1
|
Yun JE, Kim S, Park KY, Lee W. Effectiveness and Safety of Carbon Ion Radiotherapy in Solid Tumors: A Systematic Review and Meta-Analysis. Yonsei Med J 2024; 65:332-340. [PMID: 38804027 PMCID: PMC11130593 DOI: 10.3349/ymj.2023.0439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 05/29/2024] Open
Abstract
PURPOSE This systematic review and meta-analysis aimed to investigate the effectiveness of carbon ion radiotherapy (CIRT) compared to that of conventional radiotherapy in patients with various types of solid tumors. MATERIALS AND METHODS We systematically searched eight electronic databases from inception until August 2022 in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. The comparative effectiveness of the different treatment options was assessed by a random-effects meta-analysis. RESULTS This review included 34 comparative studies and three treatment groups. Overall, the meta-analysis indicated comparable local control rates between the CIRT and control groups [pooled risk ratio (RR)=1.02, 95% confidence interval (CI) 0.90-1.15]. The local control rate in the CIRT group was higher than that in the photon therapy group, but slightly lower than that in the proton radiation therpy (PRT) group. Additionally, the CIRT group had significantly higher overall survival (OS) (RR=1.19, 95% CI=1.01-1.42) and progression-free survival (PFS) (RR=1.50, 95% CI=1.01-2.21) rates compared to the control group. In the subgroup analysis, survival rates were similar between the CIRT and PRT groups. CONCLUSION CIRT was associated with improved toxicity, local tumor control, OS, and PFS compared to conventional treatments. Therefore, CIRT was found to be a safe and effective option for achieving local control in patients with solid tumors.
Collapse
Affiliation(s)
- Ji Eun Yun
- Division of Healthcare Research, National Evidence-Based Healthcare Collaborating Agency, Seoul, Korea
| | - Sujin Kim
- Division of New Health Technology Assessment, National Evidence-Based Healthcare Collaborating Agency, Seoul, Korea
- College of Nursing, Korea University, Seoul, Korea
| | - Keun Young Park
- Division of New Health Technology Assessment, National Evidence-Based Healthcare Collaborating Agency, Seoul, Korea
| | - Worlsook Lee
- Division of New Health Technology Assessment, National Evidence-Based Healthcare Collaborating Agency, Seoul, Korea.
| |
Collapse
|
2
|
Kobayashi N, Oike T, Ando K, Murata K, Tamaki T, Noda SE, Kogure K, Nobusawa S, Oyama T, Ohno T. Carbon ion radiotherapy for mesonephric adenocarcinoma of the uterine cervix: a case report. J Med Case Rep 2024; 18:228. [PMID: 38720351 PMCID: PMC11080269 DOI: 10.1186/s13256-024-04548-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/06/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Mesonephric adenocarcinoma is an extremely rare subtype of uterine cervical cancer that is associated with a poor prognosis and for which a standardized treatment protocol has not been established. Carbon ion radiotherapy (CIRT) is an emerging radiotherapy modality that has been shown to have a favorable anti-tumor effect, even for tumors resistant to conventional photon radiotherapy or chemotherapy. However, there is no report on CIRT outcomes for mesonephric adenocarcinoma of the uterine cervix. CASE PRESENTATION We treated a 47-year-old Japanese woman with mesonephric adenocarcinoma of the uterine cervix (T2bN0M0 and stage IIB according to the 7th edition of the Union for International Cancer Control and International Federation of Gynecology and Obstetrics, respectively) with CIRT combined with brachytherapy and concurrent chemotherapy. CIRT consisted of whole pelvic irradiation and boost irradiation to the gross tumor; 36.0 Gy (relative biological effectiveness [RBE]) in 12 fractions and 19.2 Gy (RBE) in 4 fractions, respectively, performed once a day, four times per week. Computed tomography-based image-guided adaptive brachytherapy was performed after completion of CIRT, for which the D90 (i.e., the dose prescribed to 90% of the target volume) for the high-risk clinical target volume was 20.4 Gy in a total of 3 sessions in 2 weeks. A weekly cisplatin (40 mg/m2) dose was administered concomitantly with the radiotherapy for a total of five courses. From 4 months post-CIRT, the patient developed metastasis of the lung, with a total of 10 lung metastases over 70 months; these lesions were treated on each occasion by photon stereotactic body radiotherapy and/or systemic therapy. At 8 years from initial treatment (i.e., 2 years after the last treatment), the patient is alive without any evidence of recurrence and maintains a high quality of life. CONCLUSIONS This is the first report of CIRT for treatment of mesonephric adenocarcinoma of the uterine cervix. The present case indicates the potential efficacy of CIRT in combination with brachytherapy for treatment of this disease.
Collapse
Affiliation(s)
- Nao Kobayashi
- Department of Radiation Oncology, Kyorin University, 6-20-2 Shinkawa, Mitaka-Shi, Tokyo, 181-8611, Japan.
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi-Shi, Gunma, 371-8511, Japan.
| | - Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi-Shi, Gunma, 371-8511, Japan
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi-Shi, Gunma, 371-8511, Japan
| | - Ken Ando
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi-Shi, Gunma, 371-8511, Japan
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi-Shi, Gunma, 371-8511, Japan
| | - Kazutoshi Murata
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba-Shi, Chiba, 263-8555, Japan
| | - Tomoaki Tamaki
- Department of Radiation Oncology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima-Shi, Fukushima, 960-1295, Japan
- Department of Health Risk Communication, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima-Shi, Fukushima, 960-1295, Japan
| | - Shin-Ei Noda
- Department of Radiation Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka-Shi, Saitama, 350-1298, Japan
| | - Kayoko Kogure
- Department of Obstetrics and Gynecology, Isesaki Municipal Hospital, 12-1 Tsunatorihonmachi, Isesaki-Shi, Gunma, 372-0817, Japan
| | - Sumihito Nobusawa
- Department of Human Pathology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi-Shi, Gunma, 371-8511, Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi-Shi, Gunma, 371-8511, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi-Shi, Gunma, 371-8511, Japan
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi-Shi, Gunma, 371-8511, Japan
| |
Collapse
|
3
|
Bao C, Sun Y, Dwarakanath B, Dong Y, Huang Y, Wu X, Guha C, Kong L, Lu JJ. Carbon ion triggered immunogenic necroptosis of nasopharyngeal carcinoma cells involving necroptotic inhibitor BCL-x. J Cancer 2021; 12:1520-1530. [PMID: 33531997 PMCID: PMC7847655 DOI: 10.7150/jca.46316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 12/06/2020] [Indexed: 01/26/2023] Open
Abstract
To explore the potential and mechanisms of necroptosis, a form of immunogenic cell death, induced by carbon ion as compared to photon beams in established photon resistant- (PR-) and sensitive nasopharyngeal carcinoma (NPC) cells. MLKL is considered a central executor of necroptosis and phosphorylation of MLKL (p-MLKL) was a critical event of necroptosis. The clonogenic survival and DNA microarray demonstrated that after repeated photon irradiation, radiosensitive NPC cells became apoptosis-resistant but could be effectively inhibited by carbon ion irradiation. The relative biologic effectiveness (RBE) at D10 and D37 were 2.15 and 2.78 for PR-NPC cells. Carbon ion induced delayed DNA damage repair, cell cycle arrest, cytogenetic damage, morphological change and cell necrosis, indicating the possibility of necroptosis in both PR- and sensitive NPC cell types. The lower expression of necroptotic inhibitors (caspase-8 and Bcl-x) and higher level of MLKL in PR-NPC cells showed it was relatively more predisposed to necroptosis compared to the sensitive cells. Subsequent experiments demonstrated the significant upregulation of p-MLKL in the PR-NPC cells treated by carbon ion (4 Gy) compared with photon irradiation at both physical (4 Gy) and RBE (10 Gy) doses (P≤0.0001). Moreover, carbon ion induced a robust (up to 28 folds) p-MLKL in the PR-NPC cells as well as sensitive cells (up to 6-fold) coupled with a lower level of BCL-x expression and increased GM-CSF implicated in resculputure of immune system. These results suggested that carbon ion could induce necroptosis of NPC cells, especially in PR-NPC cells, and its mechanisms involve BCL-x.
