1
|
Werner H. Key targets for small molecule drugs on the IGF1 signaling pathway. Future Med Chem 2025; 17:751-753. [PMID: 39980245 PMCID: PMC12026114 DOI: 10.1080/17568919.2025.2470105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Haanen TJ, Boock S, Callahan CG, Peris I, Zawacki KP, Raines B, Nino CA, Tran B, Harold A, Onishi GH, Hinderman M, Dowdican A, Huang W, Taylor DJ, Taylor SE, Jackson MW, DiFeo A, O’Connor CM, Narla G. Mutant PP2A Induces IGFBP2 Secretion to Promote Development of High-Grade Uterine Cancer. Cancer Res 2025; 85:442-461. [PMID: 39531506 PMCID: PMC11788061 DOI: 10.1158/0008-5472.can-24-1263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/09/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Uterine serous carcinoma (USC) and uterine carcinosarcoma (UCS) tumors are uniquely aggressive, suggesting that the primary tumor is intrinsically equipped to disseminate and metastasize. Previous work identified mutational hotspots within PPP2R1A, which encodes the Aα scaffolding subunit of protein phosphatase 2A (PP2A), a heterotrimeric serine/threonine phosphatase. Two recurrent heterozygous PPP2R1A mutations, P179R and S256F, occur exclusively within high-grade subtypes of uterine cancer and can drive tumorigenesis and metastasis. Elucidation of the mechanisms by which PP2A Aα mutants promote tumor development and progression could help identify therapeutic opportunities. Here, we showed that expression of these mutants in USC/UCS cell lines enhanced tumor-initiating capacity, drove a hybrid epithelial-to-mesenchymal plasticity phenotype, and elevated secretion of the tumorigenic cytokine insulin growth factor (IGF) binding protein 2 (IGFBP2). Therapeutic targeting of the IGFBP2/IGF receptor 1 signaling axis using small molecules and genetic approaches resulted in marked tumor growth inhibition. Mechanistically, PP2A regulated IGFBP2 expression through the transcription factor, NF-κB, which harbors a B56 recognition motif. Collectively, these results identify a role for PP2A in regulating paracrine cancer cell signaling that can be targeted to block the initiation and metastasis of high-grade uterine cancer. Significance: Elevated IGFBP2 secretion by uterine cancer cells with heterozygous PPP2R1A mutations supports tumor progression and confers a vulnerability to IGFBP2/IGF1R inhibition as a therapeutic approach for this highly aggressive cancer subtype.
Collapse
Affiliation(s)
- Terrance J. Haanen
- Department of Cancer Biology, The University of Michigan, Ann Arbor, MI
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, MI
| | - Sophie Boock
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, MI
| | - Catherine G. Callahan
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, MI
| | - Irene Peris
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, MI
| | - Kaitlin P. Zawacki
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, MI
| | - Brynne Raines
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, MI
- Department of Cellular and Molecular Biology, The University of Michigan, Ann Arbor, MI
| | - Charles A. Nino
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, MI
- Department of Cellular and Molecular Biology, The University of Michigan, Ann Arbor, MI
| | - Brian Tran
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, MI
- Department of Pharmacology, The University of Michigan, Ann Arbor, MI
| | - Alexis Harold
- Department of Cancer Biology, The University of Michigan, Ann Arbor, MI
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, MI
| | - Gabrielle Hodges Onishi
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, MI
| | - Matthew Hinderman
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, MI
| | - Amanda Dowdican
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, MI
| | - Wei Huang
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| | - Derek J. Taylor
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| | - Sarah E. Taylor
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Mark W. Jackson
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Analisa DiFeo
- Rogel Cancer Center, The University of Michigan Health, Ann Arbor, Michigan
- Department of Pathology, The University of Michigan, Ann Arbor, Michigan
- Department of Obstetrics and Gynecology, The University of Michigan, Ann Arbor, Michigan
| | - Caitlin M. O’Connor
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, MI
- Rogel Cancer Center, The University of Michigan Health, Ann Arbor, Michigan
| | - Goutham Narla
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, MI
- Rogel Cancer Center, The University of Michigan Health, Ann Arbor, Michigan
| |
Collapse
|
3
|
Wei Y, Jiang H, Li F, Chai C, Xu Y, Xing M, Deng W, Wang H, Zhu Y, Yang S, Yu Y, Wang W, Wei Y, Guo Y, Tian J, Du J, Guo Z, Wang Y, Zhao Q. Extravascular administration of IGF1R antagonists protects against aortic aneurysm in rodent and porcine models. Sci Transl Med 2024; 16:eadh1763. [PMID: 38691618 DOI: 10.1126/scitranslmed.adh1763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/10/2024] [Indexed: 05/03/2024]
