1
|
Horvath D, Basler M. PLGA Particles in Immunotherapy. Pharmaceutics 2023; 15:pharmaceutics15020615. [PMID: 36839937 PMCID: PMC9965784 DOI: 10.3390/pharmaceutics15020615] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) particles are a widely used and extensively studied drug delivery system. The favorable properties of PLGA such as good bioavailability, controlled release, and an excellent safety profile due to the biodegradable polymer backbone qualified PLGA particles for approval by the authorities for the application as a drug delivery platform in humas. In recent years, immunotherapy has been established as a potent treatment option for a variety of diseases. However, immunomodulating drugs rely on targeted delivery to specific immune cell subsets and are often rapidly eliminated from the system. Loading of PLGA particles with drugs for immunotherapy can protect the therapeutic compounds from premature degradation, direct the drug delivery to specific tissues or cells, and ensure sustained and controlled drug release. These properties present PLGA particles as an ideal platform for immunotherapy. Here, we review recent advances of particulate PLGA delivery systems in the application for immunotherapy in the fields of allergy, autoimmunity, infectious diseases, and cancer.
Collapse
Affiliation(s)
- Dennis Horvath
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, D-78457 Konstanz, Germany
| | - Michael Basler
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland
- Correspondence:
| |
Collapse
|
2
|
Koerner J, Horvath D, Groettrup M. Harnessing Dendritic Cells for Poly (D,L-lactide- co-glycolide) Microspheres (PLGA MS)-Mediated Anti-tumor Therapy. Front Immunol 2019; 10:707. [PMID: 31024545 PMCID: PMC6460768 DOI: 10.3389/fimmu.2019.00707] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
With emerging success in fighting off cancer, chronic infections, and autoimmune diseases, immunotherapy has become a promising therapeutic approach compared to conventional therapies such as surgery, chemotherapy, radiation therapy, or immunosuppressive medication. Despite the advancement of monoclonal antibody therapy against immune checkpoints, the development of safe and efficient cancer vaccine formulations still remains a pressing medical need. Anti-tumor immunotherapy requires the induction of antigen-specific CD8+ cytotoxic T lymphocyte (CTL) responses which recognize and specifically destroy tumor cells. Due to the crucial role of dendritic cells (DCs) in initiating anti-tumor immunity, targeting tumor antigens to DCs has become auspicious in modern vaccine research. Over the last two decades, micron- or nanometer-sized particulate delivery systems encapsulating tumor antigens and immunostimulatory molecules into biodegradable polymers have shown great promise for the induction of potent, specific and long-lasting anti-tumor responses in vivo. Enhanced vaccine efficiency of the polymeric micro/nanoparticles has been attributed to controlled and continuous release of encapsulated antigens, efficient targeting of antigen presenting cells (APCs) such as DCs and subsequent induction of CTL immunity. Poly (D, L-lactide-co-glycolide) (PLGA), as one of these polymers, has been extensively studied for the design and development of particulate antigen delivery systems in cancer therapy. This review provides an overview of the current state of research on the application of PLGA microspheres (PLGA MS) as anti-tumor cancer vaccines in activating and potentiating immune responses attempting to highlight their potential in the development of cancer therapeutics.
Collapse
Affiliation(s)
- Julia Koerner
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Dennis Horvath
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| |
Collapse
|
3
|
Lau CML, Yu Y, Jahanmir G, Chau Y. Controlled release technology for anti-angiogenesis treatment of posterior eye diseases: Current status and challenges. Adv Drug Deliv Rev 2018; 126:145-161. [PMID: 29625138 DOI: 10.1016/j.addr.2018.03.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 12/27/2022]
Abstract
Antiangiogenic therapeutics, such as corticosteroids, VEGF targeting antibodies and aptamers have been demonstrated effective in controlling retinal and choroidal neovascularization related vision loss. However, to manage the chronic conditions, it requires long term and frequent intravitreal injections of these drugs, resulting in poor patient compliance and suboptimal treatment. In addition, emerging drugs such as tyrosine kinase inhibitors and siRNAs received much expectations, but the late stage clinical trials encountered various obstacles. Controlled release technology could improve the existing treatment regimen by extending therapeutic duration, reducing risks and burdens caused by frequent injections, and enabling new drugs to overcome the hurdles of translation. Here, we give qualitative and quantitative discussions about the principle mechanisms of polymeric reservoir, polymeric matrix and hydrogel systems. We also reveal the design rationales of the existing drug delivery and release systems in preclinical and clinical stages. Lastly, the animal models of ocular angiogenesis diseases are critically reviewed, which could help to facilitate the translation of controlled release technologies from bench to bedside.
