1
|
Skinner WM, Petersen NT, Unger B, Tang S, Tabarsi E, Lamm J, Jalalian L, Smith J, Bertholet AM, Xu K, Kirichok Y, Lishko PV. Mitochondrial uncouplers impair human sperm motility without altering ATP content†. Biol Reprod 2023; 109:192-203. [PMID: 37294625 PMCID: PMC10427809 DOI: 10.1093/biolre/ioad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/22/2023] [Accepted: 06/01/2023] [Indexed: 06/11/2023] Open
Abstract
In human spermatozoa, the electrochemical potentials across the mitochondrial and plasma membranes are related to sperm functionality and fertility, but the exact role of each potential has yet to be clarified. Impairing sperm mitochondrial function has been considered as an approach to creating male or unisex contraceptives, but it has yet to be shown whether this approach would ultimately block the ability of sperm to reach or fertilize an egg. To investigate whether the mitochondrial and plasma membrane potentials are necessary for sperm fertility, human sperm were treated with two small-molecule mitochondrial uncouplers (niclosamide ethanolamine and BAM15) that depolarize membranes by inducing passive proton flow, and evaluated the effects on a variety of sperm physiological processes. BAM15 specifically uncoupled human sperm mitochondria while niclosamide ethanolamine induced proton current in the plasma membrane in addition to depolarizing the mitochondria. In addition, both compounds significantly decreased sperm progressive motility with niclosamide ethanolamine having a more robust effect. However, these uncouplers did not reduce sperm adenosine triphosphate (ATP) content or impair other physiological processes, suggesting that human sperm can rely on glycolysis for ATP production if mitochondria are impaired. Thus, systemically delivered contraceptives that target sperm mitochondria to reduce their ATP production would likely need to be paired with sperm-specific glycolysis inhibitors. However, since niclosamide ethanolamine impairs sperm motility through an ATP-independent mechanism, and niclosamide is FDA approved and not absorbed through mucosal membranes, it could be a useful ingredient in on-demand, vaginally applied contraceptives.
Collapse
Affiliation(s)
- Will M Skinner
- Endocrinology Graduate Group, University of California, Berkeley, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Natalie T Petersen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Bret Unger
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | - Shaogeng Tang
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
- Sarafan ChEM-H, Stanford University, Stanford, California, USA
| | - Emiliano Tabarsi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Julianna Lamm
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
- Dewpoint Therapeutics, Boston, Massachusetts, USA
| | - Liza Jalalian
- Department of Obstetrics and Gynecology, University of California, San Francisco Center for Reproductive Health, San Francisco, California, USA
| | - James Smith
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
| | - Ambre M Bertholet
- Department of Physiology, University of California, San Francisco, San Francisco, California, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Yuriy Kirichok
- Department of Physiology, University of California, San Francisco, San Francisco, California, USA
| | - Polina V Lishko
- Endocrinology Graduate Group, University of California, Berkeley, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
- Department of Cell Biology & Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Kang B, Mottamal M, Zhong Q, Bratton M, Zhang C, Guo S, Hossain A, Ma P, Zhang Q, Wang G, Payton-Stewart F. Design, Synthesis, and Evaluation of Niclosamide Analogs as Therapeutic Agents for Enzalutamide-Resistant Prostate Cancer. Pharmaceuticals (Basel) 2023; 16:735. [PMID: 37242518 PMCID: PMC10222209 DOI: 10.3390/ph16050735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Niclosamide effectively downregulates androgen receptor variants (AR-Vs) for treating enzalutamide and abiraterone-resistant prostate cancer. However, the poor pharmaceutical properties of niclosamide due to its solubility and metabolic instability have limited its clinical utility as a systemic treatment for cancer. A novel series of niclosamide analogs was prepared to systematically explore the structure-activity relationship and identify active AR-Vs inhibitors with improved pharmaceutical properties based on the backbone chemical structure of niclosamide. Compounds were characterized using 1H NMR, 13C NMR, MS, and elemental analysis. The synthesized compounds were evaluated for antiproliferative activity and downregulation of AR and AR-V7 in two enzalutamide-resistant cell lines, LNCaP95 and 22RV1. Several of the niclosamide analogs exhibited equivalent or improved anti-proliferation effects in LNCaP95 and 22RV1 cell lines (B9, IC50 LNCaP95 and 22RV1 = 0.130 and 0.0997 μM, respectively), potent AR-V7 down-regulating activity, and improved metabolic stability. In addition, both a traditional structure-activity relationship (SAR) and 3D-QSAR analysis were performed to guide further structural optimization. The presence of two -CF3 groups of the most active B9 in the sterically favorable field and the presence of the -CN group of the least active B7 in the sterically unfavorable field seem to make B9 more potent than B7 in the antiproliferative activity.
Collapse
Affiliation(s)
- Borui Kang
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (B.K.); (M.M.); (Q.Z.); (C.Z.); (S.G.); (Q.Z.)
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (M.B.); (A.H.); (P.M.)
| | - Madhusoodanan Mottamal
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (B.K.); (M.M.); (Q.Z.); (C.Z.); (S.G.); (Q.Z.)
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (M.B.); (A.H.); (P.M.)
| | - Qiu Zhong
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (B.K.); (M.M.); (Q.Z.); (C.Z.); (S.G.); (Q.Z.)
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (M.B.); (A.H.); (P.M.)
| | - Melyssa Bratton
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (M.B.); (A.H.); (P.M.)
| | - Changde Zhang
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (B.K.); (M.M.); (Q.Z.); (C.Z.); (S.G.); (Q.Z.)