Collapse
Affiliation(s)
- Cihang Bao
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Yun Sun
- Department of Research and Development, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Bilikere Dwarakanath
- Department of Research and Development, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Yuanli Dong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yangle Huang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaodong Wu
- Department of Research and Development, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Lin Kong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jiade J Lu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| |
Collapse
|
4
|
Malouff TD, Mahajan A, Krishnan S, Beltran C, Seneviratne DS, Trifiletti DM. Carbon Ion Therapy: A Modern Review of an Emerging Technology. Front Oncol 2020; 10:82. [PMID: 32117737 PMCID: PMC7010911 DOI: 10.3389/fonc.2020.00082] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Radiation therapy is one of the most widely used therapies for malignancies. The therapeutic use of heavy ions, such as carbon, has gained significant interest due to advantageous physical and radiobiologic properties compared to photon based therapy. By taking advantage of these unique properties, carbon ion radiotherapy may allow dose escalation to tumors while reducing radiation dose to adjacent normal tissues. There are currently 13 centers treating with carbon ion radiotherapy, with many of these centers publishing promising safety and efficacy data from the first cohorts of patients treated. To date, carbon ion radiotherapy has been studied for almost every type of malignancy, including intracranial malignancies, head and neck malignancies, primary and metastatic lung cancers, tumors of the gastrointestinal tract, prostate and genitourinary cancers, sarcomas, cutaneous malignancies, breast cancer, gynecologic malignancies, and pediatric cancers. Additionally, carbon ion radiotherapy has been studied extensively in the setting of recurrent disease. We aim to provide a comprehensive review of the studies of each of these disease sites, with a focus on the current trials using carbon ion radiotherapy.
Collapse
|
5
|
Mortezaee K, Najafi M, Farhood B, Ahmadi A, Shabeeb D, Eleojo Musa A. Genomic Instability and Carcinogenesis of Heavy Charged Particles Radiation: Clinical and Environmental Implications. ACTA ACUST UNITED AC 2019; 55:medicina55090591. [PMID: 31540340 PMCID: PMC6780199 DOI: 10.3390/medicina55090591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/04/2019] [Accepted: 09/10/2019] [Indexed: 12/28/2022]
Abstract
One of the uses of ionizing radiation is in cancer treatment. The use of heavy charged particles for treatment has been introduced in recent decades because of their priority for deposition of radiation energy in the tumor, via the Bragg peak phenomenon. In addition to medical implications, exposure to heavy charged particles is a crucial issue for environmental and space radiobiology. Ionizing radiation is one of the most powerful clastogenic and carcinogenic agents. Studies have shown that although both low and high linear energy transfer (LET) radiations are carcinogenic, their risks are different. Molecular studies have also shown that although heavy charged particles mainly induce DNA damage directly, they may be more potent inducer of endogenous generation of free radicals compared to the low LET gamma or X-rays. It seems that the severity of genotoxicity for non-irradiated bystander cells is potentiated as the quality of radiation increases. However, this is not true in all situations. Evidence suggests the involvement of some mechanisms such as upregulation of pro-oxidant enzymes and change in the methylation of DNA in the development of genomic instability and carcinogenesis. This review aimed to report important issues for genotoxicity of carcinogenic effects of heavy charged particles. Furthermore, we tried to explain some mechanisms that may be involved in cancer development following exposure to heavy charged particles.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran.
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan 8715988141, Iran.
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48175-861, Iran.
| | - Dheyauldeen Shabeeb
- Department of Physiology, College of Medicine, University of Misan, Misan 62010, Iraq.
- Misan Radiotherapy Center, Misan Health Directorate, Ministry of Health Environment, Misan 62010, Iraq.
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Tehran 1416753955, Iran.
- Department of Physics, Federal University of Technology, Minna 65, Nigeria.
| |
Collapse
|
6
|
Glowa C, Peschke P, Brons S, Debus J, Karger CP. Intrinsic and extrinsic tumor characteristics are of minor relevance for the efficacy of split-dose carbon ion irradiation in three experimental prostate tumors. Radiother Oncol 2019; 133:120-124. [DOI: 10.1016/j.radonc.2018.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/30/2018] [Accepted: 12/18/2018] [Indexed: 12/30/2022]
|
7
|
Dahl O, Dale JE, Brydøy M. Rationale for combination of radiation therapy and immune checkpoint blockers to improve cancer treatment. Acta Oncol 2019; 58:9-20. [PMID: 30632870 DOI: 10.1080/0284186x.2018.1554259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Radiation therapy for cancer is considered to be immunosuppressive. However, the cellular response after radiation therapy may stimulate or suppress an immune response. The effect may vary with the tumor type and occasionally tumor regressions have been observed outside the irradiated volume, both in animal studies and in the clinic. A renewed interest in the role of immunity for the observed effect of radiation came with the current recognized role of immune checkpoint blockers (ICBs) for control of selected cancer types. We therefore here review preclinical studies and clinical reports on the interaction of ICBs and radiation as a basis for further clinical trials. Some tumor types where the combination of these modalities seems especially promising are also proposed.