Collapse
Affiliation(s)
- Chi Ming Laurence Lau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong
| | - Yu Yu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong; Pleryon Therapeutics Limited, Hong Kong
| | - Ghodsiehsadat Jahanmir
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong
| | - Ying Chau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong; The Hong Kong University of Science and Technology Shenzhen Institute, Shenzhen 518057, China.
| |
Collapse
|
4
|
Ye C, Chi H. A review of recent progress in drug and protein encapsulation: Approaches, applications and challenges. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 83:233-246. [PMID: 29208283 DOI: 10.1016/j.msec.2017.10.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
Abstract
Many drugs and proteins formulated for treatment of various diseases are not fully utilised due to environmentally problems such as degradation by enzymes or it being hydrophobic. To counter this problem, the drug and protein of interest are encapsulated by synthetic polymers where they are protected from the environment. This allows the molecule to reach its target safely and maximise its function. In this paper, we will discuss about the different techniques of encapsulation that includes emulsion evaporation, self-emulsifying drug delivery system and supercritical fluid. This will be followed by the drugs and proteins that are commonly encapsulated to counter life-threatening diseases such as cancer and diabetes. A novel method using foam was proposed and will be briefly discussed as it can play a huge role in future developments.
Collapse
Affiliation(s)
- Chen Ye
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, Shandong, China.
| | - Hong Chi
- Shandong Provincial Key Laboratory of Fine Chemicals, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, Shandong, China
| |
Collapse
|
5
|
Khamanga SM, Walker RB. The use of response surface methodology in the evaluation of captopril microparticles manufactured using an oil in oil solvent evaporation technique. J Microencapsul 2011; 29:39-53. [DOI: 10.3109/02652048.2011.629744] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
The loading of labelled antibody-engineered nanoparticles with Indinavir increases its in vitro efficacy against Cryptosporidium parvum. Parasitology 2011; 138:1384-91. [PMID: 21819637 DOI: 10.1017/s0031182011001119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
There is much evidence to indicate the ability of Indinavir (IND) to reduce Cryptosporidium parvum infection in both in vitro and in vivo models. However, there are limitations to the administration of IND as such, due to its renal toxicity and the high rate of metabolism and degradation. We aimed to encapsulate IND in biodegradable poly (D,L-lactide-co-glycolide) nanoparticles (Np) and to engineer their surface by conjugation with an anti-Cryptosporidium IgG polyclonal antibody (Ab). Tetramethylrhodamine-labelled Np were loaded with IND and modified by conjugation with an Ab. The IND-loaded modified Np (Ab-TMR-IND-Np) did not show any change, as demonstrated by chemical analysis studies. Simultaneous addition of 50μM Ab-TMR-IND-Np and excysted oocysts to the cell culture resulted in complete inhibition of the infection. In C. parvum-infected cells, the extent to which the infection decreased depended on the duration of treatment with the Ab-TMR-IND-Np. The antibody-engineered Np loaded with IND were able to target C. parvum in infected cells and therefore might represent a novel therapeutic strategy against Cryptosporidium sp. infection. Moreover, the use of Np as an IND delivery device, allows the development of a more appropriate dose formulation thereby reducing the IND side effects.
Collapse
|
7
|
Vergoni AV, Tosi G, Tacchi R, Vandelli MA, Bertolini A, Costantino L. Nanoparticles as drug delivery agents specific for CNS: in vivo biodistribution. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2009; 5:369-77. [PMID: 19341816 DOI: 10.1016/j.nano.2009.02.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 01/19/2009] [Accepted: 02/16/2009] [Indexed: 10/20/2022]
Abstract
UNLABELLED The pharmacological treatment of neurological disorders is often complicated by the inability of drugs to pass the blood-brain barrier. Recently we discovered that polymeric nanoparticles (NPs) made of poly(D,L-lactide-co-glycolide), surface-decorated with the peptide Gly-L-Phe-D-Thr-Gly-L-Phe-L-Leu-L-Ser(O-beta-D-glucose)-CONH2 are able to deliver, after intravenous administration, the model drug loperamide into the central nervous system (CNS). This new drug delivery agent is able to ensure a strong and long-lasting pharmacological effect, far greater than that previously observed with other nanoparticulate carriers. Here we confirmed the effectiveness of this carrier for brain targeting, comparing the effect obtained by the administration of loperamide-loaded NPs with the effect of an intracerebroventricular administration of the drug; moreover, the biodistribution of these NPs showed a localization into the CNS in a quantity about two orders of magnitude greater than that found with the other known NP drug carriers. Thus, a new kind of NPs that target the CNS with very high specificity was discovered. FROM THE CLINICAL EDITOR This paper discusses a nanoparticle-based technique of targeted drug delivery through the blood-brain barrier. The biodistribution of these novel nanoparticles showed two orders of magnitude greater efficiency compared to other known NP drug carriers.