Abstract
An abdominal aortic aneurysm (AAA) is a life-threatening cardiovascular disease. We identified plasma insulin-like growth factor 1 (IGF1) as an independent risk factor in patients with AAA by correlating plasma IGF1 with risk. Smooth muscle cell- or fibroblast-specific knockout of Igf1r, the gene encoding the IGF1 receptor (IGF1R), attenuated AAA formation in two mouse models of AAA induced by angiotensin II infusion or CaCl2 treatment. IGF1R was activated in aortic aneurysm samples from human patients and mice with AAA. Systemic administration of IGF1C, a peptide fragment of IGF1, 2 weeks after disease development inhibited AAA progression in mice. Decreased AAA formation was linked to competitive inhibition of IGF1 binding to its receptor by IGF1C and modulation of downstream alpha serine/threonine protein kinase (AKT)/mammalian target of rapamycin signaling. Localized application of an IGF1C-loaded hydrogel was developed to reduce the side effects observed after systemic administration of IGF1C or IGF1R antagonists in the CaCl2-induced AAA mouse model. The inhibitory effect of the IGF1C-loaded hydrogel administered at disease onset on AAA formation was further evaluated in a guinea pig-to-rat xenograft model and in a sheep-to-minipig xenograft model of AAA formation. The therapeutic efficacy of IGF1C for treating AAA was tested through extravascular delivery in the sheep-to-minipig model with AAA established for 2 weeks. Percutaneous injection of the IGF1C-loaded hydrogel around the AAA resulted in improved vessel flow dynamics in the minipig aorta. These findings suggest that extravascular administration of IGF1R antagonists may have translational potential for treating AAA.
Collapse
Affiliation(s)
- Yongzhen Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Health Science Center, Peking University, Beijing 100191, China
| | - Huan Jiang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fengjuan Li
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Chao Chai
- Department of Radiology, Tianjin Institute of Imaging Medicine, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Yaping Xu
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, China
| | - Mengmeng Xing
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weiliang Deng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - He Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuexin Zhu
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Sen Yang
- Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Yongquan Yu
- Department of Radiology, Weihai Central Hospital, Weihai 264400, China
| | - Wenming Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yan Wei
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, China
| | - Yu Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jinwei Tian
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jie Du
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Zhikun Guo
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, China
| | - Yuan Wang
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Health Science Center, Peking University, Beijing 100191, China
| |
Collapse
|
4
|
Shahid A, Santos SG, Lin C, Huang Y. Role of Insulin-like Growth Factor-1 Receptor in Tobacco Smoking-Associated Lung Cancer Development. Biomedicines 2024; 12:563. [PMID: 38540176 PMCID: PMC10967781 DOI: 10.3390/biomedicines12030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer remains a significant global health concern, with lung cancer consistently leading as one of the most common malignancies. Genetic aberrations involving receptor tyrosine kinases (RTKs) are known to be associated with cancer initiation and development, but RTK involvement in smoking-associated lung cancer cases is not well understood. The Insulin-like Growth Factor 1 Receptor (IGF-1R) is a receptor that plays a critical role in lung cancer development. Its signaling pathway affects the growth and survival of cancer cells, and high expression is linked to poor prognosis and resistance to treatment. Several reports have shown that by activating IGF-1R, tobacco smoke-related carcinogens promote lung cancer and chemotherapy resistance. However, the relationship between IGF-1R and cancer is complex and can vary depending on the type of cancer. Ongoing investigations are focused on developing therapeutic strategies to target IGF-1R and overcome chemotherapy resistance. Overall, this review explores the intricate connections between tobacco smoke-specific carcinogens and the IGF-1R pathway in lung carcinogenesis. This review further highlights the challenges in using IGF-1R inhibitors as targeted therapy for lung cancer due to structural similarities with insulin receptors. Overcoming these obstacles may require a comprehensive approach combining IGF-1R inhibition with other selective agents for successful cancer treatment.