Collapse
Affiliation(s)
- Olav Dahl
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Jon Espen Dale
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Marianne Brydøy
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
8
|
Zhou C, Jones B, Moustafa M, Yang B, Brons S, Cao L, Dai Y, Schwager C, Chen M, Jaekel O, Chen L, Debus J, Abdollahi A. Determining RBE for development of lung fibrosis induced by fractionated irradiation with carbon ions utilizing fibrosis index and high-LET BED model. Clin Transl Radiat Oncol 2019; 14:25-32. [PMID: 30511024 PMCID: PMC6257927 DOI: 10.1016/j.ctro.2018.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSES Carbon ion radiotherapy (CIRT) with raster scanning technology is a promising treatment for lung cancer and thoracic malignancies. Determining normal tissue tolerance of organs at risk is of utmost importance for the success of CIRT. Here we report the relative biological effectiveness (RBE) of CIRT as a function of dose and fractionation for development of pulmonary fibrosis using well established fibrosis index (FI) model. MATERIALS AND METHODS Dose series of fractionated clinical quality CIRT versus conventional photon irradiation to the whole thorax were compared in C57BL6 mice. Quantitative assessment of pulmonary fibrosis was performed by applying the FI to computed tomography (CT) data acquired 24-weeks post irradiation. RBE was calculated as the ratio of photon to CIRT dose required for the same level of FI. Further RBE predictions were performed using the derived equation from high-linear energy transfer biologically effective dose (high-LET BED) model. RESULTS The averaged lung fibrosis RBE of 5-fraction CIRT schedule was determined as 2.75 ± 0.55. The RBE estimate at the half maximum effective dose (RBEED50) was estimated at 2.82 for clinically relevant fractional sizes of 1-6 Gy. At the same dose range, an RBE value of 2.81 ± 0.40 was predicted by the high-LET BED model. The converted biologically effective dose (BED) of CIRT for induction of half maximum FI (BEDED50) was identified to be 58.12 Gy3.95. In accordance, an estimated RBE of 2.88 was obtained at the BEDED50 level. The LQ model radiosensitivity parameters for 5-fraction was obtained as αH = 0.3030 ± 0.0037 Gy-1 and βH = 0.0056 ± 0.0007 Gy-2. CONCLUSION This is the first report of RBE estimation for CIRT with the endpoint of pulmonary fibrosis in-vivo. We proposed in present study a novel way to mathematically modeling RBE by integrating RBEmax and α/βL based on conventional high-LET BED conception. This model well predicted RBE in the clinically relevant dose range but is sensitive to the uncertainties of α/β estimates from the reference photon irradiation (α/βL). These findings will assist to eliminate current uncertainties in prediction of CIRT induced normal tissue complications and builds a solid foundation for development of more accurate in-vivo data driven RBE estimates.
Collapse
Key Words
- BED, biologically effective dose
- Biologically effective dose (BED)
- CPFE, combined pulmonary fibrosis and emphysema syndrome
- CT, computed tomography
- Carbon ion radiotherapy (CIRT)
- FI, fibrosis index
- Fractionation
- HU, Hounsfield unit
- High-linear energy transfer (high-LET)
- LET, linear energy transfer
- LQ model, linear quadratic model
- Lung fibrosis
- NSCLC, non-small cell lung cancer
- Normal tissue response
- PMMA, Polymethylmethacrylat
- RBE, relative biological effectiveness
- RILF, Radiation-induced lung fibrosis
- RP, radiation pneumonitis
- Relative biological effectiveness (RBE)
- SBRT or SABR, hypofractionated stereotactic body or ablative radiation therapy
- V5, volume of lung receiving ≥5 Gy (RBE)
- α/β, alpha/beta ratio
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- German Cancer Consortium (DKTK), Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Corresponding authors at: Translational Radiation Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), INF 460, Heidelberg 69120, Germany.
| | - Bleddyn Jones
- Gray Laboratory, CRUK/MRC Oxford Oncology Institute, Radiation Oncology, University of Oxford, Oxford, UK
| | - Mahmoud Moustafa
- German Cancer Consortium (DKTK), Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Department of Clinical Pathology, Suez Canal University, Ismailia, Egypt
| | - Bing Yang
- Physics Institute University of Heidelberg, Heidelberg, Germany
| | - Stephan Brons
- Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Heidelberg, Germany
| | - Liji Cao
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ying Dai
- German Cancer Consortium (DKTK), Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Department of Oncology, the 1st Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Christian Schwager
- German Cancer Consortium (DKTK), Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Ming Chen
- Zhejiang Key Lab of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Oliver Jaekel
- Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Division for Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Longhua Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Juergen Debus
- German Cancer Consortium (DKTK), Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Consortium (DKTK), Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Corresponding authors at: Translational Radiation Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), INF 460, Heidelberg 69120, Germany.
| |
Collapse
|
9
|
Thurin E, Nyström PW, Smits A, Werlenius K, Bäck A, Liljegren A, Daxberg EL, Jakola AS. Proton therapy for low-grade gliomas in adults: A systematic review. Clin Neurol Neurosurg 2018; 174:233-238. [PMID: 30292166 DOI: 10.1016/j.clineuro.2018.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/15/2018] [Accepted: 08/01/2018] [Indexed: 12/31/2022]
Abstract
For adult patients with diffuse low-grade glioma (LGG) proton therapy is an emerging radiotherapy modality. The number of proton facilities is rapidly increasing. However, there is a shortage of published data concerning the clinical effectiveness compared to photon radiotherapy and potential proton-specific toxicity. This study aimed to systematically review and summarize the relevant literature on proton therapy for adult LGG patients, including dosimetric comparisons, the type and frequency of acute and long-term toxicity and the clinical effectiveness. A systematic search was performed in several medical databases and 601 articles were screened for relevance. Nine articles were deemed eligible for in-depth analysis using a standardized data collection form by two independent researchers. Proton treatment plans compared favorably to photon-plans regarding dose to uninvolved neural tissue. Fatigue (27-100%), alopecia (37-85%), local erythema (78-85%) and headache (27-75%) were among the most common acute toxicities. One study reported no significant long-term cognitive impairments. Limited data was available on long-term survival. One study reported a 5-year overall survival of 84% and 5-year progression-free survival of 40%. We conclude that published data from clinical studies using proton therapy for adults with LGG are scarce. As the technique becomes more available, controlled clinical studies are urgently warranted to determine if the potential benefits based on comparative treatment planning translate into clinical benefits.
