 10.1016/j.neures.2014.10.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/25/2014] [Accepted: 10/06/2014] [Indexed: 10/25/2022]
Abstract
Several psychiatric disorders have been associated with CpG methylation changes in CG rich promoters of the brain-derived neurotrophic factor (BDNF) mainly by extracting DNA from peripheral blood cells. Whether changes in peripheral DNA methylation can be used as a proxy for brain-specific alterations remains an open question. In this study we aimed to compare DNA methylation levels in BDNF promoter regions in human blood cells, muscle and brain regions using bisulfite-pyrosequencing. We found a significant correlation between the levels of BDNF promoter I methylation measured in quadriceps and vPFC tissues extracted from the same individuals (n = 98, Pearson, r = 0.48, p = 4.5 × 10(-7)). In the hippocampus, BDNF promoter I and IV methylation levels were strongly correlated (Pearson, n = 37, r = 0.74, p = 1.4 × 10(-7)). We found evidence for sex-dependent effect on BDNF promoter methylation levels in the various tissues and blood samples. Taken together, these data indicate a strong intra-individual correlation between peripheral and brain tissue. They also suggest that sex determines methylation patterns in BDNF promoter region across different types of tissue, including muscle, brain, and blood.
Collapse
Affiliation(s)
- Ludwig Stenz
- Department of Psychiatry, University of Geneva, Switzerland; Department of Basic Neurosciences, University of Geneva Medical School, Geneva, Switzerland.
| | - Seblewongel Zewdie
- Department of Psychiatry, University of Geneva, Switzerland; Department of Basic Neurosciences, University of Geneva Medical School, Geneva, Switzerland
| | - Térèse Laforge-Escarra
- Department of Genetic and Laboratory Medicine, Geneva University Hospital, 1211 Geneva 14, Switzerland
| | - Julien Prados
- Department of Psychiatry, University of Geneva, Switzerland; Department of Basic Neurosciences, University of Geneva Medical School, Geneva, Switzerland
| | - Romano La Harpe
- Institute of Forensic Medicine, University of Geneva, Switzerland
| | - Alexandre Dayer
- Department of Mental Health and Psychiatry, University Hospital of Geneva, Geneva, Switzerland; Department of Basic Neurosciences, University of Geneva Medical School, Geneva, Switzerland
| | - Ariane Paoloni-Giacobino
- Department of Genetic and Laboratory Medicine, Geneva University Hospital, 1211 Geneva 14, Switzerland
| | - Nader Perroud
- Department of Psychiatry, University of Geneva, Switzerland; Department of Mental Health and Psychiatry, University Hospital of Geneva, Geneva, Switzerland
| | - Jean-Michel Aubry
- Department of Psychiatry, University of Geneva, Switzerland; Department of Mental Health and Psychiatry, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
39
|
Affiliation(s)
- Sophie A Lelièvre
- Department of Basic Medical Sciences, Center for Cancer Research, Purdue University West Lafayette, IN, USA
| |
Collapse
|