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (M.B.); (A.H.); (P.M.)
| | - Shanchun Guo
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (B.K.); (M.M.); (Q.Z.); (C.Z.); (S.G.); (Q.Z.)
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (M.B.); (A.H.); (P.M.)
| | - Ahamed Hossain
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (M.B.); (A.H.); (P.M.)
| | - Peng Ma
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (M.B.); (A.H.); (P.M.)
| | - Qiang Zhang
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (B.K.); (M.M.); (Q.Z.); (C.Z.); (S.G.); (Q.Z.)
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (M.B.); (A.H.); (P.M.)
| | - Guangdi Wang
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (B.K.); (M.M.); (Q.Z.); (C.Z.); (S.G.); (Q.Z.)
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (M.B.); (A.H.); (P.M.)
| | - Florastina Payton-Stewart
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (B.K.); (M.M.); (Q.Z.); (C.Z.); (S.G.); (Q.Z.)
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (M.B.); (A.H.); (P.M.)
| |
Collapse
|
3
|
Kauerová T, Pérez-Pérez MJ, Kollar P. Salicylanilides and Their Anticancer Properties. Int J Mol Sci 2023; 24:ijms24021728. [PMID: 36675241 PMCID: PMC9861143 DOI: 10.3390/ijms24021728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
Salicylanilides are pharmacologically active compounds with a wide spectrum of biological effects. Halogenated salicylanilides, which have been used for decades in human and veterinary medicine as anthelmintics, have recently emerged as candidates for drug repurposing in oncology. The most prominent example of salicylanilide anthelmintic, that is intensively studied for its potential anticancer properties, is niclosamide. Nevertheless, recent studies have discovered extensive anticancer potential in a number of other salicylanilides. This potential of their anticancer action is mediated most likely by diverse mechanisms of action such as uncoupling of oxidative phosphorylation, inhibition of protein tyrosine kinase epidermal growth factor receptor, modulation of different signaling pathways as Wnt/β-catenin, mTORC1, STAT3, NF-κB and Notch signaling pathways or induction of B-Raf V600E inhibition. Here we provide a comprehensive overview of the current knowledge about the proposed mechanisms of action of anticancer activity of salicylanilides based on preclinical in vitro and in vivo studies, or structural requirements for such an activity.
Collapse
Affiliation(s)
- Tereza Kauerová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | | | - Peter Kollar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
- Correspondence: ; Tel.: +420-541-562-892
| |
Collapse
|
4
|
Jiang H, Li AM, Ye J. The magic bullet: Niclosamide. Front Oncol 2022; 12:1004978. [PMID: 36479072 PMCID: PMC9720275 DOI: 10.3389/fonc.2022.1004978] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/12/2022] [Indexed: 08/27/2023] Open
Abstract
The term 'magic bullet' is a scientific concept proposed by the German Nobel laureate Paul Ehrlich in 1907, describing a medicine that could specifically and efficiently target a disease without harming the body. Oncologists have been looking for a magic bullet for cancer therapy ever since. However, the current therapies for cancers-including chemotherapy, radiation therapy, hormone therapy, and targeted therapy-pose either pan-cytotoxicity or only single-target efficacy, precluding their ability to function as a magic bullet. Intriguingly, niclosamide, an FDA-approved drug for treating tapeworm infections with an excellent safety profile, displays broad anti-cancer activity in a variety of contexts. In particular, niclosamide inhibits multiple oncogenic pathways such as Wnt/β-catenin, Ras, Stat3, Notch, E2F-Myc, NF-κB, and mTOR and activates tumor suppressor signaling pathways such as p53, PP2A, and AMPK. Moreover, niclosamide potentially improves immunotherapy by modulating pathways such as PD-1/PDL-1. We recently discovered that niclosamide ethanolamine (NEN) reprograms cellular metabolism through its uncoupler function, consequently remodeling the cellular epigenetic landscape to promote differentiation. Inspired by the promising results from the pre-clinical studies, several clinical trials are ongoing to assess the therapeutic effect of niclosamide in cancer patients. This current review summarizes the functions, mechanism of action, and potential applications of niclosamide in cancer therapy as a magic bullet.
Collapse
Affiliation(s)
- Haowen Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
| | - Albert M. Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, United States
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
5
|
Deogratias G, Shadrack DM, Munissi JJE, Kinunda GA, Jacob FR, Mtei RP, Masalu RJ, Mwakyula I, Kiruri LW, Nyandoro SS. Hydrophobic π-π stacking interactions and hydrogen bonds drive self-aggregation of luteolin in water. J Mol Graph Model 2022; 116:108243. [PMID: 35777224 DOI: 10.1016/j.jmgm.2022.108243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/12/2022] [Accepted: 06/05/2022] [Indexed: 12/14/2022]
Abstract
Luteolin is a flavonoid obtained from different plant species. It is known for its versatile biological activities. However, the beneficial effects of luteolin have been limited to small concentrations as a result of poor water solubility. This study aimed at investigating the hydrophobic interaction and hydration of luteolin towards the improvement of its solubility when used as a drug. We report the aggregation properties of luteolin in water by varying the number of monomers using atomistic molecular dynamics simulation. Results show that the equilibrium structure of luteolin occurs in an aggregated state with different structural arrangements. As the monomers size increase, the antiparallel flipped conformation dominates over T-shaped antiparallel, T-shaped parallel, and antiparallel conformations. The formation of intramolecular hydrogen bonding of 0.19 nm between the keto-enol groups results in hydrophobic characteristics. A larger cluster exhibits slow hydrogen bond dynamics for luteolin-luteolin than luteolin-water interaction. Water structure at large cluster size exhibited slow dynamics and low self-diffusion of luteolin. The existence of hydrophobic π-π and hydrogen bonds between luteolin molecules drives strong self-aggregation resulting in poor water solubility. Breakage of these established interactions would result in increased solubility of luteolin in water.