Collapse
Affiliation(s)
- Erik Thurin
- Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Petra W Nyström
- The Skandion Clinic, Uppsala, Sweden; Danish Centre for Particle Therapy, Aarhus, Denmark
| | - Anja Smits
- Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden
| | - Katja Werlenius
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden; Sahlgrenska Cancer Center, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Anna Bäck
- The Skandion Clinic, Uppsala, Sweden; Therapeutic Radiation Physics, Sahlgrenska University Hospital, Göteborg, Sweden; Department of Radiation Physics, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Ann Liljegren
- Medical Library, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva-Lotte Daxberg
- Medical Library, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Asgeir Store Jakola
- Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Neurosurgery, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
10
|
Optimization of combined proton–photon treatments. Radiother Oncol 2018; 128:133-138. [DOI: 10.1016/j.radonc.2017.12.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 11/20/2022]
|
11
|
Heavy Charged Particles: Does Improved Precision and Higher Biological Effectiveness Translate to Better Outcome in Patients? Semin Radiat Oncol 2018. [DOI: 10.1016/j.semradonc.2017.11.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Abstract
Carbon ion therapy is a promising evolving modality in radiotherapy to treat tumors that are radioresistant against photon treatments. As carbon ions are more effective in normal and tumor tissue, the relative biological effectiveness (RBE) has to be calculated by bio-mathematical models and has to be considered in the dose prescription. This review (i) introduces the concept of the RBE and its most important determinants, (ii) describes the physical and biological causes of the increased RBE for carbon ions, (iii) summarizes available RBE measurements in vitro and in vivo, and (iv) describes the concepts of the clinically applied RBE models (mixed beam model, local effect model, and microdosimetric-kinetic model), and (v) the way they are introduced into clinical application as well as (vi) their status of experimental and clinical validation, and finally (vii) summarizes the current status of the use of the RBE concept in carbon ion therapy and points out clinically relevant conclusions as well as open questions. The RBE concept has proven to be a valuable concept for dose prescription in carbon ion radiotherapy, however, different centers use different RBE models and therefore care has to be taken when transferring results from one center to another. Experimental studies significantly improve the understanding of the dependencies and limitations of RBE models in clinical application. For the future, further studies investigating quantitatively the differential effects between normal tissues and tumors are needed accompanied by clinical studies on effectiveness and toxicity.
Collapse
Affiliation(s)
- Christian P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany. National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany. Author to whom any correspondence should be addressed
| | | |
Collapse
|
13
|
Abstract
OPINION STATEMENT Proton therapy is characterized by certain physical properties leading to a reduction in integral dose. As proton therapy becomes more widely available, the ongoing discussion on the real indications for proton therapy becomes more important. In the present article, data on proton therapy for tumors of the central nervous system (CNS) is summarized and discussed in view of modern photon treatments. Still today, no randomized controlled trials are available confirming any clinical benefit of protons in CNS tumors. For certain skull base lesions, such as chordomas and chondrosarcomas, dose escalation is possible with protons thus patients should be referred to a proton center if readily available. For vestibular schwannoma, at present, proton data are inferior to advanced photons. For glioma patients, early data is present for low-grade gliomas, presenting comparable results to photons; dose escalation studies for high-grade gliomas have led to significant side effects, thus strategies of dose-escalation need to rethought. For skull base meningiomas, data from stereotactic series and IMRT present excellent local control with minimal side effects, thus any improvement with protons might only be marginal. The largest benefit is considered in pediatric CNS tumors, due to the intricate radiation sensitivity of children's normal tissue, as well as the potential of long-term survivorship. Long-term data is still lacking, and even recent analyses do not all lead to a clear reduction in side effects with improvement of outcome; furthermore, clinical data seem to be comparable. However, based on the preclinical evidence, proton therapy should be evaluated in every pediatric patient. Protons most likely have a benefit in terms of reduction of long-term side effects, such as neurocognitive sequelae or secondary malignancies; moreover, dose escalation can be performed in radio-resistant histologies. Clinical data with long-term follow-up is still warranted to prove any superiority to advanced photons in CNS tumors. If available, protons should be evaluated for chordoma or chondrosarcoma of the skull base and pediatric tumors. However, many factors are important for excellent oncology care, and no time delay or inferior oncological care should be accepted for the sake of protons only.
Collapse
Affiliation(s)
- Stephanie E Combs
- Department of Radiation Oncology, Technical University of Munich (TUM), Ismaninger Straße 22, 81675, Munich, Germany. .,Institute of Innovative Radiotherapy (iRT), Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, Germany.
| |
Collapse
|
14
|
Kobayashi D, Oike T, Shibata A, Niimi A, Kubota Y, Sakai M, Amornwhichet N, Yoshimoto Y, Hagiwara Y, Kimura Y, Hirota Y, Sato H, Isono M, Yoshida Y, Kohno T, Ohno T, Nakano T. Mitotic catastrophe is a putative mechanism underlying the weak correlation between sensitivity to carbon ions and cisplatin. Sci Rep 2017; 7:40588. [PMID: 28091564 PMCID: PMC5238371 DOI: 10.1038/srep40588] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/09/2016] [Indexed: 02/07/2023] Open
Abstract
In cancer therapy today, carbon ion radiotherapy is used mainly as monotherapy, whereas cisplatin is used concomitantly with X-ray radiotherapy. The effectiveness of concomitant carbon ions and cisplatin is unclear. To obtain the information on the mechanisms potentially shared between carbon ions or X-rays and cisplatin, we assessed the correlation of sensitivity to the single treatments. In 20 human cancer cell lines, sensitivity to X-rays strongly correlated with sensitivity to cisplatin, indicating the presence of potentially shared target mechanisms. Interestingly, the correlation of sensitivity to carbon ions and cisplatin was much weaker than that of sensitivity to X-rays and cisplatin, indicating the presence of potentially different target mechanisms between carbon ions and cisplatin. Assessment of clonogenic cell death by 4′,6-diamidino-2-phenylindole dihydrochloride staining showed that mitotic catastrophe was more efficiently induced by carbon ions than by the same physical dose of X-rays, while apoptosis and senescence were not. These data indicate that the correlation of sensitivity to carbon ions and cisplatin is weaker than that of sensitivity to X-rays and cisplatin, which are helpful as biological basis to understand the potentially shared mechanism among these treatments. Further investigation is mandatory to elucidate the clinical efficacy of carbon ions and cisplatin combination.
