1
|
Patel D, Wairkar S. Lyotropic liquid crystalline nanoparticles of morin: An approach to improve pharmacokinetics and brain disposition in rats via nose-to-brain pathway. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2025; 66:102823. [PMID: 40254045 DOI: 10.1016/j.nano.2025.102823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/03/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Morin (MOR) is a potent neuroprotective agent possessing exceptional antioxidant abilities. The significant challenges associated with MOR delivery are poor solubility and low permeability. The present work aims to develop nasal delivery of MOR using lyotropic liquid crystalline nanoparticles (LLCs). MOR LLCs were prepared via the hydrotrope method, and 3-factor, 2-level factorial design was chosen for optimization. The results indicated MOR LLCs exhibited cubic vesicular structure, were non-toxic to nasal mucosa, and depicted sustained in vitro release. Pharmacokinetic studies showed MOR LLCs resulted in 1.53-fold and 1.42-fold enhancement in area under the curve than plain MOR oral and nasal groups. The relative drug targeting efficiency and relative direct transport percentage were 1.99-fold and 1.14-fold higher for MOR LLCs than plain nasal MOR, representing efficient brain targeting via olfactory pathways. Nasal administration of MOR LLCs enhances brain targeting and offers a self-administration option for prolonged utilization to alleviate neurological conditions.
Collapse
Affiliation(s)
- Dhrumi Patel
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India.
| |
Collapse
|
2
|
Sharma G, Wadhwa K, Kumar S, Singh G, Pahwa R. Revolutionizing Parkinson's treatment: Harnessing the potential of intranasal nanoemulsions for targeted therapy. Drug Deliv Transl Res 2025:10.1007/s13346-024-01770-z. [PMID: 39777646 DOI: 10.1007/s13346-024-01770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2024] [Indexed: 01/11/2025]
Abstract
Parkinson's disease (PD) is the most prominent and highly prevalent chronic neuro-degenerative disease generally recognized by classical motor symptoms which are linked with genetic mutation, Lewy bodies, and subsequently selective loss of nigrostriatal dopaminergic neurons. The blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier protect the central nervous system against toxins and are the most significant barriers to effective brain drug delivery in managing Parkinsonism. In recent years, intranasal delivery has attracted remarkable attention for brain targeting as the drug can be administered to the brain directly from the nose employing the trigeminal and olfactory pathways. For brain targeting through nasal delivery, several advanced and promising formulation techniques have been investigated globally. Nanoemulsions are regarded as an innovative carrier approach for PD, where these provide targeted administration and enhanced bioavailability of neurotherapeutics. This manuscript provides deeper insight into the pathophysiology of PD, various drug delivery strategies to overcome BBB, and the potential role of nanoemulsions via the intranasal route. Various research findings on the intranasal administration of nanoemulsions and their pivotal applications in the treatment of PD have also been embarked. The potential role of phytoconstituents and surface-modified nanoemulsions for the effective treatment of PD has also been reflected along with current challenges and future perspectives in this avenue.
Collapse
Affiliation(s)
- Gulshan Sharma
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Karan Wadhwa
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), NH-58 Delhi-Roorkee Highway, Meerut, 250005, India
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Rakesh Pahwa
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| |
Collapse
|
3
|
Mali A, Bhanwase A. In vivo pharmacokinetic study of carmustine in rats after giving single-dose of carmustine API solution, flexible liposomes, in situ nasal gel, optimized flexible liposomes embedded in situ nasal gel, and marketed formulation. ANNALES PHARMACEUTIQUES FRANÇAISES 2025; 83:112-123. [PMID: 39270836 DOI: 10.1016/j.pharma.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 05/06/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Carmustine is used in the treatment of glioblastoma (GBM). GBM is a well-known life-threatening type of cancerous tumor. GBM covers 60.00% among all primary brain tumors, with an occurrence of 74,000 cases across the globe. Management for GBM is still very difficult because most of the medicines are unable to cross the blood-brain barrier (BBB). The present work observed that flexible liposomes embedded in situ nasal gel of carmustine is the best brain-targeted medicine delivery system for the management of GBM through the nasal route. AIM To evaluate in vivo pharmacokinetic parameters of carmustine formulations administered through nasal routes in Wistar rats. METHODS In this work, different pharmacokinetic parameters were determined for carmustine formulations viz. carmustine API (Active Pharmaceutical Ingredient) solution, flexible liposomes, in situ thermoreversible intranasal gel, optimized flexible liposomes embedded in situ thermoreversible intranasal gel via intranasal administration in rats, and compared with marketed intravenous injection of carmustine administered through intravenous route. Carmustine was estimated with the help of a validated high-performance liquid chromatography (HPLC) approach. Three to four-months-old normal Wistar rats of either sex, having a weight of 200-250 grams were used in this study. RESULTS Intranasal administration of optimized flexible liposomes embedded in situ nasal gel showed greater Cmax (∼two-fold), AUC0→t (∼three-fold), AUC0→∞ (∼six-fold), and decreased Tmax (1h) data in the brain, than commercial intravenous injection of carmustine. The plasma concentration of carmustine administered through nasal route was found to be comparatively lower than intravenous administration, indicating lower systemic exposure to carmustine via the nasal route. CONCLUSION In vivo pharmacokinetics results revealed that the optimized flexible liposomes embedded in situ nasal gel of carmustine can effectively deliver carmustine to brain by nasal drug delivery system in Wistar rats.
