1
|
Bektas C, Mao Y. Hydrogel Microparticles for Bone Regeneration. Gels 2023; 10:28. [PMID: 38247752 PMCID: PMC10815488 DOI: 10.3390/gels10010028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Hydrogel microparticles (HMPs) stand out as promising entities in the realm of bone tissue regeneration, primarily due to their versatile capabilities in delivering cells and bioactive molecules/drugs. Their significance is underscored by distinct attributes such as injectability, biodegradability, high porosity, and mechanical tunability. These characteristics play a pivotal role in fostering vasculature formation, facilitating mineral deposition, and contributing to the overall regeneration of bone tissue. Fabricated through diverse techniques (batch emulsion, microfluidics, lithography, and electrohydrodynamic spraying), HMPs exhibit multifunctionality, serving as vehicles for drug and cell delivery, providing structural scaffolding, and functioning as bioinks for advanced 3D-printing applications. Distinguishing themselves from other scaffolds like bulk hydrogels, cryogels, foams, meshes, and fibers, HMPs provide a higher surface-area-to-volume ratio, promoting improved interactions with the surrounding tissues and facilitating the efficient delivery of cells and bioactive molecules. Notably, their minimally invasive injectability and modular properties, offering various designs and configurations, contribute to their attractiveness for biomedical applications. This comprehensive review aims to delve into the progressive advancements in HMPs, specifically for bone regeneration. The exploration encompasses synthesis and functionalization techniques, providing an understanding of their diverse applications, as documented in the existing literature. The overarching goal is to shed light on the advantages and potential of HMPs within the field of engineering bone tissue.
Collapse
Affiliation(s)
| | - Yong Mao
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA;
| |
Collapse
|
2
|
Chiu YC, Huang KW, Lin YH, Yin WR, Hou YT. Development of a decellularized liver matrix-based nanocarrier for liver regeneration after partial hepatectomy. JOURNAL OF MATERIALS SCIENCE 2023; 58:15162-15180. [DOI: 10.1007/s10853-023-08971-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2024]
|
3
|
Milano F, Masi A, Madaghiele M, Sannino A, Salvatore L, Gallo N. Current Trends in Gelatin-Based Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15051499. [PMID: 37242741 DOI: 10.3390/pharmaceutics15051499] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Gelatin is a highly versatile natural polymer, which is widely used in healthcare-related sectors due to its advantageous properties, such as biocompatibility, biodegradability, low-cost, and the availability of exposed chemical groups. In the biomedical field, gelatin is used also as a biomaterial for the development of drug delivery systems (DDSs) due to its applicability to several synthesis techniques. In this review, after a brief overview of its chemical and physical properties, the focus is placed on the commonly used techniques for the development of gelatin-based micro- or nano-sized DDSs. We highlight the potential of gelatin as a carrier of many types of bioactive compounds and its ability to tune and control select drugs' release kinetics. The desolvation, nanoprecipitation, coacervation, emulsion, electrospray, and spray drying techniques are described from a methodological and mechanistic point of view, with a careful analysis of the effects of the main variable parameters on the DDSs' properties. Lastly, the outcomes of preclinical and clinical studies involving gelatin-based DDSs are thoroughly discussed.
Collapse
Affiliation(s)
- Francesca Milano
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Annalia Masi
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Marta Madaghiele
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Luca Salvatore
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Typeone Biomaterials Srl, Via Europa 113, 73021 Calimera, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
4
|
Rütsche D, Nanni M, Rüdisser S, Biedermann T, Zenobi-Wong M. Enzymatically Crosslinked Collagen as a Versatile Matrix for In Vitro and In Vivo Co-Engineering of Blood and Lymphatic Vasculature. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209476. [PMID: 36724374 DOI: 10.1002/adma.202209476] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/30/2022] [Indexed: 06/18/2023]
Abstract
Adequate vascularization is required for the successful translation of many in vitro engineered tissues. This study presents a novel collagen derivative that harbors multiple recognition peptides for orthogonal enzymatic crosslinking based on sortase A (SrtA) and Factor XIII (FXIII). SrtA-mediated crosslinking enables the rapid co-engineering of human blood and lymphatic microcapillaries and mesoscale capillaries in bulk hydrogels. Whereas tuning of gel stiffness determines the extent of neovascularization, the relative number of blood and lymphatic capillaries recapitulates the ratio of blood and lymphatic endothelial cells originally seeded into the hydrogel. Bioengineered capillaries readily form luminal structures and exhibit typical maturation markers both in vitro and in vivo. The secondary crosslinking enzyme Factor XIII is used for in situ tethering of the VEGF mimetic QK peptide to collagen. This approach supports the formation of blood and lymphatic capillaries in the absence of exogenous VEGF. Orthogonal enzymatic crosslinking is further used to bioengineer hydrogels with spatially defined polymer compositions with pro- and anti-angiogenic properties. Finally, macroporous scaffolds based on secondary crosslinking of microgels enable vascularization independent from supporting fibroblasts. Overall, this work demonstrates for the first time the co-engineering of mature micro- and meso-sized blood and lymphatic capillaries using a highly versatile collagen derivative.
Collapse
Affiliation(s)
- Dominic Rütsche
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zurich, Otto-Stern-Weg 7, Zurich, 8093, Switzerland
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Wagistrasse 12, Schlieren, 8952, Switzerland
| | - Monica Nanni
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Wagistrasse 12, Schlieren, 8952, Switzerland
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, Zurich, 8092, Switzerland
| | - Simon Rüdisser
- Biomolecular NMR Spectroscopy Platform, Department of Biology, ETH Zurich, Hönggerbergring 64, Zurich, 8093, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Wagistrasse 12, Schlieren, 8952, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zurich, Otto-Stern-Weg 7, Zurich, 8093, Switzerland
| |
Collapse
|
5
|
Anwar MM, Shalaby MA, Saeed H, Mostafa HM, Hamouda DG, Nounou H. Theophylline-encapsulated Nile Tilapia fish scale-based collagen nanoparticles effectively target the lungs of male Sprague-Dawley rats. Sci Rep 2022; 12:4871. [PMID: 35319009 PMCID: PMC8938969 DOI: 10.1038/s41598-022-08880-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/11/2022] [Indexed: 11/09/2022] Open
Abstract
Nile Tilapia fish scale collagen has high biodegradability, excellent biocompatibility, and low antigenicity. We assessed both the encapsulation efficiency of theophylline into Nile Tilapia fish scale-based collagen nanoparticles and their stability as a pulmonary drug delivery system in male Sprague-Dawley rats. The present study has demonstrated the successful encapsulation of theophylline into the synthesised nanoparticles as shown by spectrophotometric analysis, light microscope, scanning electron microscope, transmission electron microscope, and dynamic light scattering. The antibacterial activity of the nanoparticles improves with increasing their concentrations. Intratracheal treatment of rats using theophylline-encapsulated nanoparticles reduced the levels of creatinine, alanine transaminase, and aspartate transaminase, compared to the control group. Nevertheless, nanoparticles combined with theophylline exhibited no effects on cholesterol and triglycerides levels. Histopathological examination revealed typical uniform and diffuse thickening of the alveolar walls with capillary oedema in treated rats. We concluded that the synthesised collagen nanoparticles appropriately target the lungs of male Sprague-Dawley rats when delivered via a nebuliser, showing good tolerability to lung cells. However, dose ratio of collagen nanoparticles to theophylline needs further evaluation. The nanoprecipitation method may be optimised to involve poorly water-soluble inhaled drugs, and avoid the drawbacks of traditional drug delivery.