Collapse
Affiliation(s)
- Daijiro Kobayashi
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Atsushi Shibata
- Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, Japan
| | - Atsuko Niimi
- Research Program for Heavy Ion Therapy, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi, Gunma, Japan
| | - Yoshiki Kubota
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Makoto Sakai
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Napapat Amornwhichet
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Department of Radiology, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Yuya Yoshimoto
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yoshihiko Hagiwara
- Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, Japan
| | - Yuka Kimura
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yuka Hirota
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hiro Sato
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Mayu Isono
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| |
Collapse
|
15
|
Kanematsu N, Inaniwa T. Biological dose representation for carbon-ion radiotherapy of unconventional fractionation. Phys Med Biol 2017; 62:1062-1075. [DOI: 10.1088/1361-6560/62/3/1062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Saager M, Glowa C, Peschke P, Brons S, Grün R, Scholz M, Huber PE, Debus J, Karger CP. The relative biological effectiveness of carbon ion irradiations of the rat spinal cord increases linearly with LET up to 99 keV/μm. Acta Oncol 2016; 55:1512-1515. [PMID: 27827542 DOI: 10.1080/0284186x.2016.1250947] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Maria Saager
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Christin Glowa
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Peter Peschke
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
- Clinical Cooperation Unit Molecular Radiooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Brons
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - Rebecca Grün
- Department of Biophysics, Helmholtz Center for Heavy Ion Research (GSI), Darmstadt, Germany
| | - Michael Scholz
- Department of Biophysics, Helmholtz Center for Heavy Ion Research (GSI), Darmstadt, Germany
| | - Peter E. Huber
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
- Clinical Cooperation Unit Molecular Radiooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Christian P. Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| |
Collapse
|
17
|
Ebner DK, Tsuji H, Yasuda S, Yamamoto N, Mori S, Kamada T. Respiration-gated fast-rescanning carbon-ion radiotherapy. Jpn J Clin Oncol 2016; 47:80-83. [PMID: 27677663 DOI: 10.1093/jjco/hyw144] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/04/2016] [Accepted: 09/06/2016] [Indexed: 11/12/2022] Open
Abstract
Phase-controlled rescanning of the carbon-ion beam offers fast and precise dose application with decreased irradiation of normal tissue. However, organ movement with respiration remains a unique challenge. Technological development has enabled the simultaneous application of beam-energy-modulated markerless phase-controlled rescanning with respiration gating, allowing scanning treatment of respiration-mobile tumors with carbon. A total of 10 patients with tumors in the liver or lung were treated in a feasibility study at our facility using this combination. At a median of 10.5 months, follow-up examination including computed tomography/magnetic resonance imaging revealed no grade 2+ acute adverse effects with this new therapy. Two patients with complex disease experienced local recurrence, which may be improved with increased dose delivery. One patient died of unrelated causes. All other patients are alive with good control at the time of writing. Though long-term observation is pending, these are promising initial results for use of the carbon-beam phase-controlled rescanning method in respiration-mobile disease.
Collapse
Affiliation(s)
- Daniel K Ebner
- Hospital of the National Institute of Radiological Sciences, National Institutes of Quantum and Radiological Science and Technology , Chiba, Japan.,Brown University Alpert Medical School , Providence, RI, USA
| | - Hiroshi Tsuji
- Hospital of the National Institute of Radiological Sciences, National Institutes of Quantum and Radiological Science and Technology , Chiba, Japan
| | - Shigeo Yasuda
- Hospital of the National Institute of Radiological Sciences, National Institutes of Quantum and Radiological Science and Technology , Chiba, Japan
| | - Naoyoshi Yamamoto
- Hospital of the National Institute of Radiological Sciences, National Institutes of Quantum and Radiological Science and Technology , Chiba, Japan
| | - Shinichiro Mori
- Hospital of the National Institute of Radiological Sciences, National Institutes of Quantum and Radiological Science and Technology , Chiba, Japan
| | - Tadashi Kamada
- Hospital of the National Institute of Radiological Sciences, National Institutes of Quantum and Radiological Science and Technology , Chiba, Japan
| |
Collapse
|
18
|
Durante M, Paganetti H. Nuclear physics in particle therapy: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:096702. [PMID: 27540827 DOI: 10.1088/0034-4885/79/9/096702] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Charged particle therapy has been largely driven and influenced by nuclear physics. The increase in energy deposition density along the ion path in the body allows reducing the dose to normal tissues during radiotherapy compared to photons. Clinical results of particle therapy support the physical rationale for this treatment, but the method remains controversial because of the high cost and of the lack of comparative clinical trials proving the benefit compared to x-rays. Research in applied nuclear physics, including nuclear interactions, dosimetry, image guidance, range verification, novel accelerators and beam delivery technologies, can significantly improve the clinical outcome in particle therapy. Measurements of fragmentation cross-sections, including those for the production of positron-emitting fragments, and attenuation curves are needed for tuning Monte Carlo codes, whose use in clinical environments is rapidly increasing thanks to fast calculation methods. Existing cross sections and codes are indeed not very accurate in the energy and target regions of interest for particle therapy. These measurements are especially urgent for new ions to be used in therapy, such as helium. Furthermore, nuclear physics hardware developments are frequently finding applications in ion therapy due to similar requirements concerning sensors and real-time data processing. In this review we will briefly describe the physics bases, and concentrate on the open issues.
Collapse
Affiliation(s)
- Marco Durante
- Trento Institute for Fundamental Physics and Applications (TIFPA), National Institute of Nuclear Physics (INFN), University of Trento, Via Sommarive 14, 38123 Povo (TN), Italy. Department of Physics, University Federico II, Naples, Italy
| | | |
Collapse
|
19
|
Oike T, Sato H, Noda SE, Nakano T. Translational Research to Improve the Efficacy of Carbon Ion Radiotherapy: Experience of Gunma University. Front Oncol 2016; 6:139. [PMID: 27376029 PMCID: PMC4899433 DOI: 10.3389/fonc.2016.00139] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/23/2016] [Indexed: 11/13/2022] Open
Abstract
Carbon ion radiotherapy holds great promise for cancer therapy. Clinical data show that carbon ion radiotherapy is an effective treatment for tumors that are resistant to X-ray radiotherapy. Since 1994 in Japan, the National Institute of Radiological Sciences has been heading the development of carbon ion radiotherapy using the Heavy Ion Medical Accelerator in Chiba. The Gunma University Heavy Ion Medical Center (GHMC) was established in the year 2006 as a proof-of-principle institute for carbon ion radiotherapy with a view to facilitating the worldwide spread of compact accelerator systems. Along with the management of more than 1900 cancer patients to date, GHMC engages in translational research to improve the treatment efficacy of carbon ion radiotherapy. Research aimed at guiding patient selection is of utmost importance for making the most of carbon ion radiotherapy, which is an extremely limited medical resource. Intratumoral oxygen levels, radiation-induced cellular apoptosis, the capacity to repair DNA double-strand breaks, and the mutational status of tumor protein p53 and epidermal growth factor receptor genes are all associated with X-ray sensitivity. Assays for these factors are useful in the identification of X-ray-resistant tumors for which carbon ion radiotherapy would be beneficial. Research aimed at optimizing treatments based on carbon ion radiotherapy is also important. This includes assessment of dose fractionation, normal tissue toxicity, tumor cell motility, and bystander effects. Furthermore, the efficacy of carbon ion radiotherapy will likely be enhanced by research into combined treatment with other modalities such as chemotherapy. Several clinically available chemotherapeutic drugs (carboplatin, paclitaxel, and etoposide) and drugs at the developmental stage (Wee-1 and heat shock protein 90 inhibitors) show a sensitizing effect on tumor cells treated with carbon ions. Additionally, the efficacy of carbon ion radiotherapy can be improved by combining it with cancer immunotherapy. Clinical validation of preclinical findings is necessary to further improve the treatment efficacy of carbon ion radiotherapy.