Collapse
Affiliation(s)
- Geradius Deogratias
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania.
| | - Daniel M Shadrack
- Department of Chemistry, Faculty of Natural and Applied Sciences, St. John's University of Tanzania, P.O. Box 47, Dodoma, Tanzania
| | - Joan J E Munissi
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania
| | - Grace A Kinunda
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania
| | - Fortunatus R Jacob
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania
| | - Regina P Mtei
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania
| | - Rose J Masalu
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 25179, Dar es Salaam, Tanzania
| | - Issakwisa Mwakyula
- Mbeya College of Health and Allied Sciences, University of Dar es Salaam, P.O. Box 608, Mbeya, Tanzania
| | - Lucy W Kiruri
- Department of Chemistry, Kenyatta University, P.O.Box, 43844-00100, Nairobi, Kenya
| | - Stephen S Nyandoro
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania
| |
Collapse
|
6
|
Development of New Dosage forms of Niclosamide with Increased Solubility and Cytotoxic Activity. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02562-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Ousingsawat J, Centeio R, Cabrita I, Talbi K, Zimmer O, Graf M, Göpferich A, Schreiber R, Kunzelmann K. Airway Delivery of Hydrogel-Encapsulated Niclosamide for the Treatment of Inflammatory Airway Disease. Int J Mol Sci 2022; 23:1085. [PMID: 35163010 PMCID: PMC8835663 DOI: 10.3390/ijms23031085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Repurposing of the anthelminthic drug niclosamide was proposed as an effective treatment for inflammatory airway diseases such as asthma, cystic fibrosis, and chronic obstructive pulmonary disease. Niclosamide may also be effective for the treatment of viral respiratory infections, such as SARS-CoV-2, respiratory syncytial virus, and influenza. While systemic application of niclosamide may lead to unwanted side effects, local administration via aerosol may circumvent these problems, particularly when the drug is encapsulated into small polyethylene glycol (PEG) hydrospheres. In the present study, we examined whether PEG-encapsulated niclosamide inhibits the production of mucus and affects the pro-inflammatory mediator CLCA1 in mouse airways in vivo, while effects on mucociliary clearance were assessed in excised mouse tracheas. The potential of encapsulated niclosamide to inhibit TMEM16A whole-cell Cl- currents and intracellular Ca2+ signalling was assessed in airway epithelial cells in vitro. We achieved encapsulation of niclosamide in PEG-microspheres and PEG-nanospheres (Niclo-spheres). When applied to asthmatic mice via intratracheal instillation, Niclo-spheres strongly attenuated overproduction of mucus, inhibited secretion of the major proinflammatory mediator CLCA1, and improved mucociliary clearance in tracheas ex vivo. These effects were comparable for niclosamide encapsulated in PEG-nanospheres and PEG-microspheres. Niclo-spheres inhibited the Ca2+ activated Cl- channel TMEM16A and attenuated mucus production in CFBE and Calu-3 human airway epithelial cells. Both inhibitory effects were explained by a pronounced inhibition of intracellular Ca2+ signals. The data indicate that poorly dissolvable compounds such as niclosamide can be encapsulated in PEG-microspheres/nanospheres and deposited locally on the airway epithelium as encapsulated drugs, which may be advantageous over systemic application.
Collapse
Affiliation(s)
- Jiraporn Ousingsawat
- Physiological Institute, University of Regensburg, University Street 31, 93040 Regensburg, Germany; (J.O.); (R.C.); (I.C.); (K.T.); (R.S.)
| | - Raquel Centeio
- Physiological Institute, University of Regensburg, University Street 31, 93040 Regensburg, Germany; (J.O.); (R.C.); (I.C.); (K.T.); (R.S.)
| | - Inês Cabrita
- Physiological Institute, University of Regensburg, University Street 31, 93040 Regensburg, Germany; (J.O.); (R.C.); (I.C.); (K.T.); (R.S.)
| | - Khaoula Talbi
- Physiological Institute, University of Regensburg, University Street 31, 93040 Regensburg, Germany; (J.O.); (R.C.); (I.C.); (K.T.); (R.S.)
| | - Oliver Zimmer
- Department of Pharmaceutical Technology, University of Regensburg, 93040 Regensburg, Germany; (O.Z.); (M.G.); (A.G.)
| | - Moritz Graf
- Department of Pharmaceutical Technology, University of Regensburg, 93040 Regensburg, Germany; (O.Z.); (M.G.); (A.G.)
| | - Achim Göpferich
- Department of Pharmaceutical Technology, University of Regensburg, 93040 Regensburg, Germany; (O.Z.); (M.G.); (A.G.)
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, University Street 31, 93040 Regensburg, Germany; (J.O.); (R.C.); (I.C.); (K.T.); (R.S.)