Collapse
Affiliation(s)
- Mohammed Moustapha Anwar
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt.
| | - Manal Aly Shalaby
- Department of Medical Biotechnology, Institute of Genetic Engineering, City of Scientific Research and Technological Applications, Alexandria, Egypt. .,Centre of Excellence for Drug Preclinical Studies (CE-DPS) Pharmaceutical and Fermentation Industry Development Centre, City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria, Egypt.
| | - Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt
| | - Haitham Mohammed Mostafa
- Department of Medical Biotechnology, Institute of Genetic Engineering, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Dalia Galal Hamouda
- Department of Medical Biotechnology, Institute of Genetic Engineering, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Howaida Nounou
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
6
|
Ma Q, Song Y, Sun W, Cao J, Yuan H, Wang X, Sun Y, Shum HC. Cell-Inspired All-Aqueous Microfluidics: From Intracellular Liquid-Liquid Phase Separation toward Advanced Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903359. [PMID: 32274317 PMCID: PMC7141073 DOI: 10.1002/advs.201903359] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/06/2020] [Indexed: 05/24/2023]
Abstract
Living cells have evolved over billions of years to develop structural and functional complexity with numerous intracellular compartments that are formed due to liquid-liquid phase separation (LLPS). Discovery of the amazing and vital roles of cells in life has sparked tremendous efforts to investigate and replicate the intracellular LLPS. Among them, all-aqueous emulsions are a minimalistic liquid model that recapitulates the structural and functional features of membraneless organelles and protocells. Here, an emerging all-aqueous microfluidic technology derived from micrometer-scaled manipulation of LLPS is presented; the technology enables the state-of-art design of advanced biomaterials with exquisite structural proficiency and diversified biological functions. Moreover, a variety of emerging biomedical applications, including encapsulation and delivery of bioactive gradients, fabrication of artificial membraneless organelles, as well as printing and assembly of predesigned cell patterns and living tissues, are inspired by their cellular counterparts. Finally, the challenges and perspectives for further advancing the cell-inspired all-aqueous microfluidics toward a more powerful and versatile platform are discussed, particularly regarding new opportunities in multidisciplinary fundamental research and biomedical applications.
Collapse
Affiliation(s)
- Qingming Ma
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266021China
| | - Yang Song
- Wallace H Coulter Department of Biomedical EngineeringGeorgia Institute of Technology & Emory School of MedicineAtlantaGA30332USA
| | - Wentao Sun
- Center for Basic Medical ResearchTEDA International Cardiovascular HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300457China
| | - Jie Cao
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266021China
| | - Hao Yuan
- Institute of Applied MechanicsNational Taiwan UniversityTaipei10617Taiwan
| | - Xinyu Wang
- Institute of Thermal Science and TechnologyShandong UniversityJinan250061China
| | - Yong Sun
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266021China
| | - Ho Cheung Shum
- Department of Mechanical EngineeringUniversity of Hong KongPokfulam RoadHong Kong
- HKU‐Shenzhen Institute of Research and Innovation (HKU‐SIRI)Shenzhen518000China
| |
Collapse
|
7
|
Farooq MA, Aquib M, Ghayas S, Bushra R, Haleem Khan D, Parveen A, Wang B. Whey protein: A functional and promising material for drug delivery systems recent developments and future prospects. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4676] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Muhammad Asim Farooq
- Department of Pharmaceutics, School of PharmacyChina Pharmaceutical University Nanjing Jiangsu 211198 PR China
| | - Md Aquib
- Department of Pharmaceutics, School of PharmacyChina Pharmaceutical University Nanjing Jiangsu 211198 PR China
| | - Sana Ghayas
- Dow College of PharmacyDow University of Health Sciences Karachi Pakistan
| | - Rabia Bushra
- Dow College of PharmacyDow University of Health Sciences Karachi Pakistan
| | - Daulat Haleem Khan
- Department of PharmacyLahore College of Pharmaceutical Sciences Lahore Pakistan
| | - Amna Parveen
- College of PharmacyGachon University Incheon 21936 Korea
| | - Bo Wang
- Department of Pharmaceutics, School of PharmacyChina Pharmaceutical University Nanjing Jiangsu 211198 PR China
| |
Collapse
|
8
|
Jain A, Singh SK, Arya SK, Kundu SC, Kapoor S. Protein Nanoparticles: Promising Platforms for Drug Delivery Applications. ACS Biomater Sci Eng 2018; 4:3939-3961. [DOI: 10.1021/acsbiomaterials.8b01098] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Annish Jain
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
| | - Sumit K. Singh
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
| | - Shailendra K. Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
| | - Subhas C. Kundu
- 3B’s Research Group, I3Bs − Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Sonia Kapoor
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201 313, Uttar Pradesh, India
| |
Collapse
|
9
|
DeFrates K, Markiewicz T, Gallo P, Rack A, Weyhmiller A, Jarmusik B, Hu X. Protein Polymer-Based Nanoparticles: Fabrication and Medical Applications. Int J Mol Sci 2018; 19:E1717. [PMID: 29890756 PMCID: PMC6032199 DOI: 10.3390/ijms19061717] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/15/2022] Open
Abstract
Nanoparticles are particles that range in size from about 1⁻1000 nanometers in diameter, about one thousand times smaller than the average cell in a human body. Their small size, flexible fabrication, and high surface-area-to-volume ratio make them ideal systems for drug delivery. Nanoparticles can be made from a variety of materials including metals, polysaccharides, and proteins. Biological protein-based nanoparticles such as silk, keratin, collagen, elastin, corn zein, and soy protein-based nanoparticles are advantageous in having biodegradability, bioavailability, and relatively low cost. Many protein nanoparticles are easy to process and can be modified to achieve desired specifications such as size, morphology, and weight. Protein nanoparticles are used in a variety of settings and are replacing many materials that are not biocompatible and have a negative impact on the environment. Here we attempt to review the literature pertaining to protein-based nanoparticles with a focus on their application in drug delivery and biomedical fields. Additional detail on governing nanoparticle parameters, specific protein nanoparticle applications, and fabrication methods are also provided.
Collapse
Affiliation(s)
- Kelsey DeFrates
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA.
| | - Theodore Markiewicz
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA.
| | - Pamela Gallo
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA.
| | - Aaron Rack
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA.
| | - Aubrie Weyhmiller
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
| | - Brandon Jarmusik
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA.
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
10
|
Kozlowska J, Stachowiak N, Sionkowska A. Collagen/Gelatin/Hydroxyethyl Cellulose Composites Containing Microspheres Based on Collagen and Gelatin: Design and Evaluation. Polymers (Basel) 2018; 10:E456. [PMID: 30966491 PMCID: PMC6415228 DOI: 10.3390/polym10040456] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/12/2018] [Accepted: 04/17/2018] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to develop three-dimensional collagen/gelatin/hydroxyethyl cellulose composites in combination with gelatin or collagen-gelatin loaded microspheres. Microspheres were prepared by an emulsification/crosslinking method. A 1-Ethyl-3-(3-dimethyl-aminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide (NHS) mixture were used as a crosslinking agent for the obtained materials. The structure of the materials was studied using scanning electron microscopy (SEM) and infrared spectroscopy. Moreover, a Calendula officinalis (pot marigold) flower extract release profile of the microsphere-loaded matrices was assessed in vitro. Additionally, porosity, density, stability, swelling and mechanical properties were tested. On the basis of SEM images, the microspheres exhibited a spherical shape and were irregularly dispersed in the polymer matrix. However, it was found that the addition of microparticles to obtained materials did not significantly change their microstructure. We observed a slight decrease in the swelling properties of matrices and an increase in values of Young's modulus. Significantly, the addition of microspheres to the polymer matrices led to improved loading capacity of materials and release performance of Calendula officinalis flower extract. This makes the collagen/gelatin/hydroxyethyl cellulose composites containing microspheres a promising and suitable vehicle for biomedical, dermatological, or cosmetic applications.