Collapse
Affiliation(s)
- Ayaz Shahid
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Shaira Gail Santos
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Carol Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Ying Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
5
|
Xu X, Qiu Y, Chen S, Wang S, Yang R, Liu B, Li Y, Deng J, Su Y, Lin Z, Gu J, Li S, Huang L, Zhou Y. Different roles of the insulin-like growth factor (IGF) axis in non-small cell lung cancer. Curr Pharm Des 2022; 28:2052-2064. [DOI: 10.2174/1381612828666220608122934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/29/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Non-small cell lung cancer (NSCLC) remains one of the deadliest malignant diseases, with high incidence and mortality worldwide. The insulin-like growth factor (IGF) axis, consisting of IGF-1, IGF-2, related receptors (IGF-1R, -2R), and high-affinity binding proteins (IGFBP 1–6), is associated with promoting fetal development, tissue growth, and metabolism. Emerging studies have also identified the role of the IGF axis in NSCLC, including cancer growth, invasion, and metastasis. Upregulation of IGE-1 and IGF-2, overexpression of IGF-1R, and dysregulation of downstream signaling molecules involved in the PI-3K/Akt and MAPK pathways jointly increase the risk of cancer growth and migration in NSCLC. At the genetic level, some noncoding RNAs could influence the proliferation and differentiation of tumor cells through the IGF signaling pathway. The resistance to some promising drugs might be partially attributed to the IGF axis. Therapeutic strategies targeting the IGF axis have been evaluated, and some have shown promising efficacy. In this review, we summarize the biological roles of the IGF axis in NSCLC, including the expression and prognostic significance of the related components, noncoding RNA regulation, involvement in drug resistance, and therapeutic application. This review offers comprehensive understanding of NSCLC and provides insightful ideas for future research.
Collapse
Affiliation(s)
- Xiongye Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanli Qiu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Simin Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuaishuai Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruifu Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Baomo Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yufei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiating Deng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Su
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ziying Lin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jincui Gu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shaoli Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lixia Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanbin Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Wang P, Mak VCY, Cheung LWT. Drugging IGF-1R in cancer: New insights and emerging opportunities. Genes Dis 2022; 10:199-211. [PMID: 37013053 PMCID: PMC10066341 DOI: 10.1016/j.gendis.2022.03.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/02/2022] [Indexed: 11/19/2022] Open
Abstract
The insulin-like growth factor (IGF) axis plays important roles in cancer development and metastasis. The type 1 IGF receptor (IGF-1R) is a key member in the IGF axis and has long been recognized for its oncogenic role in multiple cancer lineages. Here we review the occurrence of IGF-1R aberrations and activation mechanisms in cancers, which justify the development of anti-IGF-1R therapies. We describe the therapeutic agents available for IGF-1R inhibition, with focuses on the recent or ongoing pre-clinical and clinical studies. These include antisense oligonucleotide, tyrosine kinase inhibitors and monoclonal antibodies which may be conjugated with cytotoxic drug. Remarkably, simultaneous targeting of IGF-1R and several other oncogenic vulnerabilities has shown early promise, highlighting the potential benefits of combination therapy. Further, we discuss the challenges in targeting IGF-1R so far and new concepts to improve therapeutic efficacy such as blockage of the nuclear translocation of IGF-1R.
Collapse
|
7
|
Liao F, Chen Y, Wu Q, Wen J, Chen X, Wang W, Xu D, Liu M. Selective elimination of CML stem/progenitor cells by picropodophyllin in vitro and in vivo is associated with p53 activation. Biochem Biophys Res Commun 2021; 579:1-7. [PMID: 34571387 DOI: 10.1016/j.bbrc.2021.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022]
Abstract
Chronic myeloid leukemia (CML) is a hematologic malignancy originating from BCR-ABL oncogene-transformed hematopoietic stem cells (HSCs) known as leukemia stem cells (LSCs). Therefore, targeting LSCs is of primary importance to eradicate CML. The present study demonstrates that picropodophyllin (PPP) effectively induces apoptosis and inhibits colony formation in CML stem/progenitor cells as well as quiescent CML progenitors resistant to imatinib therapy, while sparing normal hematopoietic cells in vitro. Administration of PPP in vivo markedly diminishes CML stem/progenitor cells in a transgenic mouse model of CML by inhibition of cell proliferation and enhancement of apoptosis in LSK cells, and significantly improves survival of CML mice. Furthermore, PPP treatment preferentially leads to transcriptional activation of p53 in CML but not normal CD34+ cells, upregulation of p53 protein in LSCs-enriched Sca-1+ cells from CML mice, and increased phosphorylation of p53 and upregulation of Bax protein in Ku812 cells. These results suggest that the inhibitory effects of PPP on CML stem/progenitor cells are associated with selective activation of p53 pathway and propose that PPP is a potent agent that selectively targets CML LSCs, and may be of value in the CML therapy.
Collapse
Affiliation(s)
- Fenfang Liao
- School of Life Sciences and Biopharmaceutical, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China
| | - Yongheng Chen
- School of Life Sciences and Biopharmaceutical, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China
| | - Qingqing Wu
- School of Life Sciences and Biopharmaceutical, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China
| | - Jiaqi Wen
- School of Life Sciences and Biopharmaceutical, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China
| | - Xiangjie Chen
- School of Life Sciences and Biopharmaceutical, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China
| | - Weizhang Wang
- School of Life Sciences and Biopharmaceutical, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China
| | - Dan Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| | - Manyu Liu
- School of Food Sciences, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China.