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, University Street 31, 93040 Regensburg, Germany; (J.O.); (R.C.); (I.C.); (K.T.); (R.S.)
| |
Collapse
|
8
|
Rejinold NS, Piao H, Choi G, Jin GW, Choy JH. NICLOSAMIDE-EXFOLIATED ANIONIC CLAY NANOHYBRID REPURPOSED AS AN ANTIVIRAL DRUG FOR TACKLING COVID-19; ORAL FORMULATION WITH TWEEN 60/EUDRAGIT S100. CLAYS AND CLAY MINERALS 2021; 69:533-546. [PMID: 34785820 PMCID: PMC8584645 DOI: 10.1007/s42860-021-00153-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED The ongoing pandemic, COVID-19 (SARS-CoV-2), has afflicted millions of people around the world, necessitating that the scientific community work, diligently and promptly, on suitable medicaments. Although vaccination programs have been run globally, the new variants of COVID-19 make it difficult to restrict the spread of the virus by vaccination alone. The combination of vaccination with anti-viral drug formulation is an ideal strategy for tackling the current pandemic situation. Drugs approved by the United States Food and Drug Administration (FDA), such as Remdesivir, have been found to be of little or no benefit. On the other hand, re-purposing of FDA-approved drugs, such as niclosamide (NIC), has offered promise but its applicability is limited due to its poor aqueous solubility and, therefore, low bioavailability. With advanced nano-pharmaceutical approaches, re-purposing this drug in a suitable drug-carrier for a better outcome may be possible. In the current study, an attempt was made to explore the loading of NIC into exfoliated layered double hydroxide nanoparticles (X-LDH NPs); prepared NIC-X-LDH NPs were further modified with eudragit S100 (ES100), an enteric coating polymer, to make the final product, ES100-NIC-X-LDH NPs, to improve absorption by the gastro/intestinal tract (GIT). Furthermore, Tween 60 was added as a coating on ES100-NIC-X-LDH NPs, not just to enhance its in vitro and in vivo stability, but also to enhance its mucoadhesive property, and to obtain, ultimately, better in vivo pharmacokinetic (PK) parameters upon oral administration. Release of NIC from Tween 60-ES100-NIC-X-LDH NPs was found to be greater under gastro/intestinal solution within a shorter period of time than the uncoated samples. The in vivo analysis revealed that Tween 60-ES100-NIC-X-LDH NPs were able to maintain a therapeutically relevant NIC plasma concentration in terms of PK parameters compared to the commercially available Yomesan®, proving that the new formulation might prove to be an effective oral drug-delivery system to deal with the SARS-CoV-2 viral infections. Further studies are required to ensure their safety and anti-viral efficacy. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s42860-021-00153-6.
Collapse
Affiliation(s)
- N. Sanoj Rejinold
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116 Korea
| | - Huiyan Piao
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116 Korea
| | - Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116 Korea
- College of Science and Technology, Dankook University, Cheonan, 31116 Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan, 31116 Korea
| | - Geun-Woo Jin
- R&D Centre, CnPharm Co., LTD., Seoul, 03759 Korea
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116 Korea
- Department of Pre-medical Course, College of Medicine, Dankook University, Cheonan, 31116 Korea
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503 Japan
| |
Collapse
|
9
|
Vuai SAH, Sahini MG, Onoka I, Kiruri LW, Shadrack DM. Cation-π interactions drive hydrophobic self-assembly and aggregation of niclosamide in water. RSC Adv 2021; 11:33136-33147. [PMID: 35493563 PMCID: PMC9042188 DOI: 10.1039/d1ra05358b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
The beneficial medicinal effects of niclosamide have been reported to be hampered by poor aqueous solubility and so a higher concentration dosage is required. In this work, we have studied the aggregation properties of niclosamide in water by varying the number of monomers. We have employed all-atom classical molecular dynamics simulation in order to explore such properties. The equilibrium structure exists in an aggregated state with structural rearrangements of the stacking units. Niclosamide monomers tend to form clusters in an orderly manner and tend to aggregate in parallel and antiparallel orientations of the phenyl rings as the monomers are increased in number from 4 to 9. Upon increasing the size from 9 to 14, and from 49 to 150, a considerable dominance of the metastable parallel arrangement is observed, resulting in the formation of a closely packed cluster with hydrophobic contacts. The metastable conformation self-arranges to a T-shape before forming a stable planar antiparallel displaced conformation. The aggregated π-π parallel and cation-π antiparallel clusters in water exist in a β-conformer. We further observed that formation of a stable cluster aggregate entails the formation of an intermediate metastable cluster that disperses in solution forming a large stable cluster. We also discovered that movement of the water is faster in less aggregated clusters and as the cluster size increases, the mobility rate becomes much slower.