Collapse
Affiliation(s)
- Justyna Kozlowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland.
| | - Natalia Stachowiak
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland.
| | - Alina Sionkowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland.
| |
Collapse
|
11
|
Abstract
Microparticles with controlled size and morphology are of significant interest in the field of drug delivery. Although advanced nanoparticles have been the object of a substantial number of reviews, fewer have focused on microparticles, especially for the delivery of drugs and growth factors to the wound site. Microparticles show distinct advantages, including ease of production and characterization, extended release properties, high drug loading and little concern about the toxicity as compared with the nanosized systems. This review presents an introduction to the pathophysiology of wound healing and provides an overview of some of the recent advances in microparticle-based drugs and growth factors delivery to wound sites.
Collapse
|
12
|
Choi JW, Kim JW, Jo IH, Koh YH, Kim HE. Novel Self-Assembly-Induced Gelation for Nanofibrous Collagen/Hydroxyapatite Composite Microspheres. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1110. [PMID: 28934135 PMCID: PMC5666916 DOI: 10.3390/ma10101110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 12/31/2022]
Abstract
This study demonstrates the utility of the newly developed self-assembly-induced gelation technique for the synthesis of porous collagen/hydroxyapatite (HA) composite microspheres with a nanofibrous structure. This new approach can produce microspheres of a uniform size using the droplets that form at the nozzle tip before gelation. These microspheres can have a highly nanofibrous structure due to the immersion of the droplets in a coagulation bath (water/acetone), in which the collagen aggregates in the solution can self-assemble into fibrils due to pH-dependent precipitation. Bioactive HA particles were incorporated into the collagen solutions, in order to enhance the bioactivity of the composite microspheres. The composite microspheres exhibited a well-defined spherical morphology and a uniform size for all levels of HA content (0 wt %, 10 wt %, 15 wt %, and 20 wt %). Collagen nanofibers-several tens of nanometers in size-were uniformly present throughout the microspheres and the HA particles were also well dispersed. The in vitro apatite-forming ability, assessed using the simulated body fluid (SBF) solution, increased significantly with the incorporation of HA into the composite microspheres.
Collapse
Affiliation(s)
- Jae-Won Choi
- Department of Biomedical Engineering, Korea University, Seoul 02841, Korea.
| | - Jong-Woo Kim
- Department of Biomedical Engineering, Korea University, Seoul 02841, Korea.
| | - In-Hwan Jo
- Department of Biomedical Engineering, Korea University, Seoul 02841, Korea.
| | - Young-Hag Koh
- Department of Biomedical Engineering, Korea University, Seoul 02841, Korea.
| | - Hyoun-Ee Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
13
|
Tarhini M, Greige-Gerges H, Elaissari A. Protein-based nanoparticles: From preparation to encapsulation of active molecules. Int J Pharm 2017; 522:172-197. [PMID: 28188876 DOI: 10.1016/j.ijpharm.2017.01.067] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/26/2017] [Accepted: 01/29/2017] [Indexed: 11/29/2022]
Abstract
Nowadays, nanotechnology has become very integrated in the domain of pharmaceutical sciences since nanoparticle dispersions show various advantages as drug carriers. Among nanoparticles, the protein-based ones are of paramount importance. In fact, protein nanoparticles show many advantages over other types of nanoparticles, they are often non-toxic and biodegradable. In this review, the most common preparation methods of protein nanoparticles were targeted. In addition, the factors affecting their dispersions and the concepts of drug loading and drug release are also highlighted. It was obvious that each method can be optimized for a given protein. This issue was discussed in depth in the light of the current state of art, and supported by evidences for each method from the literature. In addition, it was concluded that the processing parameters strongly affect the properties of nanoparticles dispersion.
Collapse
Affiliation(s)
- Mohamad Tarhini
- Univ. Lyon, University Claude Bernard Lyon-1, CNRS, LAGEP UMR 5007, 43 boulevard du 11 November 1918, F-69100, Villeurbanne, France; Faculty of Sciences, Lebanese University, B.P. 90656, Jdaidet El-Matn, Lebanon
| | | | - Abdelhamid Elaissari
- Univ. Lyon, University Claude Bernard Lyon-1, CNRS, LAGEP UMR 5007, 43 boulevard du 11 November 1918, F-69100, Villeurbanne, France.
| |
Collapse
|
14
|
Zhang Z, Eyster TW, Ma PX. Nanostructured injectable cell microcarriers for tissue regeneration. Nanomedicine (Lond) 2016; 11:1611-28. [PMID: 27230960 PMCID: PMC5619097 DOI: 10.2217/nnm-2016-0083] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/05/2016] [Indexed: 11/21/2022] Open
Abstract
Biodegradable polymer microspheres have emerged as cell carriers for the regeneration and repair of irregularly shaped tissue defects due to their injectability, controllable biodegradability and capacity for drug incorporation and release. Notably, recent advances in nanotechnology allowed the manipulation of the physical and chemical properties of the microspheres at the nanoscale, creating nanostructured microspheres mimicking the composition and/or structure of natural extracellular matrix. These nanostructured microspheres, including nanocomposite microspheres and nanofibrous microspheres, have been employed as cell carriers for tissue regeneration. They enhance cell attachment and proliferation, promote positive cell-carrier interactions and facilitate stem cell differentiation for target tissue regeneration. This review highlights the recent advances in nanostructured microspheres that are employed as injectable, biomimetic and cell-instructive cell carriers.
Collapse
Affiliation(s)
- Zhanpeng Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Thomas W Eyster
- Department of Biologic & Materials Sciences, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Peter X Ma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-1078, USA
- Department of Biologic & Materials Sciences, University of Michigan, Ann Arbor, MI 48109-1078, USA
- Macromolecular Science & Engineering Center, University of Michigan, Ann Arbor, MI 48109-1078, USA
- Materials Science & Engineering, University of Michigan, Ann Arbor, MI 48109-1078, USA
| |
Collapse
|
15
|
Matsuhashi A, Nam K, Kimura T, Kishida A. Fabrication of fibrillized collagen microspheres with the microstructure resembling an extracellular matrix. SOFT MATTER 2015; 11:2844-2851. [PMID: 25708876 DOI: 10.1039/c4sm01982b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Microspheres using artificial or natural materials have been widely applied in the field of tissue engineering and drug delivery systems. Collagen is being widely used for microspheres because of its abundancy in the extracellular matrix (ECM), and its good biocompatibility. The purpose of this study is to establish the appropriate condition for preparing collagen microspheres (CMS) and fibrillized collagen microspheres (fCMS) using water-in-oil (W/O) emulsion. Collagen can be tailored to mimic the native cell environment possessing a similar microstructure to that of the ECM by conditioning the aqueous solution. We focused on the preparation of stable and injectable CMS and fCMS which is stable and would promote the healing response. Controlling the interfacial properties of hydrophilic-lipophilic balance (HLB), we obtained CMS and fCMS with various sizes and various morphologies. The microsphere prepared with wetting agents showed good microsphere formation, but too low or too high HLB value caused low yield and uncontrollable size distribution. The change in the surfactant amount and the rotor speed also affected the formation of the CMS and fCMS, where the low surfactant amount and fast rotor speed produced smaller CMS and fCMS. In the case of fCMS, the presence of NaCl made it possible to prepare stable fCMS without using any cross-linker due to fibrillogenesis and gelling of collagen molecules. The microstructure of fCMS was similar to that of the native tissue indicating that the fCMS would replicate its function in vivo.