Collapse
Affiliation(s)
- Audumbar Mali
- School of Life Sciences, Punyashlok Ahilyadevi Holkar Solapur University, 413255 Solapur, Maharashtra, India.
| | - Anil Bhanwase
- Department of Pharmaceutical Chemistry, SPM's College of Pharmacy, 413101 Akluj, Maharashtra, India
| |
Collapse
|
4
|
Sharma A, Bhatia D. Programmable bionanomaterials for revolutionizing cancer immunotherapy. Biomater Sci 2024; 12:5415-5432. [PMID: 39291418 DOI: 10.1039/d4bm00815d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Cancer immunotherapy involves a cutting-edge method that utilizes the immune system to detect and eliminate cancer cells. It has shown substantial effectiveness in treating different types of cancer. As a result, its growing importance is due to its distinct benefits and potential for sustained recovery. However, the general deployment of this treatment is hindered by ongoing issues in maintaining minimal toxicity, high specificity, and prolonged effectiveness. Nanotechnology offers promising solutions to these challenges due to its notable attributes, including expansive precise surface areas, accurate ability to deliver drugs and controlled surface chemistry. This review explores the current advancements in the application of nanomaterials in cancer immunotherapy, focusing on three primary areas: monoclonal antibodies, therapeutic cancer vaccines, and adoptive cell treatment. In adoptive cell therapy, nanomaterials enhance the expansion and targeting capabilities of immune cells, such as T cells, thereby improving their ability to locate and destroy cancer cells. For therapeutic cancer vaccines, nanoparticles serve as delivery vehicles that protect antigens from degradation and enhance their uptake by antigen-presenting cells, boosting the immune response against cancer. Monoclonal antibodies benefit from nanotechnology through improved delivery mechanisms and reduced off-target effects, which increase their specificity and effectiveness. By highlighting the intersection of nanotechnology and immunotherapy, we aim to underscore the transformative potential of nanomaterials in enhancing the effectiveness and safety of cancer immunotherapies. Nanoparticles' ability to deliver drugs and biomolecules precisely to tumor sites reduces systemic toxicity and enhances therapeutic outcomes.
Collapse
Affiliation(s)
- Ayushi Sharma
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh-281406, India.
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| |
Collapse
|
5
|
Tanaka A, Kiriyama A, Sano A, Changung C, Katsumi H, Yamamoto A, Furubayashi T. Left-Right Difference in Brain Pharmacokinetics Following Nasal Administration Via One-Site Nostrils. J Pharm Sci 2024; 113:2633-2640. [PMID: 38734208 DOI: 10.1016/j.xphs.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
The olfactory and trigeminal pathways are direct delivery pathways between the nose and brain. To determine the effect of direct delivery on drug distribution in the brain, two model drugs with different physical properties, antipyrine (ANP), with high membrane permeability, and ranitidine (RNT), with low membrane permeability, were selected. For ANP, direct delivery from the nose to the brain was observed only in the olfactory bulb beside the nasal cavity, with a direct transport percentage (DTP) of approximately 45 %, whereas in the frontal and occipital brains, the contribution from the systemic circulation to the brain was observed as the primary route of brain distribution. No significant variations were observed in the pharmacokinetics of ANP in the left and right brain, whereas RNT was distributed in all brain regions with a DTP of > 95 %. The closer the brain region is to the nasal cavity, the higher the DTP. Furthermore, the left brain, the same nostril site (left nostril) of administration, had a larger level of drug delivery than the right brain. These findings imply that the influence of the administered nostril site differs based on the physicochemical properties and amount of the drug.