| |
Collapse
|
8
|
Mansour MA, Caputo VS, Aleem E. Highlights on selected growth factors and their receptors as promising anticancer drug targets. Int J Biochem Cell Biol 2021; 140:106087. [PMID: 34563698 DOI: 10.1016/j.biocel.2021.106087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
Growth factor receptors (GFRs) and receptor tyrosine kinases (RTK) are groups of proteins mediating a plethora of physiological processes, including cell growth, proliferation, survival, differentiation and migration. Under certain circumstances, expression of GFRs and subsequently their downstream kinase signaling are deregulated by genetic, epigenetic, and somatic changes leading to uncontrolled cell division in many human diseases, most notably cancer. Cancer cells rely on growth factors to sustain the increasing need to cell division and metabolic reprogramming through cancer-associated activating mutations of their receptors (i.e., GFRs). In this review, we highlight the recent advances of selected GFRs and their ligands (growth factors) in cancer with emphasis on structural and functional differences. We also interrogate how overexpression and/or hyperactivation of GFRs contribute to cancer initiation, development, progression, and resistance to conventional chemo- and radiotherapies. Novel approaches are being developed as anticancer agents to target growth factor receptors and their signaling pathways in different cancers. Here, we illustrate how the current knowledge of GFRs biology, and their ligands lead to development of targeted therapies to inhibit and/or block the activity of growth factors, GFRs and downstream kinases to treat diseases such as cancer.
Collapse
Affiliation(s)
- Mohammed A Mansour
- Cancer Biology and Therapy Lab, Division of Human Sciences, School of Applied Sciences, London South Bank University, London, UK; Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Valentina S Caputo
- Cancer Biology and Therapy Lab, Division of Human Sciences, School of Applied Sciences, London South Bank University, London, UK
| | - Eiman Aleem
- Cancer Biology and Therapy Lab, Division of Human Sciences, School of Applied Sciences, London South Bank University, London, UK.
| |
Collapse
|
9
|
Tsegay KB, Adeyemi CM, Gniffke EP, Sather DN, Walker JK, Smith SEP. A Repurposed Drug Screen Identifies Compounds That Inhibit the Binding of the COVID-19 Spike Protein to ACE2. Front Pharmacol 2021; 12:685308. [PMID: 34194331 PMCID: PMC8236845 DOI: 10.3389/fphar.2021.685308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022] Open
Abstract
Repurposed drugs that block the interaction between the SARS-CoV-2 spike protein and its receptor ACE2 could offer a rapid route to novel COVID-19 treatments or prophylactics. Here, we screened 2,701 compounds from a commercial library of drugs approved by international regulatory agencies for their ability to inhibit the binding of recombinant, trimeric SARS-CoV-2 spike protein to recombinant human ACE2. We identified 56 compounds that inhibited binding in a concentration-dependent manner, measured the IC50 of binding inhibition, and computationally modeled the docking of the best inhibitors to the Spike-ACE2 binding interface. The best candidates were Thiostrepton, Oxytocin, Nilotinib, and Hydroxycamptothecin with IC50's in the 4-9 μM range. These results highlight an effective screening approach to identify compounds capable of disrupting the Spike-ACE2 interaction, as well as identify several potential inhibitors of the Spike-ACE2 interaction.
Collapse
Affiliation(s)
- Kaleb B. Tsegay
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Christiana M. Adeyemi
- St. Louis University School of Medicine, Department of Pharmacology and Physiology, St. Louis, MO, United States
| | - Edward P. Gniffke
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - D. Noah Sather
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - John K. Walker
- St. Louis University School of Medicine, Department of Pharmacology and Physiology, St. Louis, MO, United States
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University St. Louis, Seattle, WA, United States
| | - Stephen E. P. Smith
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States
| |
Collapse
|
10
|
Tsegay KB, Adeyemi CM, Gniffke EP, Sather DN, Walker JK, Smith SEP. A repurposed drug screen identifies compounds that inhibit the binding of the COVID-19 spike protein to ACE2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.04.08.439071. [PMID: 33851160 PMCID: PMC8043450 DOI: 10.1101/2021.04.08.439071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Repurposed drugs that block the interaction between the SARS-CoV-2 spike protein and its receptor ACE2 could offer a rapid route to novel COVID-19 treatments or prophylactics. Here, we screened 2701 compounds from a commercial library of drugs approved by international regulatory agencies for their ability to inhibit the binding of recombinant, trimeric SARS-CoV-2 spike protein to recombinant human ACE2. We identified 56 compounds that inhibited binding by <90%, measured the EC 50 of binding inhibition, and computationally modeled the docking of the best inhibitors to both Spike and ACE2. These results highlight an effective screening approach to identify compounds capable of disrupting the Spike-ACE2 interaction as well as identifying several potential inhibitors that could serve as templates for future drug discovery efforts.