Collapse
Affiliation(s)
- Aki Matsuhashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | | | | | | |
Collapse
|
16
|
Amarnath K, Dhanabal J, Agarwal I, Seshadry S. Cytotoxicity induction by ethanolic extract of Acalypha indica loaded casein-chitosan microparticles in human prostate cancer cell line in vitro. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.bionut.2013.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Bosnea LA, Moschakis T, Biliaderis CG. Complex Coacervation as a Novel Microencapsulation Technique to Improve Viability of Probiotics Under Different Stresses. FOOD BIOPROCESS TECH 2014. [DOI: 10.1007/s11947-014-1317-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Osidak EO, Osidak MS, Akhmanova MA, Domogatskii SP. Collagen—A biomaterial for delivery of growth factors and tissue regeneration. RUSS J GEN CHEM+ 2014. [DOI: 10.1134/s107036321402039x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
19
|
Ma J, Xu Q, Zhou J, Zhang J, Zhang L, Tang H, Chen L. Synthesis and biological response of casein-based silica nano-composite film for drug delivery system. Colloids Surf B Biointerfaces 2013; 111:257-63. [DOI: 10.1016/j.colsurfb.2013.06.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 05/27/2013] [Accepted: 06/06/2013] [Indexed: 11/26/2022]
|
20
|
Ahmad I, Akhter S, Ahmad MZ, Shamim M, Rizvi MA, Khar RK, Ahmad FJ. Collagen loaded nano-sized surfactant based dispersion for topical application: formulation development, characterization and safety study. Pharm Dev Technol 2013; 19:460-7. [DOI: 10.3109/10837450.2013.795167] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Abou Neel EA, Bozec L, Knowles JC, Syed O, Mudera V, Day R, Hyun JK. Collagen--emerging collagen based therapies hit the patient. Adv Drug Deliv Rev 2013; 65:429-456. [PMID: 22960357 DOI: 10.1016/j.addr.2012.08.010] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 08/10/2012] [Accepted: 08/28/2012] [Indexed: 12/11/2022]
Abstract
The choice of biomaterials available for regenerative medicine continues to grow rapidly, with new materials often claiming advantages over the short-comings of those already in existence. Going back to nature, collagen is one of the most abundant proteins in mammals and its role is essential to our way of life. It can therefore be obtained from many sources including porcine, bovine, equine or human and offer a great promise as a biomimetic scaffold for regenerative medicine. Using naturally derived collagen, extracellular matrices (ECMs), as surgical materials have become established practice for a number of years. For clinical use the goal has been to preserve as much of the composition and structure of the ECM as possible without adverse effects to the recipient. This review will therefore cover in-depth both naturally and synthetically produced collagen matrices. Furthermore the production of more sophisticated three dimensional collagen scaffolds that provide cues at nano-, micro- and meso-scale for molecules, cells, proteins and bulk fluids by inducing fibrils alignments, embossing and layered configuration through the application of plastic compression technology will be discussed in details. This review will also shed light on both naturally and synthetically derived collagen products that have been available in the market for several purposes including neural repair, as cosmetic for the treatment of dermatologic defects, haemostatic agents, mucosal wound dressing and guided bone regeneration membrane. There are other several potential applications of collagen still under investigations and they are also covered in this review.
Collapse
Affiliation(s)
- Ensanya A Abou Neel
- King Abdulaziz University, Conservative Dental Science Department, Biomaterials Division, Saudi Arabia.
| | | | | | | | | | | | | |
Collapse
|
22
|
Nitta SK, Numata K. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci 2013; 14:1629-54. [PMID: 23344060 PMCID: PMC3565338 DOI: 10.3390/ijms14011629] [Citation(s) in RCA: 362] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/27/2012] [Accepted: 01/07/2013] [Indexed: 01/28/2023] Open
Abstract
There has been a great interest in application of nanoparticles as biomaterials for delivery of therapeutic molecules such as drugs and genes, and for tissue engineering. In particular, biopolymers are suitable materials as nanoparticles for clinical application due to their versatile traits, including biocompatibility, biodegradability and low immunogenicity. Biopolymers are polymers that are produced from living organisms, which are classified in three groups: polysaccharides, proteins and nucleic acids. It is important to control particle size, charge, morphology of surface and release rate of loaded molecules to use biopolymer-based nanoparticles as drug/gene delivery carriers. To obtain a nano-carrier for therapeutic purposes, a variety of materials and preparation process has been attempted. This review focuses on fabrication of biocompatible nanoparticles consisting of biopolymers such as protein (silk, collagen, gelatin, β-casein, zein and albumin), protein-mimicked polypeptides and polysaccharides (chitosan, alginate, pullulan, starch and heparin). The effects of the nature of the materials and the fabrication process on the characteristics of the nanoparticles are described. In addition, their application as delivery carriers of therapeutic drugs and genes and biomaterials for tissue engineering are also reviewed.
Collapse
Affiliation(s)
- Sachiko Kaihara Nitta
- Enzyme Research Team, RIKEN Biomass Engineering Program, RIKEN, Saitama 351-0198, Japan; E-Mail:
| | - Keiji Numata
- Enzyme Research Team, RIKEN Biomass Engineering Program, RIKEN, Saitama 351-0198, Japan; E-Mail:
| |
Collapse
|
23
|
Ma L, Yang Y, Yao J, Shao Z, Chen X. Robust soy protein films obtained by slight chemical modification of polypeptide chains. Polym Chem 2013. [DOI: 10.1039/c3py00557g] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Ferreira AM, Gentile P, Chiono V, Ciardelli G. Collagen for bone tissue regeneration. Acta Biomater 2012; 8:3191-200. [PMID: 22705634 DOI: 10.1016/j.actbio.2012.06.014] [Citation(s) in RCA: 540] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/04/2012] [Accepted: 06/08/2012] [Indexed: 01/22/2023]
Abstract
In the last decades, increased knowledge about the organization, structure and properties of collagen (particularly concerning interactions between cells and collagen-based materials) has inspired scientists and engineers to design innovative collagen-based biomaterials and to develop novel tissue-engineering products. The design of resorbable collagen-based medical implants requires understanding the tissue/organ anatomy and biological function as well as the role of collagen's physicochemical properties and structure in tissue/organ regeneration. Bone is a complex tissue that plays a critical role in diverse metabolic processes mediated by calcium delivery as well as in hematopoiesis whilst maintaining skeleton strength. A wide variety of collagen-based scaffolds have been proposed for different tissue engineering applications. These scaffolds are designed to promote a biological response, such as cell interaction, and to work as artificial biomimetic extracellular matrices that guide tissue regeneration. This paper critically reviews the current understanding of the complex hierarchical structure and properties of native collagen molecules, and describes the scientific challenge of manufacturing collagen-based materials with suitable properties and shapes for specific biomedical applications, with special emphasis on bone tissue engineering. The analysis of the state of the art in the field reveals the presence of innovative techniques for scaffold and material manufacturing that are currently opening the way to the preparation of biomimetic substrates that modulate cell interaction for improved substitution, restoration, retention or enhancement of bone tissue function.