Collapse
Affiliation(s)
- Akiko Tanaka
- Laboratory of Pharmaceutical Technology, Kobe Pharmaceutical University, Motoyamakita-machi 4-19-1, Higashinada, Kobe 658-8558, Japan.
| | - Akiko Kiriyama
- Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, Kyoto 610-0395, Japan
| | - Ayaka Sano
- Laboratory of Pharmaceutical Technology, Kobe Pharmaceutical University, Motoyamakita-machi 4-19-1, Higashinada, Kobe 658-8558, Japan
| | - Cho Changung
- Laboratory of Pharmaceutical Technology, Kobe Pharmaceutical University, Motoyamakita-machi 4-19-1, Higashinada, Kobe 658-8558, Japan
| | - Hidemasa Katsumi
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina, Kyoto 607-8414, Japan
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina, Kyoto 607-8414, Japan
| | - Tomoyuki Furubayashi
- Laboratory of Pharmaceutical Technology, Kobe Pharmaceutical University, Motoyamakita-machi 4-19-1, Higashinada, Kobe 658-8558, Japan
| |
Collapse
|
6
|
Shamshiripour P, Rahnama M, Nikoobakht M, Hajiahmadi F, Moradi AR, Ahmadvand D. A dynamic study of VEGF-A siDOX-EVs trafficking through the in-vitro insert co-culture blood-brain barrier model by digital holographic microscopy. Front Oncol 2024; 14:1292083. [PMID: 38529380 PMCID: PMC10961383 DOI: 10.3389/fonc.2024.1292083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/16/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Modeling the blood-brain barrier has long been a challenge for pharmacological studies. Up to the present, numerous attempts have been devoted to recapitulating the endothelial barrier in vitro to assess drug delivery vehicles' efficiency for brain disorders. In the current work, we presented a new approach for analyzing the morphometric parameters of the cells of an insert co-culture blood-brain barrier model using rat brain astrocytes, rat brain microvascular endothelial cells, and rat brain pericytes. This analytical approach could aid in getting further information on drug trafficking through the blood-brain barrier and its impact on the brain indirectly. Methods In the current work, we cultured rat brain astrocytes, rat brain microvascular endothelial cells, and rat brain pericytes and then used an insert well to culture the cells in contact with each other to model the blood-brain barrier. Then, the morphometric parameters of the porous membrane of the insert well, as well as each cell type were imaged by digital holographic microscopy before and after cell seeding. At last, we performed folate conjugation on the surface of the EVs we have previously tested for glioma therapy in our previous work called VEGF-A siDOX-EVs and checked how the trafficking of EVs improves after folate conjugation as a clathrin-mediated delivery setup. the trafficking and passage of EVs were assessed by flow cytometry and morphometric analysis of the digital holographic microscopy holograms. Results Our results indicated that EVs successfully entered through the proposed endothelial barrier assessed by flow cytometry analysis and furthermore, folate conjugation significantly improved EV passage through the blood-brain barrier. Moreover, our results indicated that the VEGF-A siDOX-EVs insert cytotoxic impact on the cells of the bottom of the culture plate. Conclusion folate-conjugation on the surface of EVs improves their trafficking through the blood-brain barrier and by using digital holographic microscopy analysis, we could directly assess the morphometric changes of the blood-brain barrier cells for pharmacological purposes as an easy, label-free, and real-time analysis.
Collapse
Affiliation(s)
- Parisa Shamshiripour
- Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Molecular Imaging, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Pathology, Shahid Beheshti Medical University (SBMU), Tehran, Iran
| | - Mehrana Rahnama
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Mehdi Nikoobakht
- Department of Neurosurgery, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fahimeh Hajiahmadi
- University of California San Francisco, Cellular Molecular Pharmacology School, School of Medicine, San Francisco, CA, United States
| | - Ali-reza Moradi
- Department of Molecular Imaging, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Physics, Institute for Advanced Studies in Basic Sciences, (IASBS), Zanjan, Iran
- School of NanoScience, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Davoud Ahmadvand
- Department of Molecular Imaging, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
7
|
Chavda VP, Balar PC, Bezbaruah R, Vaghela DA, Rynjah D, Bhattacharjee B, Sugandhi VV, Paiva-Santos AC. Nanoemulsions: Summary of a Decade of Research and Recent Advances. Nanomedicine (Lond) 2024; 19:519-536. [PMID: 38293801 DOI: 10.2217/nnm-2023-0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/11/2023] [Indexed: 02/01/2024] Open
Abstract