Collapse
Affiliation(s)
- Said A H Vuai
- Department of Chemistry, College of Natural and Mathematical Sciences, University of Dodoma P. O. Box 338 Dodoma Tanzania
| | - Mtabazi G Sahini
- Department of Chemistry, College of Natural and Mathematical Sciences, University of Dodoma P. O. Box 338 Dodoma Tanzania
| | - Isaac Onoka
- Department of Chemistry, College of Natural and Mathematical Sciences, University of Dodoma P. O. Box 338 Dodoma Tanzania
| | - Lucy W Kiruri
- Department of Chemistry, Kenyatta University P. O. Box 43844-00100 Nairobi Kenya
| | - Daniel M Shadrack
- Department of Chemistry, Faculty of Natural and Applied Sciences, St. John's University of Tanzania P. O. Box 47 Dodoma Tanzania
| |
Collapse
|
10
|
Niclosamide Is Active In Vitro against Mycetoma Pathogens. Molecules 2021; 26:molecules26134005. [PMID: 34209118 PMCID: PMC8271592 DOI: 10.3390/molecules26134005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
Redox-active drugs are the mainstay of parasite chemotherapy. To assess their repurposing potential for eumycetoma, we have tested a set of nitroheterocycles and peroxides in vitro against two isolates of Madurella mycetomatis, the main causative agent of eumycetoma in Sudan. All the tested compounds were inactive except for niclosamide, which had minimal inhibitory concentrations of around 1 µg/mL. Further tests with niclosamide and niclosamide ethanolamine demonstrated in vitro activity not only against M. mycetomatis but also against Actinomadura spp., causative agents of actinomycetoma, with minimal inhibitory concentrations below 1 µg/mL. The experimental compound MMV665807, a related salicylanilide without a nitro group, was as active as niclosamide, indicating that the antimycetomal action of niclosamide is independent of its redox chemistry (which is in agreement with the complete lack of activity in all other nitroheterocyclic drugs tested). Based on these results, we propose to further evaluate the salicylanilides, niclosamidein particular, as drug repurposing candidates for mycetoma.
Collapse
|
11
|
Kim HJ, Lee JH, Kim SW, Lee SH, Jung DW, Williams DR. Investigation of niclosamide as a repurposing agent for skeletal muscle atrophy. PLoS One 2021; 16:e0252135. [PMID: 34038481 PMCID: PMC8153455 DOI: 10.1371/journal.pone.0252135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle atrophy is a feature of aging (termed sarcopenia) and various diseases, such as cancer and kidney failure. Effective drug treatment options for muscle atrophy are lacking. The tapeworm medication, niclosamide is being assessed for repurposing to treat numerous diseases, including end-stage cancer metastasis and hepatic steatosis. In this study, we investigated the potential of niclosamide as a repurposing drug for muscle atrophy. In a myotube atrophy model using the glucocorticoid, dexamethasone, niclosamide did not prevent the reduction in myotube diameter or the decreased expression of phosphorylated FOXO3a, which upregulates the ubiquitin-proteasome pathway of muscle catabolism. Treatment of normal myotubes with niclosamide did not activate mTOR, a major regulator of muscle protein synthesis, and increased the expression of atrogin-1, which is induced in catabolic states. Niclosamide treatment also inhibited myogenesis in muscle precursor cells, enhanced the expression of myoblast markers Pax7 and Myf5, and downregulated the expression of differentiation markers MyoD, MyoG and Myh2. In an animal model of muscle atrophy, niclosamide did not improve muscle mass, grip strength or muscle fiber cross-sectional area. Muscle atrophy is also feature of cancer cachexia. IC50 analyses indicated that niclosamide was more cytotoxic for myoblasts than cancer cells. In addition, niclosamide did not suppress the induction of iNOS, a key mediator of atrophy, in an in vitro model of cancer cachexia and did not rescue myotube diameter. Overall, these results suggest that niclosamide may not be a suitable repurposing drug for glucocorticoid-induced skeletal muscle atrophy or cancer cachexia. Nevertheless, niclosamide may be employed as a compound to study mechanisms regulating myogenesis and catabolic pathways in skeletal muscle.
Collapse
Affiliation(s)
- Hyun-Jun Kim
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, Republic of Korea
| | - Ji-Hyung Lee
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, Republic of Korea
| | - Seon-Wook Kim
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, Republic of Korea
| | - Sang-Hoon Lee
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, Republic of Korea
| | - Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, Republic of Korea
- * E-mail: (D-WJ); (DRW)
| | - Darren R. Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Jeollanam-do, Republic of Korea
- * E-mail: (D-WJ); (DRW)
| |
Collapse
|
12
|
Wang G, Gaikwad H, McCarthy MK, Gonzalez-Juarrero M, Li Y, Armstrong M, Reisdorph N, Morrison TE, Simberg D. Lipid nanoparticle formulation of niclosamide (nano NCM) effectively inhibits SARS-CoV-2 replication in vitro. PRECISION NANOMEDICINE 2021; 4:724-737. [PMID: 34676370 PMCID: PMC8528232 DOI: 10.33218/001c.18813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
As exemplified by the COVID-19 pandemic, highly infective respiratory viruses can spread rapidly in the population because of lack of effective approaches to control viral replication and spread. Niclosamide (NCM) is an old anthelminthic drug (World Health Organization essential medicine list) with pleiotropic pharmacological activities. Several recent publications demonstrated that NCM has broad antiviral activities and potently inhibits viral replication, including replication of SARS-CoV-2, SARS-CoV, and dengue viruses. Unfortunately, NCM is almost completely insoluble in water, which limits its clinical use. We developed a cost-effective lipid nanoparticle formulation of NCM (nano NCM) using only FDA-approved excipient and demonstrated potency against SARS-CoV-2 infection in cells (Vero E6 and ACE2-expressing lung epithelium cells).