Collapse
|
25
|
The microstructure of collagen type I gel cross-linked with gold nanoparticles. Colloids Surf B Biointerfaces 2012; 101:118-25. [PMID: 22796781 DOI: 10.1016/j.colsurfb.2012.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 06/07/2012] [Accepted: 06/11/2012] [Indexed: 11/20/2022]
Abstract
Scanning electron microscopy, transmission electron microscopy, rheometry, and electrochemistry were used to provide insight into the microstructure of collagen type I gel (1%, w/v) modified with the tiopronin-protected (N-(2-mercaptopropionyl)glycine) gold nanoparticles (TPAu), a multivalent crosslinker. The cross-linking reaction, performed via EDC (1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide) coupling, results in compliant, mechanically stable and continuous gels. The gels contain unusual interconnected collagen-TPAu particles. Electrochemical measurements of 4-hydroxy-(2,2,6,6-tetramethylpiperidine-1-oxyl) (4HT) diffusion within the gel reveal that the gel hindrance is nearly independent of the TPAu concentration. The properties of the collagen-TPAu gel make it suitable for potential biomedical applications, such as delivery of small molecule drugs.
Collapse
|
26
|
Calejo MT, Almeida AJ, Fernandes AI. Exploring a new jellyfish collagen in the production of microparticles for protein delivery. J Microencapsul 2012; 29:520-31. [PMID: 22732101 DOI: 10.3109/02652048.2012.665089] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A microparticulate protein delivery system was developed using collagen, from the medusa Catostylus tagi, as a polymeric matrix. Collagen microparticles (CMPs) were produced by an emulsification-gelation-solvent extraction method and a high loading efficiency was found for the entrapment of lysozyme and α-lactalbumin. CMPs were cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). The uncross-linked CMPs were spherical, rough-surfaced, presenting an estimated median size of 28 µm by laser diffraction. Upon cross-linking, particle size (9.5 µm) and size distribution were reduced. CMPs showed a moderate hydrophobic behaviour and a positive surface charge. Cross-linking also resulted in greater stability in water, allowing a slow release, as shown by in vitro experiments. The assessment of lysozyme's biological activity showed that the protein remained active throughout the encapsulation and cross-linking processes. In summary, the work herein described shows the potential use of a marine collagen in the production of microparticles for the controlled release of therapeutic proteins.
Collapse
Affiliation(s)
- M Teresa Calejo
- CiiEM, Instituto Superior de Ciências da Saúde Egas Moniz, Campus Universitário, Quinta da Granja , Monte de Caparica, 2829-511 Caparica, Portugal
| | | | | |
Collapse
|
27
|
Baracat MM, Nakagawa AM, Casagrande R, Georgetti SR, Verri WA, de Freitas O. Preparation and characterization of microcapsules based on biodegradable polymers: pectin/casein complex for controlled drug release systems. AAPS PharmSciTech 2012; 13:364-72. [PMID: 22322381 DOI: 10.1208/s12249-012-9752-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 01/12/2012] [Indexed: 11/30/2022] Open
Abstract
Controlled release of drugs is an important strategy to diminish the drug dose and adverse side effects. Aqueous mixtures of polysaccharides and proteins are usually unstable above a certain biopolymer concentration and phase separation occurs either because of repulsive (segregative) or attractive (associative) interactions. Herein, pectin/casein microcapsules were prepared by complex coacervation aiming at prolonged drug release. The morphological characteristics, particle size, distribution, and release kinetics of microcapsules were studied using as a model the hydrophilic drug acetaminophen. It was detected that complexation of pectin/casein particles occurs at pH values lower than 6, resulting in the formation of spherical particles after spray drying. Microcapsules had a mean diameter of 3.138 and 4.929 μm without drug, and of 4.680 and 5.182 μm with drug using USP and 8003 pectin, respectively. The in vitro release of acetaminophen from microcapsules was slow and the drug release mechanism was controlled by diffusion following first-order kinetics. There was greater release of acetaminophen in simulated gastric fluid than simulated intestinal fluid conditions. Concluding, the polymeric system present herein seemed to be appropriate for a prolonged release of acetaminophen throughout the gastrointestinal tract. Nevertheless, it is likely that it is a promising pectin/casein complex for lipossoluble drugs, which merits further investigation.
Collapse
|
28
|
Wang H, Leeuwenburgh SCG, Li Y, Jansen JA. The use of micro- and nanospheres as functional components for bone tissue regeneration. TISSUE ENGINEERING PART B-REVIEWS 2011; 18:24-39. [PMID: 21806489 DOI: 10.1089/ten.teb.2011.0184] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During the last decade, the use of micro- and nanospheres as functional components for bone tissue regeneration has drawn increasing interest. Scaffolds comprising micro- and nanospheres display several advantages compared with traditional monolithic scaffolds that are related to (i) an improved control over sustained delivery of therapeutic agents, signaling biomolecules and even pluripotent stem cells, (ii) the introduction of spheres as stimulus-sensitive delivery vehicles for triggered release, (iii) the use of spheres to introduce porosity and/or improve the mechanical properties of bulk scaffolds by acting as porogen or reinforcement phase, (iv) the use of spheres as compartmentalized microreactors for dedicated biochemical processes, (v) the use of spheres as cell delivery vehicle, and, finally, (vi) the possibility of preparing injectable and/or moldable formulations to be applied by using minimally invasive surgery. This article focuses on recent developments with regard to the use of micro- and nanospheres for bone regeneration by categorizing micro-/nanospheres by material class (polymers, ceramics, and composites) as well as summarizing the main strategies that employ these spheres to improve the functionality of scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Huanan Wang
- Department of Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
29
|
Elzoghby AO, Abo El-Fotoh WS, Elgindy NA. Casein-based formulations as promising controlled release drug delivery systems. J Control Release 2011; 153:206-16. [DOI: 10.1016/j.jconrel.2011.02.010] [Citation(s) in RCA: 334] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 02/09/2011] [Indexed: 01/06/2023]
|
30
|
Doherty S, Gee V, Ross R, Stanton C, Fitzgerald G, Brodkorb A. Development and characterisation of whey protein micro-beads as potential matrices for probiotic protection. Food Hydrocoll 2011. [DOI: 10.1016/j.foodhyd.2010.12.012] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Vassileva ED, Koseva NS. Sonochemically born proteinaceous micro- and nanocapsules. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2011; 80:205-52. [PMID: 21109221 DOI: 10.1016/b978-0-12-381264-3.00006-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The use of proteins as a substrate in the fabrication of micro- and nanoparticulate systems has attracted the interest of scientists, manufactures, and consumers. Albumin-derived particles were commercialized as contrast agents or anticancer therapeutics. Food proteins are widely used in formulated dietary products. The potential benefits of proteinaceous micro- and nanoparticles in a wide range of biomedical applications are indisputable. Protein-based particles are highly biocompatible and biodegradable structures that can impart bioadhesive properties or mediate particle uptake by specific interactions with the target cells. Currently, protein microparticles are engineered as vehicles for covalent attachment and/or encapsulation of bioactive compounds, contrast agents for magnetic resonance imaging, thermometric and oximetric imaging, sonography and optical coherence tomography, etc. Ultrasound irradiation is a versatile technique which is widely used in many and different fields as biology, biochemistry, dentistry, geography, geology, medicine, etc. It is generally recognized as an environmental friendly, cost-effective method which is easy to be scaled up. Currently, it is mainly applied for homogenization, drilling, cleaning, etc. in industry, as well for noninvasive scanning of the human body, treatment of muscle strains, dissolution of blood clots, and cancer therapy. Proteinaceous micro- and nanocapsules could be easily produced in a one-step process by applying ultrasound to an aqueous protein solution. The origin of this process is in the chemical changes, for example, sulfhydryl groups oxidation, that takes place as a result of acoustically generated cavitation. Partial denaturation of the protein most probably occurs which makes the hydrophobic interactions dominant and also responsible for the formation of stable capsules. This chapter aims to present the current state-of-the-art in the field of sonochemically produced protein micro- and nanocapsules, paying special attention to the proposed mechanisms for their formation, the factors that influence the capsules characteristics as well to the current applications of these particles. Current challenges in the field are also outlined as, for example, the ultrasound-protein interaction and other possible aspects of the mechanism of their formation.