Nanoemulsions consist of a combination of several components such as oil, water, emulsifiers, surfactants and cosurfactants. Various techniques for producing nanoemulsions include high-energy and low-energy approaches such as high-pressure homogenization, microfluidization, jet disperser and phase inversion methods. The properties of a formulation can be influenced by elements such as the composition, concentration, size and charge of droplets, which in turn can affect the technique of manufacture. Characterization is conducted by the assessment of several factors such as physical properties, pH analysis, viscosity measurement and refractive index determination. This article offers a thorough examination of the latest developments in nanoemulsion technology, with a focus on their wide-ranging applications and promising future possibilities. It also discusses the administration of nanoemulsions through several methods.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics & Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India, 380009
| | - Pankti C Balar
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad, India, 380009
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science & Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Institute of Pharmacy, Assam Medical College & Hospital, Dibrugarh, Assam, 786002, India
| | - Dixa A Vaghela
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad, India, 380009
| | - Damanbhalang Rynjah
- Department of Pharmaceutical Sciences, Girijananda Chowdhury Institute of Pharmaceutical Science - Tezpur, Sonitpur, Assam, 784501, India
| | - Bedanta Bhattacharjee
- Department of Pharmaceutical Sciences, Girijananda Chowdhury Institute of Pharmaceutical Science - Tezpur, Sonitpur, Assam, 784501, India
| | - Vrashabh V Sugandhi
- Department of Industrial Pharmacy, College of Pharmacy and Health Sciences St. John's University, New York, 11439, USA
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal, 3000-370
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal, 3000-548
| |
Collapse
|
8
|
Agosti E, Zeppieri M, Antonietti S, Battaglia L, Ius T, Gagliano C, Fontanella MM, Panciani PP. Navigating the Nose-to-Brain Route: A Systematic Review on Lipid-Based Nanocarriers for Central Nervous System Disorders. Pharmaceutics 2024; 16:329. [PMID: 38543223 PMCID: PMC10975610 DOI: 10.3390/pharmaceutics16030329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
Background: The blood–brain barrier (BBB) regulates brain substance entry, posing challenges for treating brain diseases. Traditional methods face limitations, leading to the exploration of non-invasive intranasal drug delivery. This approach exploits the direct nose-to-brain connection, overcoming BBB restrictions. Intranasal delivery enhances drug bioavailability, reduces dosage, and minimizes systemic side effects. Notably, lipid nanoparticles, such as solid lipid nanoparticles and nanostructured lipid carriers, offer advantages like improved stability and controlled release. Their nanoscale size facilitates efficient drug loading, enhancing solubility and bioavailability. Tailored lipid compositions enable optimal drug release, which is crucial for chronic brain diseases. This review assesses lipid nanoparticles in treating neuro-oncological and neurodegenerative conditions, providing insights for effective nose-to-brain drug delivery. Methods: A systematic search was conducted across major medical databases (PubMed, Ovid MEDLINE, and Scopus) up to 6 January 2024. The search strategy utilized relevant Medical Subject Heading (MeSH) terms and keywords related to “lipid nanoparticles”, “intranasal administration”, “neuro-oncological diseases”, and “neurodegenerative disorders”. This review consists of studies in vitro, in vivo, or ex vivo on the intranasal administration of lipid-based nanocarriers for the treatment of brain diseases. Results: Out of the initial 891 papers identified, 26 articles met the eligibility criteria after a rigorous analysis. The exclusion of 360 articles was due to reasons such as irrelevance, non-reporting selected outcomes, the article being a systematic literature review or meta-analysis, and lack of method/results details. This systematic literature review, focusing on nose-to-brain drug delivery via lipid-based nanocarriers for neuro-oncological, neurodegenerative, and other brain diseases, encompassed 60 studies. A temporal distribution analysis indicated a peak in research interest between 2018 and 2020 (28.3%), with a steady increase over time. Regarding drug categories, Alzheimer’s disease was prominent (26.7%), followed by antiblastic drugs (25.0%). Among the 65 drugs investigated, Rivastigmine, Doxorubicin, and Carmustine were the most studied (5.0%), showcasing a diverse approach to neurological disorders. Notably, solid lipid nanoparticles (SLNs) were predominant (65.0%), followed by nanostructured lipid carriers (NLCs) (28.3%), highlighting their efficacy in intranasal drug delivery. Various lipids were employed, with glyceryl monostearate being prominent (20.0%), indicating preferences in formulation. Performance assessment assays were balanced, with in vivo studies taking precedence (43.3%), emphasizing the translation of findings to complex biological systems for potential clinical applications. Conclusions: This systematic review reveals the transformative potential of intranasal lipid nanoparticles in treating brain diseases, overcoming the BBB. Positive outcomes highlight the effectiveness of SLNs and NLCs, which are promising new approaches for ailments from AD to stroke and gliomas. While celebrating progress, addressing challenges like nanoparticle toxicity is also crucial.