Collapse
Affiliation(s)
- Anna Valeria Vergoni
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | |
Collapse
|
8
|
Tosi G, Costantino L, Rivasi F, Ruozi B, Leo E, Vergoni AV, Tacchi R, Bertolini A, Vandelli MA, Forni F. Targeting the central nervous system: In vivo experiments with peptide-derivatized nanoparticles loaded with Loperamide and Rhodamine-123. J Control Release 2007; 122:1-9. [PMID: 17651855 DOI: 10.1016/j.jconrel.2007.05.022] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Revised: 05/16/2007] [Accepted: 05/21/2007] [Indexed: 10/23/2022]
Abstract
Polymeric nanoparticles (Np) represent one of the most innovative non-invasive approaches for the drug delivery to the central nervous system (CNS). It is known that the ability of the Np to cross the Blood Brain Barrier (BBB), thus allowing the drugs to exert their pharmacological activity in the central nervous district, is linked to their surface characteristics. Recently it was shown that the biocompatible polyester poly(d,l-lactide-co-glycolide) (PLGA) derivatized with the peptide H(2)N-Gly-l-Phe-d-Thr-Gly-l-Phe-l-Leu-l-Ser(O-beta-d-Glucose)-CONH(2) [g7] was a useful starting material for the preparation of Np (g7-Np); moreover, fluorescent studies showed that these Np were able to cross the BBB. In this research, g-7 Np were loaded with Loperamide in order to assess their ability as drug carriers for CNS, and with Rhodamine-123, in order to qualitatively determine their biodistribution in different brain macro-areas. A pharmacological evidence is given that g7-Np are able to cross the BBB, ensuring, for the first time, a sustained release of the embedded drug, and that these Np are able to reach all the brain areas here examined. The ability to enter the CNS appears to be linked to the sequence of the peptidic moiety present on their surface.
Collapse
Affiliation(s)
- G Tosi
- Department of Pharmaceutical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Huang X, Chestang BL, Brazel CS. Minimization of initial burst in poly(vinyl alcohol) hydrogels by surface extraction and surface-preferential crosslinking. Int J Pharm 2002; 248:183-92. [PMID: 12429472 DOI: 10.1016/s0378-5173(02)00433-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Surface extraction and surface-preferential crosslinking were investigated as effective methods to reduce the burst effect for proxyphylline release from poly(vinyl alcohol) hydrogels. Both these techniques involved changing the surface characteristics to reduce drug diffusion during the early stages of release, with the goal of subtracting the burst effect from the release profile without altering the long-term release rate. The extraction process was carried out on both relaxed and dry gels. Proxyphylline was extracted from both freshly made and dried hydrogel samples, with the extraction from dried samples providing better control of the burst effect with smaller amounts of drug removed from the gels. The success of extracting from the dried samples was attributed to the lack of drug diffusivity and redistribution after extraction when the majority of the device remained dry. Surface-preferential crosslinking, by dipping preformed proxyphylline-loaded samples in a concentrated crosslinking solution, effectively diminished the burst effect by slowing macromolecular relaxation near the surface. Notably, this technique maintained the same long-term drug release rate as the untreated gels and less than 0.2% of the loaded proxyphylline was removed during the crosslinking step.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Chemical Engineering, The University of Alabama, A127 Bevill Research Center, Tuscaloosa 35487-0203, USA
| | | | | |
Collapse
|
10
|
|
11
|
Bezemer JM, Radersma R, Grijpma DW, Dijkstra PJ, van Blitterswijk CA, Feijen J. Microspheres for protein delivery prepared from amphiphilic multiblock copolymers. 1. Influence of preparation techniques on particle characteristics and protein delivery. J Control Release 2000; 67:233-48. [PMID: 10825557 DOI: 10.1016/s0168-3659(00)00213-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The entrapment of lysozyme in amphiphilic multiblock copolymer microspheres by emulsification and subsequent solvent removal processes was studied. The copolymers are composed of hydrophilic poly(ethylene glycol) (PEG) blocks and hydrophobic poly(butylene terephthalate) (PBT) blocks. Direct solvent extraction from a water-in-oil (w/o) emulsion in ethanol or methanol did not result in the formation of microspheres, due to massive polymer precipitation caused by rapid solvent extraction in these non-solvents. In a second process, microspheres were first prepared by a water-in-oil-in-water (w/o/w) emulsion system with 4% poly(vinyl alcohol) (PVA) as stabilizer in the external phase, followed by extraction of the remaining solvent. As non-solvents ethanol, methanol and mixtures of methanol and water were employed. However, the use of alcohols in the extraction medium resulted in microspheres which gave an incomplete lysozyme release at a non-constant rate. Complete lysozyme release was obtained from microspheres prepared by an emulsification-solvent evaporation method in PBS containing poly(vinyl pyrrolidone) (PVP) or PVA as stabilizer. PVA was most effective in stabilizing the w/o/w emulsion. Perfectly spherical microspheres were produced, with high protein entrapment efficiencies. These microspheres released lysozyme at an almost constant rate for approximately 28 days. The reproducibility of the w/o/w emulsion process was demonstrated by comparing particle characteristics and release profiles of three batches, prepared under similar conditions.