Collapse
|
11
|
Ianza A, Sirico M, Bernocchi O, Generali D. Role of the IGF-1 Axis in Overcoming Resistance in Breast Cancer. Front Cell Dev Biol 2021; 9:641449. [PMID: 33829018 PMCID: PMC8019779 DOI: 10.3389/fcell.2021.641449] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Over the last two decades, many studies have demonstrated that the insulin-like growth factor-1 (IGF-1) is involved in a number of patho-physiological processes, as well as in the development of different types of solid tumors, including breast cancer (BC). Preclinical and clinical data showed that IGF-1 receptor (R) is overexpressed and hyper-phosphorylated in several subtypes of BCs. The central implications of this pathway in tumor cell proliferation and metastasis make it an important therapeutic target. Moreover, the IGF-1 axis has shown strong interconnection with estrogen regulation and endocrine therapy, suggesting a possible solution to anti-estrogen resistance. IGF-1R might also interfere with other pivotal therapeutic strategies, such as anti HER2 treatments and mTOR inhibitors; several clinical trials are ongoing evaluating the role of IGF-1R inhibition in modulating resistance mechanisms to target therapies. Our aim is to offer an overview of the most recent and significant field of application of IGF-1 inhibitors and relevant therapeutic strategies, weighing their possible future impact on clinical practice.
Collapse
Affiliation(s)
- Anna Ianza
- Department of Medical, Surgery and Health Sciences, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Marianna Sirico
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
- Breast Cancer Unit and Translational Research Unit, ASST Cremona, Cremona, Italy
| | - Ottavia Bernocchi
- Department of Medical, Surgery and Health Sciences, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Daniele Generali
- Department of Medical, Surgery and Health Sciences, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
- Breast Cancer Unit and Translational Research Unit, ASST Cremona, Cremona, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
12
|
Tian A, Kang B, Li B, Qiu B, Jiang W, Shao F, Gao Q, Liu R, Cai C, Jing R, Wang W, Chen P, Liang Q, Bao L, Man J, Wang Y, Shi Y, Li J, Yang M, Wang L, Zhang J, Hippenmeyer S, Zhu J, Bian X, Wang Y, Liu C. Oncogenic State and Cell Identity Combinatorially Dictate the Susceptibility of Cells within Glioma Development Hierarchy to IGF1R Targeting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001724. [PMID: 33173731 PMCID: PMC7610337 DOI: 10.1002/advs.202001724] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/16/2020] [Indexed: 05/03/2023]
Abstract
Glioblastoma is the most malignant cancer in the brain and currently incurable. It is urgent to identify effective targets for this lethal disease. Inhibition of such targets should suppress the growth of cancer cells and, ideally also precancerous cells for early prevention, but minimally affect their normal counterparts. Using genetic mouse models with neural stem cells (NSCs) or oligodendrocyte precursor cells (OPCs) as the cells-of-origin/mutation, it is shown that the susceptibility of cells within the development hierarchy of glioma to the knockout of insulin-like growth factor I receptor (IGF1R) is determined not only by their oncogenic states, but also by their cell identities/states. Knockout of IGF1R selectively disrupts the growth of mutant and transformed, but not normal OPCs, or NSCs. The desirable outcome of IGF1R knockout on cell growth requires the mutant cells to commit to the OPC identity regardless of its development hierarchical status. At the molecular level, oncogenic mutations reprogram the cellular network of OPCs and force them to depend more on IGF1R for their growth. A new-generation brain-penetrable, orally available IGF1R inhibitor harnessing tumor OPCs in the brain is also developed. The findings reveal the cellular window of IGF1R targeting and establish IGF1R as an effective target for the prevention and treatment of glioblastoma.