Collapse
Affiliation(s)
- Edoardo Agosti
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Sara Antonietti
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy
| | - Luigi Battaglia
- Department of Drug Science and Technology, University of Torino, 10124 Torino, Italy
| | - Tamara Ius
- Neurosurgery Unit, Head-Neck and Neuroscience Department University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Caterina Gagliano
- Faculty of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Eye Clinic, Catania University San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Marco Maria Fontanella
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy
| | - Pier Paolo Panciani
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy
| |
Collapse
|
9
|
Jamshidnejad-Tosaramandani T, Kashanian S, Karimi I, Schiöth HB. Synthesis of a Rivastigmine and Insulin Combinational Mucoadhesive Nanoparticle for Intranasal Delivery. Polymers (Basel) 2024; 16:510. [PMID: 38399888 PMCID: PMC10891873 DOI: 10.3390/polym16040510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Efficient drug delivery remains a critical challenge for treating neurodegenerative diseases, such as Alzheimer's disease (AD). Using innovative nanomaterials, delivering current medications like acetylcholinesterase inhibitors to the brain through the intranasal route is a promising strategy for managing AD. Here, we developed a unique combinational drug delivery system based on N,N,N-trimethyl chitosan nanoparticles (NPs). These NPs encapsulate rivastigmine, the most potent acetylcholinesterase inhibitor, along with insulin, a complementary therapeutic agent. The spherical NPs exhibited a zeta potential of 17.6 mV, a size of 187.00 nm, and a polydispersity index (PDI) of 0.29. Our findings demonstrate significantly improved drug transport efficiency through sheep nasal mucosa using the NPs compared to drug solutions. The NPs exhibited transport efficiencies of 73.3% for rivastigmine and 96.9% for insulin, surpassing the efficiencies of the drug solutions, which showed transport efficiencies of 52% for rivastigmine and 21% for insulin ex vivo. These results highlight the potential of a new drug delivery system as a promising approach for enhancing nasal transport efficiency. These combinational mucoadhesive NPs offer a novel strategy for the simultaneous cerebral delivery of rivastigmine and insulin, which could prove helpful in developing effective treatments of AD and other neurodegenerative conditions.
Collapse
Affiliation(s)
- Tahereh Jamshidnejad-Tosaramandani
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah 6714414971, Iran;
- Laboratory for Computational Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah 6714414971, Iran;
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 62167 Uppsala, Sweden
| | - Soheila Kashanian
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah 6714414971, Iran;
- Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC), Razi University, Kermanshah 6714414971, Iran
| | - Isaac Karimi
- Laboratory for Computational Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah 6714414971, Iran;
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 62167 Uppsala, Sweden
| |
Collapse
|
10
|
Singh S, Shukla R. Nanovesicular-Mediated Intranasal Drug Therapy for Neurodegenerative Disease. AAPS PharmSciTech 2023; 24:179. [PMID: 37658972 DOI: 10.1208/s12249-023-02625-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023] Open
Abstract
Numerous neurodegenerative conditions, such as Alzheimer's, Huntington's, Parkinson's, amyotrophic lateral sclerosis, and glioblastoma multiform are now becoming significant concerns of global health. Formulation-related issues, physiological and anatomical barriers, post-administration obstacles, physical challenges, regulatory limitations, environmental hurdles, and health and safety issues have all hindered successful delivery and effective outcomes despite a variety of treatment options. In the current review, we covered the intranasal route, an alternative strategic route targeting brain for improved delivery across the BBB. The trans-nasal pathway is non-invasive, directing therapeutics directly towards brain, circumventing the barrier and reducing peripheral exposure. The delivery of nanosized vesicles loaded with drugs was also covered in the review. Nanovesicle systems are organised in concentric bilayered lipid membranes separated with aqueous layers. These carriers surmount the disadvantages posed by intranasal delivery of rapid mucociliary clearance and enzymatic degradation, and enhance retention of drug to reach the site of target. In conclusion, the review covers in-depth conclusions on numerous aspects of formulation of drug-loaded vesicular system delivery across BBB, current marketed nasal devices, significant jeopardies, potential therapeutic aids, and current advancements followed by future perspectives.