Collapse
|
32
|
Satpathy G, Rosenberg M. Encapsulation of chlorothiazide in whey proteins: Effects of wall-to-core ratio and cross-linking conditions on microcapsule properties and drug release. J Microencapsul 2010. [DOI: 10.3109/02652040309178064] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- G. Satpathy
- Department of Food Science and Technology, University of California, Davis, CA, 95616, USA
| | - M. Rosenberg
- Department of Food Science and Technology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
33
|
Nicklas M, Schatton W, Heinemann S, Hanke T, Kreuter J. Preparation and characterization of marine sponge collagen nanoparticles and employment for the transdermal delivery of 17beta-estradiol-hemihydrate. Drug Dev Ind Pharm 2010; 35:1035-42. [PMID: 19365781 DOI: 10.1080/03639040902755213] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Transdermal administration of estradiol offers advantages over oral estrogens for hormone replacement therapy regarding side effects by bypassing the hepatic presystemic metabolism. AIM The objective of this study was to develop nanoparticles of Chondrosia reniformis sponge collagen as penetration enhancers for the transdermal drug delivery of 17beta-estradiol-hemihydrate in hormone replacement therapy. METHOD Collagen nanoparticles were prepared by controlled alkaline hydrolysis and characterized using atomic force microscopy and photon correlation spectroscopy. Estradiol-hemihydrate was loaded to the nanoparticles by adsorption to their surface, whereupon a drug loading up to 13.1% of sponge collagen particle mass was found. After incorporation of drug-loaded nanoparticles in a hydrogel, the estradiol transdermal delivery from the gel was compared with that from a commercial gel that did not contain nanoparticles. RESULTS Saliva samples in postmenopausal patients showed significantly higher estradiol levels after application of the gel with nanoparticles. The area under the curve (AUC) for estradiol time-concentration curves over 24 hours was 2.3- to 3.4-fold higher and estradiol levels 24 hours after administration of estradiol were at least twofold higher with the nanoparticle gel. CONCLUSIONS The hydrogel with estradiol-loaded collagen nanoparticles enabled a prolonged estradiol release compared to a commercial gel and yielded a considerably enhanced estradiol absorption. Consequently, sponge collagen nanoparticles represent promising carriers for transdermal drug delivery.
Collapse
|
34
|
Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA. Hydrogels in regenerative medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2009; 21:3307-29. [PMID: 20882499 PMCID: PMC4494665 DOI: 10.1002/adma.200802106] [Citation(s) in RCA: 1828] [Impact Index Per Article: 114.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Hydrogels, due to their unique biocompatibility, flexible methods of synthesis, range of constituents, and desirable physical characteristics, have been the material of choice for many applications in regenerative medicine. They can serve as scaffolds that provide structural integrity to tissue constructs, control drug and protein delivery to tissues and cultures, and serve as adhesives or barriers between tissue and material surfaces. In this work, the properties of hydrogels that are important for tissue engineering applications and the inherent material design constraints and challenges are discussed. Recent research involving several different hydrogels polymerized from a variety of synthetic and natural monomers using typical and novel synthetic methods are highlighted. Finally, special attention is given to the microfabrication techniques that are currently resulting in important advances in the field.
Collapse
Affiliation(s)
- Brandon V. Slaughter
- Department of Biomedical Engineering, C0800, The University of Texas at
Austin, Austin, TX 78712 (USA)
| | - Shahana S. Khurshid
- Department of Biomedical Engineering, C0800, The University of Texas at
Austin, Austin, TX 78712 (USA)
| | - Omar Z. Fisher
- Department of Biomedical Engineering, C0800, The University of Texas at
Austin, Austin, TX 78712 (USA)
| | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and
Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health
Sciences and Technology, Massachusetts, Institute of Technology, Cambridge, MA 02139
(USA)
| | - Nicholas A. Peppas
- Biomaterials, Drug Delivery, Bionanotechnology, and Molecular, Recognition
Laboratories, Department of Chemical Engineering, C0400, The University of Texas at
Austin, Austin, TX 78712 (USA)
- Department of Pharmaceutics, C0400, The University of Texas at Austin,
Austin, TX 78712 (USA)
- Department of Biomedical Engineering, C0800, The University of Texas at
Austin, Austin, TX 78712 (USA)
| |
Collapse
|
35
|
Abstract
Advantages of drug-incorporated collagen particles have been described for the controlled delivery system for therapeutic actions. The attractiveness of collagen lies in its low immunogenicity and high biocompatibility. It is also recognized by the body as a natural constituent rather than a foreign body. Our research and development efforts are focused towards addressing some of the limitations of collagen, like the high viscosity of an aqueous phase, nondissolution in neutral pH buffers, thermal instability (denaturation) and biodegradability, to make it an ideal material for drug delivery with particular reference to microparticles. These limitations could be overcome by making collagen conjugates with other biomaterials or chemically modifying collagen monomer without affecting its triple helical conformation and maintaining its native properties. This article highlights collagen microparticles' present status as a carrier in drug delivery.
Collapse
Affiliation(s)
- Praveen Kumar Sehgal
- Central Leather Research Institute, Bio-products Laboratory, Adyar, Chennai-600020, India.
| | | |
Collapse
|
36
|
Klee SK, Farwick M, Lersch P. Triggered release of sensitive active ingredients upon response to the skin's natural pH. Colloids Surf A Physicochem Eng Asp 2009. [DOI: 10.1016/j.colsurfa.2008.11.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Benchabane S, Subirade M, Vandenberg GW. Production of BSA-loaded alginate microcapsules: Influence of spray dryer parameters on the microcapsule characteristics and BSA release. J Microencapsul 2008; 24:565-76. [PMID: 17654176 DOI: 10.1080/02652040701452917] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of this study was to optimize the production of BSA-loaded alginate microcapsules by spray drying and to study the release of bovine serum albumin fraction V (BSA) under gastric simulated conditions. Microcapsule yield, BSA release, microcapsule size and size distribution were characterized following the application of different production parameters including inlet air temperature, inlet air pressure and liquid feed rate. The microcapsules were incubated in 0.1 N HCl and BSA release was quantified over time. The yields were higher with the pressure of 3 bar compared to 4 bar and with a feed rate of 0.45 vs. 0.2 ml s(-1). A high feed rate (0.45 vs. 0.2 ml s(-1)) allows one to obtain microcapsules with a low BSA release (p = 0.0327). The increase of the atomizer inlet temperature leads to microcapsules with a higher BSA release (p = 0.0230). A higher air pressure of 4 bar compared to 3 bar resulted in a lower microcapsule size (2.55 vs. 2.80 microm) and led to a narrower size distribution (0.92 vs. 1.07). In conclusion, the spray dryer parameters influenced the alginate microcapsule characteristics as well as subsequent protein release into a simulated gastric medium.