Collapse
Affiliation(s)
- Guankui Wang
- Translational Bio-Nanosciences Laboratory, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Hanmant Gaikwad
- Translational Bio-Nanosciences Laboratory, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Mary K McCarthy
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Mercedes Gonzalez-Juarrero
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80521
| | - Yue Li
- Translational Bio-Nanosciences Laboratory, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Michael Armstrong
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Thomas E Morrison
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| |
Collapse
|
13
|
Amorphous Solid Dispersions and the Contribution of Nanoparticles to In Vitro Dissolution and In Vivo Testing: Niclosamide as a Case Study. Pharmaceutics 2021; 13:pharmaceutics13010097. [PMID: 33466598 PMCID: PMC7828663 DOI: 10.3390/pharmaceutics13010097] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
We developed an amorphous solid dispersion (ASD) of the poorly water-soluble molecule niclosamide that achieved a more than two-fold increase in bioavailability. Notably, this niclosamide ASD formulation increased the apparent drug solubility about 60-fold relative to the crystalline material due to the generation of nanoparticles. Niclosamide is a weakly acidic drug, Biopharmaceutics Classification System (BCS) class II, and a poor glass former with low bioavailability in vivo. Hot-melt extrusion is a high-throughput manufacturing method commonly used in the development of ASDs for increasing the apparent solubility and bioavailability of poorly water-soluble compounds. We utilized the polymer poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP–VA) to manufacture niclosamide ASDs by extrusion. Samples were analyzed based on their microscopic and macroscopic behavior and their intermolecular interactions, using differential scanning calorimetry (DSC), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), Fourier-transform infrared (FTIR), and dynamic light scattering (DLS). The niclosamide ASD generated nanoparticles with a mean particle size of about 100 nm in FaSSIF media. In a side-by-side diffusion test, these nanoparticles produced a four-fold increase in niclosamide diffusion. We successfully manufactured amorphous extrudates of the poor glass former niclosamide that showed remarkable in vitro dissolution and diffusion performance. These in vitro tests were translated to a rat model that also showed an increase in oral bioavailability.
Collapse
|
14
|
Ray E, Vaghasiya K, Sharma A, Shukla R, Khan R, Kumar A, Verma RK. Autophagy-Inducing Inhalable Co-crystal Formulation of Niclosamide-Nicotinamide for Lung Cancer Therapy. AAPS PharmSciTech 2020; 21:260. [PMID: 32944787 DOI: 10.1208/s12249-020-01803-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
Niclosamide (NIC), an anthelminthic drug, is found to be promising in overcoming the problem of various types of drug-resistant cancer. In spite of strong anti-proliferative effect, NIC shows low aqueous solubility, leading to poor bioavailability. To overcome this limitation, and enhance its physicochemical properties and pharmacokinetic profile, we used co-crystallization technique as a promising strategy. In this work, we brought together the crystal and particle engineering at a time using spray drying to enhance physicochemical and aerodynamic properties of co-crystal particle for inhalation purpose. We investigated the formation and evaluation of pharmaceutical co-crystals of niclosamide-nicotinamide (NIC-NCT) prepared by rapid, continuous and scalable spray drying method and compared with conventional solvent evaporation technique. The newly formed co-crystal was evaluated by XRPD, FTIR, Raman spectroscopy and DSC, which showed an indication of formation of H bonds between drug (NIC) and co-former (NCT) as a major binding force in co-crystal development. The particle geometry of co-crystals including spherical shape, size 1-5 μm and aerodynamic properties (ED, 97.1 ± 8.9%; MMAD, 3.61 ± 0.87 μm; FPF, 71.74 ± 6.9% and GSD 1.46) attributes suitable for inhalation. For spray-dried co-crystal systems, an improvement in solubility characteristics (≥ 14.8-fold) was observed, relative to pure drug. To investigate the anti-proliferative activity, NIC-NCT co-crystals were investigated on A549 human lung adenomas cells, which showed a superior cytotoxic activity compared with pure drug. Mechanistically, NIC-NCT co-crystals enhanced autophagic flux in cancer cell which demonstrates autophagy-mediated cell death as shown by confocal microscopy. This technique could help in improving bioavailability of drug, hence reducing the need for high dosages and signifying a novel paradigm for future clinical applications.
Collapse
|
15
|
Fu Q, Jin X, Zhang Z, Lv H. Preparation and in vitro antitumor effects on MDA-MB-231 cells of niclosamide nanocrystals stabilized by poloxamer188 and PBS. Int J Pharm 2020; 584:119432. [DOI: 10.1016/j.ijpharm.2020.119432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/30/2020] [Accepted: 05/12/2020] [Indexed: 01/17/2023]
|
16
|
Krátký M, Štěpánková Š, Houngbedji NH, Vosátka R, Vorčáková K, Vinšová J. 2-Hydroxy- N-phenylbenzamides and Their Esters Inhibit Acetylcholinesterase and Butyrylcholinesterase. Biomolecules 2019; 9:biom9110698. [PMID: 31694272 PMCID: PMC6920847 DOI: 10.3390/biom9110698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 12/22/2022] Open
Abstract
The development of novel inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) represents a viable approach to alleviate Alzheimer’s disease. Thirty-six halogenated 2-hydroxy-N-phenylbenzamides (salicylanilides) with various substitution patterns and their esters with phosphorus-based acids were synthesized in yields of 72% to 92% and characterized. They were evaluated for in vitro inhibition of AChE from electric eel and BuChE from equine serum using modified Ellman’s spectrophotometric method. The benzamides exhibited a moderate inhibition of AChE with IC50 values in a narrow concentration range from 33.1 to 85.8 µM. IC50 values for BuChE were higher (53.5–228.4 µM). The majority of derivatives inhibit AChE more efficiently than BuChE and are comparable or superior to rivastigmine—an established cholinesterases inhibitor used in the treatment of Alzheimer’s disease. Phosphorus-based esters especially improved the activity against BuChE with 5-chloro-2-{[4-(trifluoromethyl)phenyl]carbamoyl}phenyl diethyl phosphite 5c superiority (IC50 = 2.4 µM). This derivative was also the most selective inhibitor of BuChE. It caused a mixed inhibition of both cholinesterases and acted as a pseudo-irreversible inhibitor. Several structure-activity relationships were identified, e.g., favouring esters and benzamides obtained from 5-halogenosalicylic acids and polyhalogenated anilines. Both 2-hydroxy-N-phenylbenzamides and esters share convenient physicochemical properties for blood-brain-barrier penetration and thus central nervous system delivery.