Collapse
Affiliation(s)
- Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine , Gunma , Japan
| | - Hiro Sato
- Department of Radiation Oncology, Gunma University Graduate School of Medicine , Gunma , Japan
| | - Shin-Ei Noda
- Department of Radiation Oncology, Gunma University Graduate School of Medicine , Gunma , Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan; Gunma University Heavy Ion Medical Center, Gunma, Japan
| |
Collapse
|
20
|
Ebner DK, Kamada T. The Emerging Role of Carbon-Ion Radiotherapy. Front Oncol 2016; 6:140. [PMID: 27376030 PMCID: PMC4894867 DOI: 10.3389/fonc.2016.00140] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/23/2016] [Indexed: 12/20/2022] Open
Abstract
Carbon-ion radiotherapy (CIRT) has progressed rapidly in technological delivery, indications, and efficacy. Owing to a focused dose distribution in addition to high linear energy transfer and subsequently high relative biological effect, CIRT is uniquely able to target otherwise untreatable hypoxic and radioresistant disease while opening the door for substantially hypofractionated treatment of normal and radiosensitive disease. CIRT has increasingly garnered international attention and is nearing the tipping point for international adoption.
Collapse
Affiliation(s)
- Daniel K. Ebner
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Tadashi Kamada
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| |
Collapse
|
21
|
Glowa C, Karger CP, Brons S, Zhao D, Mason RP, Huber PE, Debus J, Peschke P. Carbon ion radiotherapy decreases the impact of tumor heterogeneity on radiation response in experimental prostate tumors. Cancer Lett 2016; 378:97-103. [PMID: 27224892 DOI: 10.1016/j.canlet.2016.05.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 05/08/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To quantitatively study the impact of intrinsic tumor characteristics and microenvironmental factors on local tumor control after irradiation with carbon ((12)C-) ions and photons in an experimental prostate tumor model. MATERIAL AND METHODS Three sublines of a syngeneic rat prostate tumor (R3327) differing in grading (highly (-H) moderately (-HI) or anaplastic (-AT1)) were irradiated with increasing single doses of either (12)C-ions or 6 MV photons in Copenhagen rats. Primary endpoint was local tumor control within 300 days. The relative biological effectiveness (RBE) of (12)C-ions was calculated from the dose at 50% tumor control probability (TCD50) of photons and (12)C-ions and was correlated with histological, physiological and genetic tumor parameters. RESULTS Experimental findings demonstrated that (i) TCD50-values between the three tumor sublines differed less for (12)C-ions (23.6-32.9 Gy) than for photons (38.2-75.7 Gy), (ii) the slope of the dose-response curve for each tumor line was steeper for (12)C-ions than for photons, and (iii) the RBE increased with tumor grading from 1.62 ± 0.11 (H) to 2.08 ± 0.13 (HI) to 2.30 ± 0.08 (AT1). CONCLUSION The response to (12)C-ions is less dependent on resistance factors as well as on heterogeneity between and within tumor sublines as compared to photons. A clear correlation between decreasing differentiation status and increasing RBE was found. (12)C-ions may therefore be a therapeutic option especially in patients with undifferentiated prostate tumors, expressing high resistance against photons.
Collapse
Affiliation(s)
- Christin Glowa
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany; Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.
| | - Christian P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Stephan Brons
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany
| | - Dawen Zhao
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ralph P Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Peter E Huber
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Department of Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Peter Peschke
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Department of Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
22
|
Laine A, Pompos A, Story M, Jiang S, Timmerman R, Choy H. International Symposium on Ion Therapy: Planning the First Hospital-Based Heavy Ion Therapy Center in the United States. Int J Part Ther 2016; 2:468-471. [PMID: 27110586 DOI: 10.14338/ijpt-15-00028.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Investigation into the use of heavy ions for therapeutic purposes was initially pioneered at Lawrence Berkeley National Laboratory in the 1970s [1, 2]. More recently, however, significant advances in determining the safety and efficacy of using heavy ions in the hospital setting have been reported in Japan and Germany [3, 4]. These promising results have helped to resurrect interest in the establishment of hospital-based heavy ion therapy in the United States. In line with these efforts, world experts in the field of heavy ion therapy were invited to attend the first annual International Symposium on Ion Therapy, which was held at the University of Texas Southwestern Medical Center, Dallas, Texas, from November 12 to 14, 2014. A brief overview of the results and discussions that took place during the symposium are presented in this article.
Collapse
Affiliation(s)
- Aaron Laine
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arnold Pompos
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Steve Jiang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert Timmerman
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hak Choy
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
23
|
Grau C, Overgaard J, Høyer M, Tanderup K, Lindegaard JC, Muren LP. Biology-guided adaptive radiotherapy (BiGART) is progressing towards clinical reality. Acta Oncol 2015; 54:1245-50. [PMID: 26390238 DOI: 10.3109/0284186x.2015.1076992] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Cai Grau
- a Department of Oncology , Aarhus University Hospital , Aarhus , Denmark
| | - Jens Overgaard
- b Department of Experimental Clinical Oncology , Aarhus University Hospital , Aarhus , Denmark
| | - Morten Høyer
- a Department of Oncology , Aarhus University Hospital , Aarhus , Denmark
| | - Kari Tanderup
- a Department of Oncology , Aarhus University Hospital , Aarhus , Denmark
- c Department of Medical Physics , Aarhus University Hospital , Aarhus , Denmark
| | | | - Ludvig Paul Muren
- a Department of Oncology , Aarhus University Hospital , Aarhus , Denmark
- c Department of Medical Physics , Aarhus University Hospital , Aarhus , Denmark
| |
Collapse
|
24
|
Sørensen BS, Horsman MR, Alsner J, Overgaard J, Durante M, Scholz M, Friedrich T, Bassler N. Relative biological effectiveness of carbon ions for tumor control, acute skin damage and late radiation-induced fibrosis in a mouse model. Acta Oncol 2015; 54:1623-30. [PMID: 26271798 DOI: 10.3109/0284186x.2015.1069890] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND The aim of the present study was to compare the biological effectiveness of carbon ions relative to x-rays between tumor control, acute skin reaction and late RIF of CDF1 mice. MATERIAL AND METHODS CDF1 mice with a C3H mouse mammary carcinoma implanted subcutaneously on the foot of the right hind limb were irradiated with single fractions of either photons, or (12)C ions using a 30-mm spread-out Bragg peak. The endpoint of the study was local control (no tumor recurrence within 90 days). For the acute skin reaction, non-tumor bearing CDF1 mice were irradiated with a comparable radiation scheme, and monitored for acute skin damage between Day 7 and 40. Late RIF was assessed in the irradiated mice. RESULTS The TCD50 (dose producing tumor control in 50% of mice) values with 95% confidence interval were 29.7 (25.4-34.8) Gy for C ions and 43.9 (39.2-49.2) Gy for photons, with a corresponding Relative biological effectiveness (RBE) value of 1.48 (1.28-1.72). For acute skin damage the MDD50 (dose to produce moist desquamation in 50% of mice) values with 95% confidence interval were 26.3 (23.0-30.1) Gy for C ions and 35.8 (32.9-39.0) Gy for photons, resulting in a RBE of 1.36 (1.20-1.54). For late radiation-induced fibrosis the FD50 (dose to produce severe fibrosis in 50% of mice) values with 95% confidence interval were 26.5 (23.1-30.3) Gy for carbon ions and 39.8 (37.8-41.8) Gy for photons, with a RBE of 1.50 (1.33-1.69). CONCLUSION The observed RBE values were very similar for tumor response, acute skin damage and late RIF when irradiated with large doses of high- linear energy transfer (LET) carbon ions. This study adds information to the variation in biological effectiveness in different tumor and normal tissue models.