Collapse
Affiliation(s)
- Shalu Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India.
| |
Collapse
|
11
|
Pires PC, Fernandes M, Nina F, Gama F, Gomes MF, Rodrigues LE, Meirinho S, Silvestre S, Alves G, Santos AO. Innovative Aqueous Nanoemulsion Prepared by Phase Inversion Emulsification with Exceptional Homogeneity. Pharmaceutics 2023; 15:1878. [PMID: 37514064 PMCID: PMC10384498 DOI: 10.3390/pharmaceutics15071878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/22/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Formulating low-solubility or low-permeability drugs is a challenge, particularly with the low administration volumes required in intranasal drug delivery. Nanoemulsions (NE) can solve both issues, but their production and physical stability can be challenging, particularly when a high proportion of lipids is necessary. Hence, the aim of the present work was to develop a NE with good solubilization capacity for lipophilic drugs like simvastatin and able to promote the absorption of drugs with low permeability like fosphenytoin. Compositions with high proportion of two lipids were screened and characterized. Surprisingly, one of the compositions did not require high energy methods for high droplet size homogeneity. To better understand formulation factors important for this feature, several related compositions were evaluated, and their relative cytotoxicity was screened. Optimized compositions contained a high proportion of propylene glycol monocaprylate NF, formed very homogenous NE using a low-energy phase inversion method, solubilized simvastatin at high drug strength, and promoted a faster intranasal absorption of the hydrophilic prodrug fosphenytoin. Hence, a new highly homogeneous NE obtained by a simple low-energy method was successfully developed, which is a potential alternative for industrial application for the solubilization and protection of lipophilic actives, as well as (co-)administration of hydrophilic molecules.
Collapse
Affiliation(s)
- Patrícia C Pires
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Mariana Fernandes
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Francisca Nina
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Francisco Gama
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Maria F Gomes
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Lina E Rodrigues
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Sara Meirinho
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Samuel Silvestre
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Faculty of Sciences, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Gilberto Alves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Adriana O Santos
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
12
|
Mathew AM, Bhuvanendran S, Nair RS, K Radhakrishnan A. Exploring the anti-inflammatory activities, mechanism of action and prospective drug delivery systems of tocotrienol to target neurodegenerative diseases. F1000Res 2023; 12:338. [PMID: 39291146 PMCID: PMC11406131 DOI: 10.12688/f1000research.131863.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 09/19/2024] Open
Abstract
A major cause of death in the elderly worldwide is attributed to neurodegenerative diseases, such as AD (Alzheimer's disease), PD (Parkinson's disease), ALS (Amyotrophic lateral sclerosis), FRDA (Friedreich's ataxia), VaD (Vascular dementia) etc. These can be caused due to multiple factors such as genetic, physiological problems like stroke or tumor, or even external causes like viruses, toxins, or chemicals. T3s (tocotrienols) exhibit various bioactive properties where it acts as an antioxidant, anti-inflammatory, anti-tumorigenic, and cholesterol lowering agent. Since T3 interferes with and influences several anti-inflammatory mechanisms, it aids in combating inflammatory responses that lead to disease progression. T3s are found to have a profound neuroprotective ability, however, due to their poor oral bioavailability, their full potential could not be exploited. Hence there is a need to explore other drug delivery techniques, especially focusing on aspects of nanotechnology. In this review paper we explore the anti-inflammatory mechanisms of T3 to apply it in the treatment of neurodegenerative diseases and also discusses the possibilities of nano methods of administering tocotrienols to target neurodegenerative diseases.
Collapse
Affiliation(s)
- Angela Maria Mathew
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, 560029, India
| | - Saatheeyavaane Bhuvanendran
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, 47500, Malaysia
| | - Rajesh Sreedharan Nair
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, 47500, Malaysia
| | - Ammu K Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, 47500, Malaysia
| |
Collapse
|
13
|
Cai L, Gan M, Regenstein JM, Luan Q. Improving the biological activities of astaxanthin using targeted delivery systems. Crit Rev Food Sci Nutr 2023; 64:6902-6923. [PMID: 36779336 DOI: 10.1080/10408398.2023.2176816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The antioxidant and anti-inflammatory properties of astaxanthin (AST) enable it to protect against oxidative stress-related and inflammatory diseases with a range of biological effects. These activities provide the potential to develop healthier food products. Therefore, it would be beneficial to design delivery systems for AST to overcome its low stability, control its release, and/or improve its bioavailability. This review discusses the basis for AST's various biological activities and the factors limiting these activities, including stability, solubility, and bioavailability. It also discusses the different systems available for the targeted delivery of AST and their applications in enhancing the biological activity of AST. These include systems that are candidates for preventive and therapeutic effects, which include nerves, liver, and skin, particularly for possible cancer reduction. Targeted delivery of AST to specific regions of the gastrointestinal tract, or more selectively to target tissues and cells, can be achieved using targeted delivery systems to increase the biological activities of AST.