Collapse
Affiliation(s)
- Anhao Tian
- Department of Neurosurgery of the Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058China
- Department of Pathology and PathophysiologyZhejiang University School of MedicineHangzhou310058China
| | - Bo Kang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310058China
| | - Baizhou Li
- Department of Pathology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058China
| | - Biying Qiu
- Department of Pathology and PathophysiologyZhejiang University School of MedicineHangzhou310058China
| | - Wenhong Jiang
- Department of Pathology and PathophysiologyZhejiang University School of MedicineHangzhou310058China
| | - Fangjie Shao
- Department of Neurosurgery of the Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058China
- Department of Pathology and PathophysiologyZhejiang University School of MedicineHangzhou310058China
| | - Qingqing Gao
- Department of Neurosurgery of the Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058China
- Department of Pathology and PathophysiologyZhejiang University School of MedicineHangzhou310058China
| | - Rui Liu
- Department of Pathology and PathophysiologyZhejiang University School of MedicineHangzhou310058China
| | - Chengwei Cai
- Department of Neurosurgery of the Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058China
- Department of Pathology and PathophysiologyZhejiang University School of MedicineHangzhou310058China
| | - Rui Jing
- Department of Pathology and PathophysiologyZhejiang University School of MedicineHangzhou310058China
| | - Wei Wang
- Department of Pathology and PathophysiologyZhejiang University School of MedicineHangzhou310058China
| | - Pengxiang Chen
- Department of Pathology and PathophysiologyZhejiang University School of MedicineHangzhou310058China
| | - Qinghui Liang
- College of Basic Medical ScienceInner Mongolia Medical UniversityHohhot010059China
| | - Lili Bao
- College of Basic Medical ScienceInner Mongolia Medical UniversityHohhot010059China
| | - Jianghong Man
- State Key Laboratory of ProteomicsInstitute of Basic Medical SciencesNational Center of Biomedical AnalysisBeijing100850China
| | - Yan Wang
- Department of PathologyInstitute of Pathology and Southwest Cancer CenterSouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Yu Shi
- Department of PathologyInstitute of Pathology and Southwest Cancer CenterSouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Jin Li
- PharmaBlock Sciences (Nanjing), Inc.Nanjing210032China
| | - Minmin Yang
- PharmaBlock Sciences (Nanjing), Inc.Nanjing210032China
| | - Lisha Wang
- PharmaBlock Sciences (Nanjing), Inc.Nanjing210032China
| | - Jianmin Zhang
- Department of Neurosurgery of the Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058China
| | - Simon Hippenmeyer
- Institute of Science and Technology AustriaAm Campus 1Klosterneuburg3400Austria
| | - Junming Zhu
- Department of Neurosurgery of the Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058China
| | - Xiuwu Bian
- Department of PathologyInstitute of Pathology and Southwest Cancer CenterSouthwest HospitalThird Military Medical UniversityChongqing400038China
| | - Ying‐Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310058China
| | - Chong Liu
- Department of Neurosurgery of the Second Affiliated HospitalZhejiang University School of MedicineHangzhou310058China
- Department of Pathology and PathophysiologyZhejiang University School of MedicineHangzhou310058China
- School of Brain Science and Brain MedicineNHC and CAMS Key Laboratory of Medical NeurobiologyZhejiang University School of MedicineHangzhou310058China
| |
Collapse
|
13
|
Werner H, Sarfstein R, Bruchim I. Investigational IGF1R inhibitors in early stage clinical trials for cancer therapy. Expert Opin Investig Drugs 2019; 28:1101-1112. [PMID: 31731883 DOI: 10.1080/13543784.2019.1694660] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: The insulin-like growth factors (IGFs) are a family of secreted peptide hormones with important roles in different cellular and organism functions. The biological activities of the IGFs are mediated by the IGF1 receptor (IGF1R), a cell surface, tyrosine kinase-containing heterotetramer that is linked to numerous cytoplasmic signaling cascades. The IGF1R displays potent antiapoptotic, pro-survival capacities and plays a key role in malignant transformation. Research has identified the IGF1R as a candidate therapeutic target in cancer.Areas covered: We offer a synopsis of ongoing efforts to target the IGF axis for therapeutic purposes. Our review includes a digest of early experimental work that led to the identification of IGF1R as a candidate therapeutic target in oncology.Expert opinion: Targeting of the IGF axis has yielded disappointing results in phase III trials, but it is important to learn from this to improve future trials in a rational manner. The potential of anti-IGF1R antibodies and small molecular weight inhibitors, alone or in combination with chemotherapy or other biological agents, should be investigated further in randomized studies. Moreover, the implementation of predictive biomarkers for patient selection will improve the outcome of future trials. Emerging personalized medicine could have a major impact on IGF1R targeting.
Collapse
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Yoran Institute for Human Genome Research, Tel Aviv University, Tel Aviv, Israel
| | - Rive Sarfstein
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ilan Bruchim
- Gynecologic Oncology Division, Hillel Yaffe Medical Center, Technion Institute of Technology, Haifa, Israel
| |
Collapse
|
14
|
Wilson C, Nimick M, Nehoff H, Ashton JC. ALK and IGF-1R as independent targets in crizotinib resistant lung cancer. Sci Rep 2017; 7:13955. [PMID: 29066738 PMCID: PMC5654778 DOI: 10.1038/s41598-017-14289-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/06/2017] [Indexed: 01/12/2023] Open
Abstract
ALK positive non-small cell lung cancer is highly responsive to ALK inhibitors such as crizotinib, but drug resistance typically develops within a year of treatment. In this study we investigated whether IGF-1R is an independent druggable target in ALK-positive lung cancer cells. We confirmed that combination ALK and IGF-1R inhibitor treatment is synergistically cytotoxic to ALK-positive lung cancer cells and that this remains the case for at least 12 days after initial exposure to crizotinib. ALK-positive cells with acquired resistance to crizotinib did not acquire cross-resistance to IGF-1R inhibition, though combination treatment in the resistant cells gave additive rather than synergistic cytotoxicity. We concluded that IGF-1R is an independent druggable target in ALK-positive lung cancer and support the trial of combination treatment.