Collapse
Affiliation(s)
- Samir Benchabane
- Departement de sciences animales, Université Laval, Québec, Québec, Canada
| | | | | |
Collapse
|
38
|
Rosenberg M, Lee SJ. Calcium-alginate coated, whey protein-based microspheres: preparation, some properties and opportunities. J Microencapsul 2008; 21:263-81. [PMID: 15204594 DOI: 10.1080/02652040410001673937] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
An 'all aqueous' encapsulation process followed by a heat treatment was used to prepare calcium-alginate-coated, whey protein-based, water insoluble microspheres containing micronized calcium carbonate as a model core. Results obtained with this process were compared to those obtained with a similar process in which chemical cross-linking was utilized. At an initial core load of 25 or 50% (w/w), core retention ranged from 84.2-95.12% and was not significantly affected by the initial core load or by the cross-linking method. Regardless of the cross-linking method, protein retention during the process was high and ranged from 78.2-87.5%. Outer topography of the microspheres was not influenced by the cross-linking method, however, at a given composition, the inner structure of heat treated microspheres differed from that obtained with chemically-cross-linked microspheres. Swelling properties of denovo microspheres were affected by pH. Results indicated that the micronized calcium carbonate could be used as a porogenic core. Removal of the core, by an acid treatment, allowed preparing microporous delivery devices. In addition to offer opportunities for encapsulation and delivery of crystalline core, the investigated process can provide means to prepare 'ghost' microporous delivery systems that can, in potential, be loaded, following their preparation, with sensitive core materials at conditions that favour the stability and functionality of this core.
Collapse
Affiliation(s)
- M Rosenberg
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
39
|
Abstract
Rapid and proper healing is important in the treatment of skin wounds. The dressing achieves the functions of the natural skin by protecting the wound area from the bulk loss of tissue and creating an effective barrier to outside contaminants without increasing the bacterial load on the wound surface. There are many wound dressings available on the market which can be used in the healing process. Different dressings have been used according to the condition of the wound and the phases of wound healing. Biodegradable polymers are being widely used in drug delivery and also in wound healing. These polymers that are applicable as a wound dressing protect the wound site against unwanted external effects, inhibit wound contraction, and, if possible, stimulate the healing process. Micro- and nanoparticulates are currently being evaluated as a potential drug delivery in clinical applications. Growth factors also play a vital role in wound healing. Polymers used in wound healing act as sustained release vehicles for growth factors. Controlled release of growth factors from microspheres has provided a higher degree of healing in the wound areas. This review is intended to provide information regarding the various formulations and microparticulate systems used in wound healing.
Collapse
Affiliation(s)
- Zelihagül Değim
- Department of Pharmaceutical Technology, Gazi University Faculty of Pharmacy, Ankara, Turkey.
| |
Collapse
|
40
|
Adhirajan N, Shanmugasundaram N, Babu M. Gelatin microspheres cross-linked with EDC as a drug delivery system for doxycyline: development and characterization. J Microencapsul 2007; 24:647-59. [PMID: 17763059 DOI: 10.1080/02652040701500210] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Chronic wounds express elevated levels of proteases, in particular matrix metalloproteinases (MMPs), which degrades de novo granulation tissue and endogenous biologically active proteins. An effective therapeutic approach for chronic wounds would be to modify this hostile environment and reduce the proteolytic imbalance. Doxycycline has been proved recently to inhibit MMPs and used topically for chronic wound ulcers, beyond their antimicrobial profile. To this end, a carrier system for controlled release of doxycycline, suitable for incorporation into various wound dressings like membranes and sponges was developed. In the present study gelatin microspheres, cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) was proposed. The cross-linking was carried out with different concentrations of EDC (10 mM, 50 mM and 100 mM) and for different time periods (3-24 h). The cross-linked microspheres were characterized by evaluating the extent of cross-linking, the morphology, swelling behaviour and drug loading and in vitro studies of drug release, enzymatic degradation and biocompatibility. The extent of cross-linking increased as a function of both EDC concentration and the cross-linking time periods. It is found that the extent of cross-linking greatly influences the swelling and drug release behaviour of the microspheres. The cross-linked microspheres were found to be biocompatible to NIH 3T3 mouse embryonic fibroblast. The overall study indicates that the zero length cross-linker EDC can be considered as a potential alternative for cross-linking the gelatin microspheres.
Collapse
Affiliation(s)
- N Adhirajan
- Biomaterials Division, Central Leather Research Institute, Chennai, Tamil Nadu, India
| | | | | |
Collapse
|
41
|
Lee JS, Kim JK, Chang YH, Park SR. Preparation of collagen/poly(L-lactic acid) composite material for. Macromol Res 2007. [DOI: 10.1007/bf03218776] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
42
|
Chen L, Remondetto GE, Subirade M. Food protein-based materials as nutraceutical delivery systems. Trends Food Sci Technol 2006. [DOI: 10.1016/j.tifs.2005.12.011] [Citation(s) in RCA: 851] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
ROSENBERG M, LEE SJ. Water-Insoluble, Whey Protein- based Microspheres Prepared by an All-aqueous Process. J Food Sci 2004. [DOI: 10.1111/j.1365-2621.2004.tb17867.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
Lee JS, Nam YS, Kang BY, Han SH, Chang IS. Vitamin A microencapsulation within poly(methyl methacrylate)-g-polyethylenimine microspheres: Localized proton buffering effect on vitamin A stability. J Appl Polym Sci 2004. [DOI: 10.1002/app.20028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Bruschi ML, Cardoso MLC, Lucchesi MB, Gremião MPD. Gelatin microparticles containing propolis obtained by spray-drying technique: preparation and characterization. Int J Pharm 2003; 264:45-55. [PMID: 12972335 DOI: 10.1016/s0378-5173(03)00386-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gelatin microparticles containing propolis extractive solution (PES) were prepared by spray-drying technique. The optimization of the spray-drying operating conditions and the proportions of gelatin and mannitol were investigated. Regular particle morphology was obtained when mannitol was used, whereas mannitol absence produced a substantial number of coalesced and agglomerated microparticles. Microparticles had a mean diameter of 2.70 microm without mannitol and 2.50 microm with mannitol. The entrapment efficiency for propolis of the microparticles was upto 41% without mannitol and 39% with mannitol. The microencapsulation by spray-drying technique maintained the activity of propolis against Staphylococcus aureus. These gelatin microparticles containing propolis would be useful for developing intermediary or eventual propolis dosage form without the PES' strong and unpleasant taste, aromatic odour, and presence of ethanol.