Collapse
Affiliation(s)
- Luyun Cai
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo, Zhejiang, China
| | - Miaoyu Gan
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo, Zhejiang, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Qian Luan
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo, Zhejiang, China
| |
Collapse
|
14
|
Bahadur S, Prakash A. A Comprehensive Review on Nanomedicine: Promising Approach for Treatment of Brain Tumor through Intranasal Administration. Curr Drug Targets 2023; 24:71-88. [PMID: 36278468 DOI: 10.2174/1389450124666221019141044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/07/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022]
Abstract
Brain tumors have become one of the deadliest cancers; however, their treatment is still limited by conventional approaches. Brain tumors, among other CNS diseases, are the most lethal form of cancer due to ineffective diagnosis and profiling. The major limiting factor in treating brain tumors is the blood-brain barrier (BBB), and the required therapeutic concentration is not achieved. Hence, most drugs are prescribed at higher doses, which have several unwanted side effects. Nanotechnology has emerged as an interesting and promising new approach for treating neurological disorders, including brain tumors, with the potential to overcome concerns related to traditional therapeutic approaches. Moreover, biomimetic nanomaterials have been introduced to successfully cross the blood-brain barrier and be consumed by deep skin cancer for imaging brain tumors using multimodal functional nanostructures for more specific and reliable medical assessment. These nanomedicines can address several challenges by enhancing the bioavailability of therapeutics through controlled pharmacokinetics and pharmacodynamics. Further nasal drug delivery has been considered as an alternative approach for the brain's targeting for the treatment of several CNS diseases. A drug can be directly delivered to the brain by bypassing the BBB through intranasal administration. This review discusses intranasal nanomedicine-based therapies for brain tumor targeting, which can be explored from different perspectives.
Collapse
Affiliation(s)
- Shiv Bahadur
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Anubhav Prakash
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| |
Collapse
|
15
|
Loseva EV, Loginova NA, Russu LI, Mezentseva MV. Behavior of Rats in Tests for Anxiety after a Short Intranasal Injection of Single-Walled Carbon Nanotubes in Two Small Doses. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Padilla-Godínez FJ, Ruiz-Ortega LI, Guerra-Crespo M. Nanomedicine in the Face of Parkinson's Disease: From Drug Delivery Systems to Nanozymes. Cells 2022; 11:3445. [PMID: 36359841 PMCID: PMC9657131 DOI: 10.3390/cells11213445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 01/02/2024] Open
Abstract
The complexity and overall burden of Parkinson's disease (PD) require new pharmacological approaches to counteract the symptomatology while reducing the progressive neurodegeneration of affected dopaminergic neurons. Since the pathophysiological signature of PD is characterized by the loss of physiological levels of dopamine (DA) and the misfolding and aggregation of the alpha-synuclein (α-syn) protein, new proposals seek to restore the lost DA and inhibit the progressive damage derived from pathological α-syn and its impact in terms of oxidative stress. In this line, nanomedicine (the medical application of nanotechnology) has achieved significant advances in the development of nanocarriers capable of transporting and delivering basal state DA in a controlled manner in the tissues of interest, as well as highly selective catalytic nanostructures with enzyme-like properties for the elimination of reactive oxygen species (responsible for oxidative stress) and the proteolysis of misfolded proteins. Although some of these proposals remain in their early stages, the deepening of our knowledge concerning the pathological processes of PD and the advances in nanomedicine could endow for the development of potential treatments for this still incurable condition. Therefore, in this paper, we offer: (i) a brief summary of the most recent findings concerning the physiology of motor regulation and (ii) the molecular neuropathological processes associated with PD, together with (iii) a recapitulation of the current progress in controlled DA release by nanocarriers and (iv) the design of nanozymes, catalytic nanostructures with oxidoreductase-, chaperon, and protease-like properties. Finally, we conclude by describing the prospects and knowledge gaps to overcome and consider as research into nanotherapies for PD continues, especially when clinical translations take place.