Collapse
Affiliation(s)
- Christabel Wilson
- Department of Pharmacology & Toxicology, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Mhairi Nimick
- Department of Pharmacology & Toxicology, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Hayley Nehoff
- Department of Pharmacology & Toxicology, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - John C Ashton
- Department of Pharmacology & Toxicology, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
15
|
Aiken R, Axelson M, Harmenberg J, Klockare M, Larsson O, Wassberg C. Phase I clinical trial of AXL1717 for treatment of relapsed malignant astrocytomas: analysis of dose and response. Oncotarget 2017; 8:81501-81510. [PMID: 29113409 PMCID: PMC5655304 DOI: 10.18632/oncotarget.20662] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/12/2017] [Indexed: 01/09/2023] Open
Abstract
Purpose Early phase I study of safety of AXL1717 in patients with recurrent or progressive malignant astrocytomas and evaluation of preliminary anti-tumor efficacy. Patients and methods Nine patients fulfilling the set criteria were enrolled. Eight had recurrent glioblastoma and one gliosarcoma. Patients were treated with an oral suspension of AXL1717 (215-400 mg bid) cycle-by-cycle in 35-day cycles (28 days bid and 7 days off). Patients with progressive disease and/or toxicity-related dose delay of more than 14 days were withdrawn. Results Four patients had tumor responses (44%) to AXL1717 treatment. Two of these had stable disease for 12 months (10 cycles at 215-300 mg bid). Due to MRI-detected progression they were then taken off the study. They died 8 and 12 months later, respectively. One patient was treated 8 months (6 cycles with 215 mg bid). He was withdrawn because of disease progression but died after another 25 months. The fourth patient having stable disease died of sepsis due to pancytopenia in the end of cycle 2 on 400 mg bid. A fifth patient underwent surgery after two cycles with 300 mg bid. Pathological analysis demonstrated abundant necrosis and small areas of viable tumor. After one more cycle with 300 mg bid he was withdrawn due to clinical and radiographic worsening and died 11 months later. The other 4 patients did not have any detectable responses and died within 3-13 months after trial entry. Neutropenia was the main adverse effect, which was easily detected and reversible in all but one patient. Conclusion This clinical phase I study indicates that AXL1717 as a single agent is capable of producing prolonged stable disease and survival of patients with relapsed malignant astrocytomas. The drug was well tolerated. A new formulation of the drug will be used in further investigations in order to better define the optimal dose.
Collapse
Affiliation(s)
- Robert Aiken
- Rutgers-Cancer Institute of New Jersey, New Brunswick, NJ, U.S.A
| | - Magnus Axelson
- Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | | | - Maria Klockare
- Axelar AB, Karolinska Institutet Science Park, Solna, Sweden
| | - Olle Larsson
- Cellular and Molecular Tumor Pathology, Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Wassberg
- Section of Radiology and Nuclear Medicine, Department of Molecular Medicine and Surgery, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Tarnowski M, Tkacz M, Zgutka K, Bujak J, Kopytko P, Pawlik A. Picropodophyllin (PPP) is a potent rhabdomyosarcoma growth inhibitor both in vitro and in vivo. BMC Cancer 2017; 17:532. [PMID: 28793874 PMCID: PMC5550998 DOI: 10.1186/s12885-017-3495-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/23/2017] [Indexed: 12/02/2022] Open
Abstract
Background Insulin-like growth factors and insulin are important factors promoting cancer growth and metastasis. The molecules act through IGF1 (IGF1R) and insulin (InsR) receptors. Rhambodmyosarcomas (RMS) overproduce IGF2 – a potent ligand for IGF1R and, at the same time, highly express IGF1 receptor. The purpose of the study was to evaluate possible application of picropodophyllin (PPP) – a potent IGF1R inhibitor. Methods In our study we used a number of in vitro assays showing influence of IGF1R blockage on RMS cell lines (both ARMS and ERMS) proliferation, migration, adhesion, cell cycling and signal transduction pathways. Additionally, we tested possible concomitant application of PPP with commonly used chemotherapeutics (vincristine, actinomycin-D and cisplatin). Moreover, we performed an in vivo study where PPP was injected intraperitoneally into RMS tumor bearing SCID mice. Results We observed that PPP strongly inhibits RMS proliferation, chemotaxis and adhesion. What is more, application of the IGF1R inhibitor attenuates MAPK phosphorylation and cause cell cycle arrest in G2/M phase. PPP increases sensitivity of RMS cell lines to chemotherapy, specifically to vincristine and cisplatin. In our in vivo studies we noted that mice treated with PPP grew smaller tumors and displayed significantly decreased seeding into bone marrow. Conclusions The cyclolignan PPP effectively inhibits RMS tumor proliferation and metastasis in vitro and in an animal model. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3495-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maciej Tarnowski
- Department of Physiology, Pomeranian Medical University, al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland.