Collapse
Affiliation(s)
- Martin Krátký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Šárka Štěpánková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Neto-Honorius Houngbedji
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Rudolf Vosátka
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Katarína Vorčáková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Jarmila Vinšová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
17
|
Barbosa EJ, Löbenberg R, de Araujo GLB, Bou-Chacra NA. Niclosamide repositioning for treating cancer: Challenges and nano-based drug delivery opportunities. Eur J Pharm Biopharm 2019; 141:58-69. [PMID: 31078739 DOI: 10.1016/j.ejpb.2019.05.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/23/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023]
Abstract
Drug repositioning may be defined as a process when new biological effects for known drugs are identified, leading to recommendations for new therapeutic applications. Niclosamide, present in the Model List of Essential Medicines, from the World Health Organization, has been used since the 1960s for tapeworm infection. Several preclinical studies have been shown its impressive anticancer effects, which led to clinical trials for colon and prostate cancer. Despite high expectations, proof of efficacy and safety are still required, which are associated with diverse biopharmaceutical challenges, such as the physicochemical properties of the drug and its oral absorption, and their relationship with clinical outcomes. Nanostructured systems are innovative drug delivery strategies, which may provide interesting pharmaceutical advantages for this candidate. The aim of this review is to discuss challenges involving niclosamide repositioning for cancer diseases, and the opportunities of therapeutic benefits from nanosctrutured system formulations containing this compound.
Collapse
Affiliation(s)
- Eduardo José Barbosa
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Raimar Löbenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Nádia Araci Bou-Chacra
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Souza INO, Barros-Aragão FGQ, Frost PS, Figueiredo CP, Clarke JR. Late Neurological Consequences of Zika Virus Infection: Risk Factors and Pharmaceutical Approaches. Pharmaceuticals (Basel) 2019; 12:E60. [PMID: 30999590 PMCID: PMC6631207 DOI: 10.3390/ph12020060] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/15/2019] [Accepted: 03/17/2019] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV) infection was historically considered a disease with mild symptoms and no major consequences to human health. However, several long-term, late onset, and chronic neurological complications, both in congenitally-exposed babies and in adult patients, have been reported after ZIKV infection, especially after the 2015 epidemics in the American continent. The development or severity of these conditions cannot be fully predicted, but it is possible that genetic, epigenetic, and environmental factors may contribute to determine ZIKV infection outcomes. This reinforces the importance that individuals exposed to ZIKV are submitted to long-term clinical surveillance and highlights the urgent need for the development of therapeutic approaches to reduce or eliminate the neurological burden of infection. Here, we review the epidemiology of ZIKV-associated neurological complications and the role of factors that may influence disease outcome. Moreover, we discuss experimental and clinical evidence of drugs that have shown promising results in vitro or in vitro against viral replication and and/or ZIKV-induced neurotoxicity.
Collapse
Affiliation(s)
- Isis N O Souza
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21944-590, Brazil.
| | - Fernanda G Q Barros-Aragão
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21944-590, Brazil.
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21944-590, Brazil.
| | - Paula S Frost
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21944-590, Brazil.
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21944-590, Brazil.
| | - Claudia P Figueiredo
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21944-590, Brazil.
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21944-590, Brazil.
| | - Julia R Clarke
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21944-590, Brazil.
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21944-590, Brazil.
| |
Collapse
|
19
|
|
20
|
Qin L, Niu Y, Wang Y, Chen X. Combination of Phospholipid Complex and Submicron Emulsion Techniques for Improving Oral Bioavailability and Therapeutic Efficacy of Water-Insoluble Drug. Mol Pharm 2018; 15:1238-1247. [DOI: 10.1021/acs.molpharmaceut.7b01061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Linghao Qin
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, High Education Mega Center, Guangzhou 510006, P. R. China
| | - Yawei Niu
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, High Education Mega Center, Guangzhou 510006, P. R. China
- Guangzhou Hanfang Pharmaceutical Co., LTD., No. 134, Jiangnan Dadao Zhong, Guangzhou 510240, P. R. China
| | - Yuemin Wang
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, High Education Mega Center, Guangzhou 510006, P. R. China
| | - Xiaomei Chen
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, No. 280, Waihuandong Road, High Education Mega Center, Guangzhou 510006, P. R. China
| |
Collapse
|
21
|
Pardhi V, Chavan RB, Thipparaboina R, Thatikonda S, Naidu VGM, Shastri NR. Preparation, characterization, and cytotoxicity studies of niclosamide loaded mesoporous drug delivery systems. Int J Pharm 2017; 528:202-214. [DOI: 10.1016/j.ijpharm.2017.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 11/17/2022]
|
22
|
Yuan S, Chan JFW, den-Haan H, Chik KKH, Zhang AJ, Chan CCS, Poon VKM, Yip CCY, Mak WWN, Zhu Z, Zou Z, Tee KM, Cai JP, Chan KH, de la Peña J, Pérez-Sánchez H, Cerón-Carrasco JP, Yuen KY. Structure-based discovery of clinically approved drugs as Zika virus NS2B-NS3 protease inhibitors that potently inhibit Zika virus infection in vitro and in vivo. Antiviral Res 2017; 145:33-43. [PMID: 28712942 DOI: 10.1016/j.antiviral.2017.07.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 06/01/2017] [Accepted: 07/11/2017] [Indexed: 10/19/2022]
Abstract
Zika virus (ZIKV) infection may be associated with severe complications in fetuses and adults, but treatment options are limited. We performed an in silico structure-based screening of a large chemical library to identify potential ZIKV NS2B-NS3 protease inhibitors. Clinically approved drugs belonging to different drug classes were selected among the 100 primary hit compounds with the highest predicted binding affinities to ZIKV NS2B-NS3-protease for validation studies. ZIKV NS2B-NS3 protease inhibitory activity was validated in most of the selected drugs and in vitro anti-ZIKV activity was identified in two of them (novobiocin and lopinavir-ritonavir). Molecular docking and molecular dynamics simulations predicted that novobiocin bound to ZIKV NS2B-NS3-protease with high stability. Dexamethasone-immunosuppressed mice with disseminated ZIKV infection and novobiocin treatment had significantly (P < 0.05) higher survival rate (100% vs 0%), lower mean blood and tissue viral loads, and less severe histopathological changes than untreated controls. This structure-based drug discovery platform should facilitate the identification of additional enzyme inhibitors of ZIKV.