Collapse
Affiliation(s)
- Brita S Sørensen
- a Department of Experimental Clinical Oncology , Aarhus University Hospital , Aarhus , Denmark
| | - Michael R Horsman
- a Department of Experimental Clinical Oncology , Aarhus University Hospital , Aarhus , Denmark
| | - Jan Alsner
- a Department of Experimental Clinical Oncology , Aarhus University Hospital , Aarhus , Denmark
| | - Jens Overgaard
- a Department of Experimental Clinical Oncology , Aarhus University Hospital , Aarhus , Denmark
| | - Marco Durante
- b GSI Helmholtzzentrum für Schwerionenforschung (GSI), Department of Biophysics , Darmstadt , Germany
| | - Michael Scholz
- b GSI Helmholtzzentrum für Schwerionenforschung (GSI), Department of Biophysics , Darmstadt , Germany
| | - Thomas Friedrich
- b GSI Helmholtzzentrum für Schwerionenforschung (GSI), Department of Biophysics , Darmstadt , Germany
| | - Niels Bassler
- c Department of Physics , Aarhus University , Aarhus , Denmark
| |
Collapse
|
25
|
Jones B. A Simpler Energy Transfer Efficiency Model to Predict Relative Biological Effect for Protons and Heavier Ions. Front Oncol 2015; 5:184. [PMID: 26322274 PMCID: PMC4531328 DOI: 10.3389/fonc.2015.00184] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/27/2015] [Indexed: 01/26/2023] Open
Abstract
The aim of this work is to predict relative biological effectiveness (RBE) for protons and clinically relevant heavier ions, by using a simplified semi-empirical process based on rational expectations and published experimental results using different ion species. The model input parameters are: Z (effective nuclear charge) and radiosensitivity parameters αL and βL of the control low linear energy transfer (LET) radiation. Sequential saturation processes are assumed for: (a) the position of the turnover point (LETU) for the LET–RBE relationship with Z, and (b) the ultimate value of α at this point (αU) being non-linearly related to αL. Using the same procedure for β, on the logical assumption that the changes in β with LET, although smaller than α, are symmetrical with those of α, since there is symmetry of the fall off of LET–RBE curves with increasing dose, which suggests that LETU must be identical for α and β. Then, using iso-effective linear quadratic model equations, the estimated RBE is scaled between αU and αL and between βU and βL from for any input value of Z, αL, βL, and dose. The model described is fitted to the data of Barendsen (alpha particles), Weyrather et al. (carbon ions), and Todd for nine different ions (deuterons to Argon), which include variations in cell surviving fraction and dose. In principle, this new system can be used to complement the more complex methods to predict RBE with LET such as the local effect and MKM models which already have been incorporated into treatment planning systems in various countries. It would be useful to have a secondary check to such systems, especially to alert clinicians of potential risks by relatively easy estimation of relevant RBEs. In clinical practice, LET values smaller than LETU are mostly encountered, but the model extends to higher values beyond LETU for other purposes such as radiation, protection, and astrobiology. Considerable further research is required, perhaps in a dedicated international laboratory, using a basket of different models to determine what the best system or combination of systems will be to make proton and ion beam radiotherapy as safe as possible and to produce the best possible clinical results.
Collapse
Affiliation(s)
- Bleddyn Jones
- Gray Laboratory, CRUK/MRC Oxford Insitute for Radiation Oncology, University of Oxford , Oxford , UK
| |
Collapse
|
26
|
Abstract
BACKGROUND Dose painting is a concept that may increase the tumor control probability (TCP). In particle therapy of hypoxic tumors, it may also be beneficial to redistribute the linear energy transfer (LET) so that the oxygen effect is minimized; so-called LET painting. The purpose of the present study was to use TCP estimates for comparing dose and LET painting of hypoxic tumors. MATERIAL AND METHODS Protons, lithium ions and carbon ions were considered. Tumor images tentatively depicting hypoxia were used as input. Optimal dose prescription maps were obtained by optimizing TCP under dose and/or LET redistribution. TCPs were compared to those resulting from conventional particle therapy with no dose or LET painting. The therapeutic gain at a given iso-effect was calculated. Treatment adaptation during therapy in response to changes in the spatial hypoxia distribution was also considered. RESULTS Both dose and LET painting gave higher TCPs compared to conventional particle therapy, irrespective of particle type. The therapeutic gain from LET painting, dose painting and combined dose+ LET painting was 1.09/1.43/1.45, 1.24/1.32/1.37 and 1.16/1.23/1.28 for protons, lithium ions and carbon ions, respectively. The importance of treatment adaptation was less pronounced for particles heavier than protons. CONCLUSION Dose painting results in higher TCP than LET painting, in particular for protons. For heavier ions, LET painting may also give an enhanced tumor effect compared to conventional particle therapy. Combined dose+ LET painting may only give a marginally increased effect compared to dose painting only. Adaptive carbon ion dose painting seems to be of less importance.