| | - Marta Tkacz
- Department of Physiology, Pomeranian Medical University, al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Katarzyna Zgutka
- Department of Physiology, Pomeranian Medical University, al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Joanna Bujak
- Department of Physiology, Pomeranian Medical University, al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Patrycja Kopytko
- Department of Physiology, Pomeranian Medical University, al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| |
Collapse
|
17
|
Clinical studies in humans targeting the various components of the IGF system show lack of efficacy in the treatment of cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 772:105-122. [PMID: 28528684 DOI: 10.1016/j.mrrev.2016.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 01/28/2023]
Abstract
The insulin-like growth factors (IGFs) system regulates cell growth, differentiation and energy metabolism and plays crucial role in the regulation of key aspects of tumor biology, such as cancer cell growth, survival, transformation and invasion. The current focus for cancer therapeutic approaches have shifted from the conventional treatments towards the targeted therapies and the IGF system has gained a great interest as anti-cancer therapy. The proliferative, anti-apoptotic and transformation effects of IGFs are mainly triggered by the ligation of the type I IGF receptor (IGF-IR). Thus, aiming at developing novel and effective cancer therapies, different strategies have been employed to target IGF system in human malignancies, including but not limited to ligand or receptor neutralizing antibodies and IGF-IR signaling inhibitors. In this review, we have focused on the clinical studies that have been conducted targeting the various components of the IGF system for the treatment of different types of cancer, providing a description and the challenges of each targeting strategy and the degree of success.
Collapse
|
18
|
Waraky A, Akopyan K, Parrow V, Strömberg T, Axelson M, Abrahmsén L, Lindqvist A, Larsson O, Aleem E. Picropodophyllin causes mitotic arrest and catastrophe by depolymerizing microtubules via insulin-like growth factor-1 receptor-independent mechanism. Oncotarget 2015; 5:8379-92. [PMID: 25268741 PMCID: PMC4226690 DOI: 10.18632/oncotarget.2292] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Picropodophyllin (PPP) is an anticancer drug undergoing clinical development in NSCLC. PPP has been shown to suppress IGF-1R signaling and to induce a G2/M cell cycle phase arrest but the exact mechanisms remain to be elucidated. The present study identified an IGF-1-independent mechanism of PPP leading to pro-metaphase arrest. The mitotic block was induced in human cancer cell lines and in an A549 xenograft mouse but did not occur in normal hepatocytes/mouse tissues. Cell cycle arrest by PPP occurred in vitro and in vivo accompanied by prominent CDK1 activation, and was IGF-1R-independent since it occurred also in IGF-1R-depleted and null cells. The tumor cells were not arrested in G2/M but in mitosis. Centrosome separation was prevented during mitotic entry, resulting in a monopolar mitotic spindle with subsequent prometaphase-arrest, independent of Plk1/Aurora A or Eg5, and leading to cell features of mitotic catastrophe. PPP also increased soluble tubulin and decreased spindle-associated tubulin within minutes, indicating that it interfered with microtubule dynamics. These results provide a novel IGF-1R-independent mechanism of antitumor effects of PPP.
Collapse
Affiliation(s)
- Ahmed Waraky
- Department of Oncology-Pathology, Cancer Center Karolinska, Solna, Sweden
| | - Karen Akopyan
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Vendela Parrow
- Axelar AB, Karolinska Institutet Science Park, Solna, Sweden
| | - Thomas Strömberg
- Department of Oncology-Pathology, Cancer Center Karolinska, Solna, Sweden
| | - Magnus Axelson
- Department of Clinical Chemistry, Karolinska Institutet, Stockholm, Sweden
| | - Lars Abrahmsén
- Axelar AB, Karolinska Institutet Science Park, Solna, Sweden
| | - Arne Lindqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Olle Larsson
- Department of Oncology-Pathology, Cancer Center Karolinska, Solna, Sweden
| | - Eiman Aleem
- Department of Oncology-Pathology, Cancer Center Karolinska, Solna, Sweden. Alexandria University, Faculty of Science, Department of Zoology, Alexandria, Egypt. The Ronald A. Matricaria Institute of Molecular Medicine at Phoenix Children's Hospital, University of Arizona College of Medicine-Phoenix, Department of Child Health, Phoenix, Arizona, USA
| |
Collapse
|