Collapse
Affiliation(s)
- Shuofeng Yuan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Jasper Fuk-Woo Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Research Centre of Infection and Immunology, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| | - Helena den-Haan
- Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica San Antonio de Murcia (UCAM), Spain; Villapharma Research S.L., Parque Tecnológico de Fuente Álamo, Ctra. El Estrecho-Lobosillo, Km. 2.5, Av. Azul, Fuente álamo de Murcia, Murcia, Spain
| | - Kenn Ka-Heng Chik
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Anna Jinxia Zhang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Chris Chung-Sing Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Vincent Kwok-Man Poon
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Cyril Chik-Yan Yip
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Winger Wing-Nga Mak
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Zheng Zhu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Zijiao Zou
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Kah-Meng Tee
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Jian-Piao Cai
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Kwok-Hung Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Jorge de la Peña
- Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica San Antonio de Murcia (UCAM), Spain
| | - Horacio Pérez-Sánchez
- Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica San Antonio de Murcia (UCAM), Spain.
| | - José Pedro Cerón-Carrasco
- Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica San Antonio de Murcia (UCAM), Spain.
| | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Research Centre of Infection and Immunology, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| |
Collapse
|
23
|
Dong D, Quan E, Yuan X, Xie Q, Li Z, Wu B. Sodium Oleate-Based Nanoemulsion Enhances Oral Absorption of Chrysin through Inhibition of UGT-Mediated Metabolism. Mol Pharm 2016; 14:2864-2874. [DOI: 10.1021/acs.molpharmaceut.6b00851] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dong Dong
- International
Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, China
| | - Enxi Quan
- Division
of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xue Yuan
- Division
of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Qian Xie
- Division
of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhijie Li
- International
Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, China
| | - Baojian Wu
- Division
of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
24
|
Yin J, Xiang C, Song X. Nanoencapsulation of psoralidin via chitosan and Eudragit S100 for enhancement of oral bioavailability. Int J Pharm 2016; 510:203-9. [PMID: 27154253 DOI: 10.1016/j.ijpharm.2016.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/29/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
Abstract
Psoralidin (PL) has recently been attracting more attention as a new anticancer agent candidate. Nevertheless, peroral administration of PL is largely challenged by its insoluble nature and intestinal efflux. This article aimed to develop a nanoencapsulation formulation of PL using water-soluble chitosan and Eudragit S100 and to evaluate its potential for bioavailability enhancement. PL-loaded nanocapsules (PL-NCs) were prepared by a solvent diffusion and high-pressure homogenization technique with Poloxamer 188 as a stabilizer. The resultant PL-NCs were approximately 132.5nm in particle size and possessed a high entrapment efficiency (98.1%). In vitro release showed that PL was released less from the nanocapsules due to electrostatic complexation. A lipolytic experiment demonstrated that our prepared PL-NCs were not degraded by lipase, in contrast with the most commonly used lipid nanoparticles. Furthermore, PL-NCs appeared to have less affinity for intestinal mucins. Following oral administration, the bioavailability of PL was significantly enhanced via the PL-NCs, with a value of 339.02% relative to the reference (suspensions). Excellent intestinal adhesion and transepithelial permeability accounted for the enhancement of oral bioavailability. Taken together, these results indicate that nanoencapsulation of PL with chitosan and Eudragit S100 is a promising strategy for improved PL oral delivery.
Collapse
Affiliation(s)
- Juntao Yin
- Department of Pharmaceutics, Huaihe Hospital Affiliated with Henan University, No. 1 Baobei Road, Kaifeng 475000, PR China
| | - Cuiyu Xiang
- Department of Pharmaceutics, Huaihe Hospital Affiliated with Henan University, No. 1 Baobei Road, Kaifeng 475000, PR China
| | - Xiaoyong Song
- Department of Pharmaceutics, Huaihe Hospital Affiliated with Henan University, No. 1 Baobei Road, Kaifeng 475000, PR China.
| |
Collapse
|