Collapse
Affiliation(s)
- J M Bezemer
- Institute for Biomedical Technology (BMTI), Polymer Chemistry and Biomaterials, Faculty of Chemical Engineering, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | | | | | | | | | | |
Collapse
|
12
|
Elkheshen SA, Radwan MA. Sustained release microspheres of metoclopramide using poly(D,L-lactide-co-glycolide) copolymers. J Microencapsul 2000; 17:425-35. [PMID: 10898083 DOI: 10.1080/026520400405688] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Metoclopramide was encapsulated with poly(D,L-lactide co glycolide) copolymers of different molecular weights using the emulsification/solvent evaporation technique. These polymers included poly(D,L-lactide-co-glycolide) 50:50 with inherent viscosity (i.v.) 0.2, and average molecular weight 8000, poly(D,L-lactide-co-glycolide) 50:50 with i.v. 0.8 and average molecular weight 98000 and poly(D,L-lactide-co-glycolide) 85:15 with i.v. 1.4 and average molecular weight 220000. The effect of the polymers' molecular weights as well as the polymer-to-drug ratios on the yield, the particle size distribution, and the drug content of the microspheres was investigated. The release rate of the drug was studied for 96 h in a phosphate buffer of pH 7.4. The study also investigated the effect of the new poly(lactide-co-glycolide)-H series on the characteristics of the prepared microspheres. Data revealed that a higher yield was obtained with polymers of lower molecular weights. A lower yield was also obtained with increasing the drug-to-polymer ratios for all the investigated polymers. The drug content of the microspheres was lower than expected, ranging from 49-85%, which suggested a chemical interaction between the drug and the polymers, as proved by differential scanning calorimetry (DSC) and infra red (IR) studies. A higher interaction was obtained with the H-series of the copolymers. The release of the drug mainly followed zero order kinetics on increasing either the polymers' molecular weights or the polymer-to-drug ratios. Diffusion kinetics was observed only with those batches prepared with low polymer-to-drug ratios. The release rate was a function of both the polymers' molecular weights and the drug-to-polymer ratios.
Collapse
Affiliation(s)
- S A Elkheshen
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | | |
Collapse
|
13
|
Novel method to characterize the hydrolytic decomposition of biopolymer surfaces. Colloids Surf B Biointerfaces 1999. [DOI: 10.1016/s0927-7757(99)00009-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Iwata M, Nakamura Y, McGinity JW. Particle size and loading efficiency of poly(D,L-lactic-co-glycolic acid) multiphase microspheres containing water soluble substances prepared by the hydrous and anhydrous solvent evaporation methods. J Microencapsul 1999; 16:49-58. [PMID: 9972502 DOI: 10.1080/026520499289301] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PLGA multiphase microspheres were prepared by the multiple emulsion solvent evaporation method using acetonitrile as the polymer solvent and mineral oil as the evaporation medium. The preparation process was further developed in the present study to reduce the particle size and to increase the loading capacity of brilliant blue, bovine serum albumin (BSA) and tumour necrosis factor-alpha (TNF-alpha) which were used as water soluble model drug substances. Sorbitan sesqui-oleate (SO-15EX), present at the 1% w/w level in the evaporation medium, prevented agglomeration of the microspheres containing a solid-in-oil (S/O) suspensions as the core phase. This S/O suspension core provided significantly higher loading efficiency of the proteins to the W/O emulsion core. The W/O emulsion system resulted in agglomeration of the protein-loaded microspheres and the loading efficiency decreased significantly. When brilliant blue was included as the model compound, the loading efficiencies were not influenced by the core type. Heavy mineral oil was employed to stabilize the dispersed unhardened microspheres rather than light mineral oil that was reported previously. This anhydrous emulsion system employing the S/O suspension core and containing a dispersion of TNF-alpha enabled the encapsulation of this protein without loss of activity. It was concluded that the anhydrous emulsion system is a suitable approach to prepare multiple microspheres as an alternative to the W/O emulsion system, especially when solvent sensitive proteins are incorporated into the microspheres.