Collapse
Affiliation(s)
- Eirik Malinen
- a Department of Physics , University of Oslo , Oslo , Norway
- b Department of Medical Physics , Oslo University Hospital , Oslo , Norway
| | - Åste Søvik
- c Department of Monitoring and Research , Norwegian Radiation Protection Authority , Østerås , Norway
| |
Collapse
|
27
|
Rossi S. The National Centre for Oncological Hadrontherapy (CNAO): Status and perspectives. Phys Med 2015; 31:333-51. [DOI: 10.1016/j.ejmp.2015.03.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/05/2015] [Accepted: 03/04/2015] [Indexed: 11/27/2022] Open
|
28
|
Kamada T, Tsujii H, Blakely EA, Debus J, De Neve W, Durante M, Jäkel O, Mayer R, Orecchia R, Pötter R, Vatnitsky S, Chu WT. Carbon ion radiotherapy in Japan: an assessment of 20 years of clinical experience. Lancet Oncol 2015; 16:e93-e100. [PMID: 25638685 DOI: 10.1016/s1470-2045(14)70412-7] [Citation(s) in RCA: 376] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Charged particle therapy is generally regarded as cutting-edge technology in oncology. Many proton therapy centres are active in the USA, Europe, and Asia, but only a few centres use heavy ions, even though these ions are much more effective than x-rays owing to the special radiobiological properties of densely ionising radiation. The National Institute of Radiological Sciences (NIRS) Chiba, Japan, has been treating cancer with high-energy carbon ions since 1994. So far, more than 8000 patients have had this treatment at NIRS, and the centre thus has by far the greatest experience in carbon ion treatment worldwide. A panel of radiation oncologists, radiobiologists, and medical physicists from the USA and Europe recently completed peer review of the carbon ion therapy at NIRS. The review panel had access to the latest developments in treatment planning and beam delivery and to all updated clinical data produced at NIRS. A detailed comparison with the most advanced results obtained with x-rays or protons in Europe and the USA was then possible. In addition to those tumours for which carbon ions are known to produce excellent results, such as bone and soft-tissue sarcoma of the skull base, head and neck, and pelvis, promising data were obtained for other tumours, such as locally recurrent rectal cancer and pancreatic cancer. The most serious impediment to the worldwide spread of heavy ion therapy centres is the high initial capital cost. The 20 years of clinical experience at NIRS can help guide strategic decisions on the design and construction of new heavy ion therapy centres.
Collapse
Affiliation(s)
- Tadashi Kamada
- National Institute of Radiological Sciences, Chiba, Japan
| | | | | | - Jürgen Debus
- University of Heidelberg and Heidelberg Ion Therapy Centre, Heidelberg, Germany
| | | | - Marco Durante
- GSI Helmholtz Center for Heavy Ion Research and Darmstadt University of Technology, Darmstadt, Germany.
| | - Oliver Jäkel
- University of Heidelberg and Heidelberg Ion Therapy Centre, Heidelberg, Germany
| | | | - Roberto Orecchia
- CNAO Foundation, Pavia, and European Institute of Oncology, Milan, Italy
| | | | | | - William T Chu
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
29
|
Jones B. Towards Achieving the Full Clinical Potential of Proton Therapy by Inclusion of LET and RBE Models. Cancers (Basel) 2015; 7:460-80. [PMID: 25790470 PMCID: PMC4381269 DOI: 10.3390/cancers7010460] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/19/2015] [Accepted: 03/06/2015] [Indexed: 12/13/2022] Open
Abstract
Despite increasing use of proton therapy (PBT), several systematic literature reviews show limited gains in clinical outcomes, with publications mostly devoted to recent technical developments. The lack of randomised control studies has also hampered progress in the acceptance of PBT by many oncologists and policy makers. There remain two important uncertainties associated with PBT, namely: (1) accuracy and reproducibility of Bragg peak position (BPP); and (2) imprecise knowledge of the relative biological effect (RBE) for different tissues and tumours, and at different doses. Incorrect BPP will change dose, linear energy transfer (LET) and RBE, with risks of reduced tumour control and enhanced toxicity. These interrelationships are discussed qualitatively with respect to the ICRU target volume definitions. The internationally accepted proton RBE of 1.1 was based on assays and dose ranges unlikely to reveal the complete range of RBE in the human body. RBE values are not known for human (or animal) brain, spine, kidney, liver, intestine, etc. A simple efficiency model for estimating proton RBE values is described, based on data of Belli et al. and other authors, which allows linear increases in α and β with LET, with a gradient estimated using a saturation model from the low LET α and β radiosensitivity parameter input values, and decreasing RBE with increasing dose. To improve outcomes, 3-D dose-LET-RBE and bio-effectiveness maps are required. Validation experiments are indicated in relevant tissues. Randomised clinical studies that test the invariant 1.1 RBE allocation against higher values in late reacting tissues, and lower tumour RBE values in the case of radiosensitive tumours, are also indicated.
Collapse
Affiliation(s)
- Bleddyn Jones
- Gray Laboratory, CRUK/MRC Oxford Oncology Institute, The University of Oxford, ORCRB-Roosevelt Drive, Oxford OX3 7DQ, UK.
| |
Collapse
|
30
|
Soni A, Siemann M, Grabos M, Murmann T, Pantelias GE, Iliakis G. Requirement for Parp-1 and DNA ligases 1 or 3 but not of Xrcc1 in chromosomal translocation formation by backup end joining. Nucleic Acids Res 2014; 42:6380-92. [PMID: 24748665 PMCID: PMC4041464 DOI: 10.1093/nar/gku298] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In mammalian cells, ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) are repaired in all phases of the cell cycle predominantly by classical, DNA-PK-dependent nonhomologous end joining (D-NHEJ). Homologous recombination repair (HRR) is functional during the S- and G2-phases, when a sister chromatid becomes available. An error-prone, alternative form of end joining, operating as backup (B-NHEJ) functions robustly throughout the cell cycle and particularly in the G2-phase and is thought to backup predominantly D-NHEJ. Parp-1, DNA-ligases 1 (Lig1) and 3 (Lig3), and Xrcc1 are implicated in B-NHEJ. Chromosome and chromatid translocations are manifestations of erroneous DSB repair and are crucial culprits in malignant transformation and IR-induced cell lethality. We analyzed shifts in translocation formation deriving from defects in D-NHEJ or HRR in cells irradiated in the G2-phase and identify B-NHEJ as the main DSB repair pathway backing up both of these defects at the cost of a large increase in translocation formation. Our results identify Parp-1 and Lig1 and 3 as factors involved in translocation formation and show that Xrcc1 reinforces the function of Lig3 in the process without being required for it. Finally, we demonstrate intriguing connections between B-NHEJ and DNA end resection in translocation formation and show that, as for D-NHEJ and HRR, the function of B-NHEJ facilitates the recovery from the G2-checkpoint. These observations advance our understanding of chromosome aberration formation and have implications for the mechanism of action of Parp inhibitors.
Collapse
Affiliation(s)
- Aashish Soni
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | - Maria Siemann
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | - Martha Grabos
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | - Tamara Murmann
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | - Gabriel E Pantelias
- Institute of Nuclear Technology and Radiation Protection, National Centre for Scientific Research ''Demokritos,'' Aghia Paraskevi Attikis, 15310 Athens, Greece
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| |
Collapse
|
31
|
Affiliation(s)
- Eirik Malinen
- Department of Physics, University of Oslo , Oslo , Norway
| | | |
Collapse
|
32
|
Imaging dose assessment for IGRT in particle beam therapy. Radiother Oncol 2013; 109:409-13. [DOI: 10.1016/j.radonc.2013.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 09/01/2013] [Accepted: 09/08/2013] [Indexed: 12/25/2022]
|
33
|
|