Collapse
Affiliation(s)
- M L Bruschi
- Departamento de Farmácia e Farmacologia, Universidade Estadual de Maringá, Av. Colombo 5790, CEP 87020-900, Maringá, PR, Brazil
| | | | | | | |
Collapse
|
46
|
Swatschek D, Schatton W, Müller W, Kreuter J. Microparticles derived from marine sponge collagen (SCMPs): preparation, characterization and suitability for dermal delivery of all-trans retinol. Eur J Pharm Biopharm 2002; 54:125-33. [PMID: 12191682 DOI: 10.1016/s0939-6411(02)00046-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Collagen microparticles were prepared using marine sponge collagen. For this purpose a previous method by Rössler et al. (J. Microencapsul. 12 (1995) 49) of emulsification and cross-linking of native calf collagen was modified. The modified method for sponge collagen microparticles (SCMPs) achieved a yield of 10%. Scanning electromicroscopic photographs showed spherical particles with a diameter of 120-300 nm and photon correlation spectroscopic measurements indicated particle size range from 126 (+/-2.9) to 2179 (+/-342) nm. This broad size distribution was caused by some agglomerates that could not be destroyed by ultrasonication. The surface charge was measured as a function of pH. At pH 2.8 the particles were nearly uncharged, at pH 9.0 the particles showed a strong negative charge of about -60 mV. The preformed SCMPs were loaded by adsorption of all-trans retinol. A loading of up to 8% was obtained. Retinol-loaded SCMPs were incorporated into hydrogels and drug stability was investigated. The in vitro penetration of retinol into hairless mice skin in this formulation was compared to retinol formulations without microparticles. The SCMPs had no influence on the chemical stability of retinol in the hydrogel. The dermal penetration of retinol into the skin increased significantly by approximately two-fold.
Collapse
|
47
|
Swatschek D, Schatton W, Kellermann J, Müller WEG, Kreuter J. Marine sponge collagen: isolation, characterization and effects on the skin parameters surface-pH, moisture and sebum. Eur J Pharm Biopharm 2002; 53:107-13. [PMID: 11777758 DOI: 10.1016/s0939-6411(01)00192-8] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A previously described isolation procedure for collagen of the marine sponge Chondrosia reniformis Nardo was modified for scaling-up reasons yielding 30% of collagen (freeze-dried collagen in relation to freeze-dried sponge). Light microscope observations showed fibrous structures. Transmission electron microscopy studies proved the collagenous nature of this material: high magnifications showed the typical periodic banding-pattern of collagen fibres. However, the results of the amino acid analysis differed from most publications, presumably due to impurities that still were present. In agreement with earlier studies, sponge collagen was insoluble in dilute acid mediums and all solvents investigated. Dispersion of collagen was facilitated when dilute basic mediums were employed. The acid-base properties of the material were investigated by titration. Furthermore, a sponge extract was incorporated in two different formulations and compared with their extract-free analogues and a commercially available collagen containing product with respect to their effects on biophysical skin parameters. None of the preparations had a noticeable influence on the physiological skin surface pH. Skin hydration increased only slightly. However, all tested formulations showed a significant increase of lipids measured by sebumetry.
Collapse
Affiliation(s)
- Dieter Swatschek
- Institute of Pharmaceutical Technology, Johann Wolfgang Goethe 1-1 University, Biocenter, Marie-Curie-Strasse 9, 60439 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
48
|
Abstract
Collagen is regarded as one of the most useful biomaterials. The excellent biocompatibility and safety due to its biological characteristics, such as biodegradability and weak antigenecity, made collagen the primary resource in medical applications. The main applications of collagen as drug delivery systems are collagen shields in ophthalmology, sponges for burns/wounds, mini-pellets and tablets for protein delivery, gel formulation in combination with liposomes for sustained drug delivery, as controlling material for transdermal delivery, and nanoparticles for gene delivery and basic matrices for cell culture systems. It was also used for tissue engineering including skin replacement, bone substitutes, and artificial blood vessels and valves. This article reviews biomedical applications of collagen including the collagen film, which we have developed as a matrix system for evaluation of tissue calcification and for the embedding of a single cell suspension for tumorigenic study. The advantages and disadvantages of each system are also discussed.
Collapse
Affiliation(s)
- C H Lee
- Department of Pharmaceutics, College of Pharmacy, The University of Missouri-Kansas City, 5005 Rockhill Rd, Katz Bdg #108, Kansas City, MO 64110, USA.
| | | | | |
Collapse
|
49
|
Morita T, Horikiri Y, Suzuki T, Yoshino H. Preparation of gelatin microparticles by co-lyophilization with poly(ethylene glycol): characterization and application to entrapment into biodegradable microspheres. Int J Pharm 2001; 219:127-37. [PMID: 11337173 DOI: 10.1016/s0378-5173(01)00642-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Gelatin microparticles were prepared by co-lyophilization with poly(ethylene glycol) (PEG) as a protein micronization adjuvant. Aqueous solutions containing gelatin and PEG at various mixing ratios were freeze-dried. The lyophilizates were dispersed in methylene chloride and subjected to particle size analysis. The particle size decreased as the PEG/gelatin ratio increased. The microparticles isolated from the suspension had spherical microdomains with sizes ranging from 1 to 10 microm, which indicated that phase separation between PEG and gelatin during freezing was involved in the formation mechanism of gelatin microparticles. By using this technology, gelatin microparticles with an average size of less than 10 microm, with high purity of more than 90% and with good dispersibility could be obtained with high yield. The gelatin microparticles with average sizes from 5 to 20 microm were applied to encapsulation into biodegradable PLGA/PLA microspheres via a solid-in-oil-in-water emulsion process. The entrapment efficiency was highly dependent on the particle size and the size distribution, signifying that solid microparticles with an average diameter of less than 5 m and an maximal diameter of less than 10 microm would be required for effective encapsulation. These gelatin microparticles would be useful for studying and developing various drug delivery systems.
Collapse
Affiliation(s)
- T Morita
- DDS Research Department, Discovery Research Laboratory, Tanabe Seiyaku Co., Ltd., 3-16-89 Kashima, Yodogawa-ku, 532-8505, Osaka, Japan.
| | | | | | | |
Collapse
|
50
|
Lee SJ, Rosenberg M. Microencapsulation of theophylline in composite wall system consisting of whey proteins and lipids. J Microencapsul 2001; 18:309-21. [PMID: 11308222 DOI: 10.1080/02652040010019523] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Theophylline was microencapsulated in composite whey protein-based wall systems containing different proportions of dispersed apolar filler, anhydrous milkfat. Wall emulsions exhibited uni-modal particle size distribution and had a mean particle size of 0.36-0.38 microm. Microcapsules were cross-linked by glutaraldehyde-saturated toluene via an organic phase. Spherical microcapsules ranging in diameter from 150 to larger than 700 microm were obtained and exhibited some surface cracks that could be attributed to the fragile nature of a peripheral, highly cross-linked 'shell' layer around the capsules. Core content ranged from 46.9-56.6% (w/w) and filler content ranged from 12.0-33.4% (w/w). Core and filler retention during microencapsulation ranged from 84.9-96.9%) and from 85.1-89.6%, respectively. Core retention was proportionally related to the proportion of filler embedded in the wall matrix. Core release into SGF and SIF was affected by microcapsule size, type of dissolution medium and wall composition. Rate of core release was inversely proportional to filler content of the wall matrix. This could be attributed to effects of filler content on diffusion through the wall matrix and probably on swelling properties of microcapsules. Results indicated that incorporation of apolar filler in wall matrix of whey protein-based capsules provided the means to enhance retention of a water-soluble core during the microencapsulation process and to decrease the rate of core release into aqueous dissolution media.
Collapse
Affiliation(s)
- S J Lee
- Department of Food Science and Technology, University of California, Davis 95616, USA
| | | |
Collapse
|