Collapse
Affiliation(s)
- M Iwata
- Department of Formulation Research, Dainippon Pharmaceutical Co. Ltd., Osaka, Japan
| | | | | |
Collapse
|
15
|
Uchida T, Shiosaki K, Nakada Y, Fukada K, Eda Y, Tokiyoshi S, Nagareya N, Matsuyama K. Microencapsulation of hepatitis B core antigen for vaccine preparation. Pharm Res 1998; 15:1708-13. [PMID: 9833992 DOI: 10.1023/a:1011904627929] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To prepare poly(lactide-co-glycolide)(PLGA) microspheres containing recombinant hepatitis B core antigen (HBcAg; Mw = 3,600,000) by a w/o/w emulsion/solvent evaporation method and evaluate the possibility of this system as a potent long-acting carrier for hepatitis B core antigen in mice. METHODS Various additives had been incorporated in the internal aqueous phase during the process of microencapsulating HBcAg, HBcAg antigenicity in the medium extracted from the prepared microspheres were measured by ELISA. Shape confirmation of the HBcAg antigen was performed by a sucrose gradient velocity centrifugal technique. For in vivo study, prepared microspheres were administered subcutaneously to Balb/C mice, and the serum IgG level was determined by ELISA. RESULTS The inactivation of HBcAg by methylene chloride was dramatically reduced by the addition of gelatin (4-8% (w/v)) to the internal aqueous phase during the preparation. Further improvement of the loading efficiency to almost 61% resulted with cooling (4 degrees C). The prepared microspheres (4.27 microm+/-1.23 microm) containing 0.15% HBcAg displayed burst release (50-60% within 2 days). In subcutaneous inoculation, the adjuvant effect of PLGA microspheres was almost the same as that of the complete Freund's adjuvant. Whereas oral inoculation using the microspheres was not effective. CONCLUSIONS The pH of the added gelatin seemed to be the key to the stabilization of HBcAg from various stability tests and CD spectrum study. Finally, the possibility of using this system as a potent long-acting hepatitis B vaccine was demonstrated.
Collapse
Affiliation(s)
- T Uchida
- School of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya City, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Bittner B, Ronneberger B, Zange R, Volland C, Anderson JM, Kissel T. Bovine serum albumin loaded poly(lactide-co-glycolide) microspheres: the influence of polymer purity on particle characteristics. J Microencapsul 1998; 15:495-514. [PMID: 9651871 DOI: 10.3109/02652049809006876] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To study the influence of polymer purity on microsphere characteristics, bovine serum albumin (BSA) loaded biodegradable microspheres were prepared by spray drying using two samples of poly(lactide-co-glycolide), PLG, (50:50, mwt = 35 and 69 kDa). Polymer properties were varied by DL-lactide and glycolide addition or by ultrafiltration. While the effective drug loading was not affected by polymer purity, Tg was decreased with increasing monomer and oligomer content. The removal of these low molecular weight substances by ultrafiltration led to a narrower molecular weight distribution compared to the untreated PLG. Concerning the polymer with the higher molecular weight, microsphere morphology was also strongly affected by polymer composition. In contrast to the non-modified PLG, monomer addition yielded particles with a much smoother surface structure. Moreover, in vitro cytotoxicity of the microspheres prepared from the polymer pretreated by ultrafiltration was significantly reduced, whereas monomer addition caused a dramatic decrease of cells surviving contact with the microsphere extract. The in vivo degradation rate of the ultrafiltered microspheres was decreased and as a result, protein release at later times was slowed down. Furthermore, depending on the effective drug loading level, monomer addition resulted in a decrease in the initial protein burst. It can be concluded that the effect of low molecular weight impurities in a polymer on microsphere characteristics and on cytotoxicity cannot be ignored. Their elimination is possible by ultrafiltration.
Collapse
Affiliation(s)
- B Bittner
- Department of Pharmaceutics and Biopharmacy, Philipps-University, Marburg, Germany
| | | | | | | | | | | |
Collapse
|