Collapse
Affiliation(s)
- Francisco J. Padilla-Godínez
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Coyoacan, Mexico City 04510, Mexico
- Regenerative Medicine Laboratory, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Coyoacan, Mexico City 04510, Mexico
| | - Leonardo I. Ruiz-Ortega
- Institute for Physical Sciences, National Autonomous University of Mexico, Cuernavaca 62210, Mexico
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Magdalena Guerra-Crespo
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Coyoacan, Mexico City 04510, Mexico
- Regenerative Medicine Laboratory, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Coyoacan, Mexico City 04510, Mexico
| |
Collapse
|
17
|
Mathure D, Ranpise H, Awasthi R, Pawar A. Formulation and Characterization of Nanostructured Lipid Carriers of Rizatriptan Benzoate-Loaded In Situ Nasal Gel for Brain Targeting. Assay Drug Dev Technol 2022; 20:211-224. [DOI: 10.1089/adt.2022.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Dyandevi Mathure
- Bharati Vidyappeth's Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, Maharashtra, India
| | | | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India
| | - Atmaram Pawar
- Bharati Vidyappeth's Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, Maharashtra, India
| |
Collapse
|
18
|
Muntoni E, Marini E, Ferraris C, Garelli S, Capucchio MT, Colombino E, Panciani PP, Battaglia L. Intranasal lipid nanocarriers: Uptake studies with fluorescently labeled formulations. Colloids Surf B Biointerfaces 2022; 214:112470. [PMID: 35338962 DOI: 10.1016/j.colsurfb.2022.112470] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 01/28/2023]
Abstract
Drug delivery by the intranasal route allows both systemic absorption and non-invasive brain targeting, due to the unique connection provided by the olfactory and trigeminal nerves between the brain and the external environment. Lipid nanocarriers can improve intranasal drug delivery by enhancing bioadhesion to nasal mucosa, and by protecting the encapsulated drug from biological degradation and transport efflux proteins. In this study two different biocompatible lipid nanocarriers were compared: nanoemulsions and solid lipid nanoparticles. The nasal uptake was investigated by labeling the nanocarriers lipid matrix with two fluorescent probes, 6-coumarin and rhodamine B, both lipophilic, yet characterized by different water solubility, in order to mimic the behavior of hypothetic drug compounds. Ex vivo permeation, in vivo pharmacokinetics and biodistribution studies were performed. 6-coumarin, water insoluble and therefore integral with the lipid matrix, was taken up to a limited extent, within a long timeframe, but with a proportionally more pronounced brain accumulation. In nanoemulsions soluble rhodamine B showed a relevant systemic uptake, with good bioavailability, likely due to the prompt release of the probe at the nasal mucosa.
Collapse
Affiliation(s)
- Elisabetta Muntoni
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy.
| | - Elisabetta Marini
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy.
| | - Chiara Ferraris
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy.
| | - Sara Garelli
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy.
| | - Maria Teresa Capucchio
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, Turin, 10195 Grugliasco, Italy.
| | - Elena Colombino
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, Turin, 10195 Grugliasco, Italy.
| | - Pier Paolo Panciani
- Spedali Civili, Section of Neurosurgery, Piazzale Spedali Civili 1, 25123 Brescia, Italy.
| | - Luigi Battaglia
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy.
| |
Collapse
|
19
|
Lee D, Minko T. Nanotherapeutics for Nose-to-Brain Drug Delivery: An Approach to Bypass the Blood Brain Barrier. Pharmaceutics 2021; 13:2049. [PMID: 34959331 PMCID: PMC8704573 DOI: 10.3390/pharmaceutics13122049] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 02/01/2023] Open
Abstract
Treatment of neurodegenerative diseases or other central nervous system (CNS) disorders has always been a significant challenge. The nature of the blood-brain barrier (BBB) limits the penetration of therapeutic molecules to the brain after oral or parenteral administration, which, in combination with hepatic metabolism and drug elimination and inactivation during its journey in the systemic circulation, decreases the efficacy of the treatment, requires high drug doses and often induces adverse side effects. Nose-to-brain drug delivery allows the direct transport of therapeutic molecules by bypassing the BBB and increases drug concentration in the brain. The present review describes mechanisms of nose-to-brain drug delivery and discusses recent advances in this area with especial emphasis on nanotechnology-based approaches.
Collapse
Affiliation(s)
- David Lee
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA;
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA;
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
- Environmental and Occupational Health Science Institute, Rutgers, The State University of New Jersey, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| |
Collapse
|
20
|
Rajendran R, Menon KN, Nair SC. Nanotechnology Approaches for Enhanced CNS Drug Delivery in the Management of Schizophrenia. Adv Pharm Bull 2021; 12:490-508. [PMID: 35935056 PMCID: PMC9348538 DOI: 10.34172/apb.2022.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 06/02/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022] Open
Abstract
Schizophrenia is a neuropsychiatric disorder mainly affecting the central nervous system, presented with auditory and visual hallucinations, delusion and withdrawal from society. Abnormal dopamine levels mainly characterise the disease; various theories of neurotransmitters explain the pathophysiology of the disease. The current therapeutic approach deals with the systemic administration of drugs other than the enteral route, altering the neurotransmitter levels within the brain and providing symptomatic relief. Fluid biomarkers help in the early detection of the disease, which would improve the therapeutic efficacy. However, the major challenge faced in CNS drug delivery is the blood-brain barrier. Nanotherapeutic approaches may overcome these limitations, which will improve safety, efficacy, and targeted drug delivery. This review article addresses the main challenges faced in CNS drug delivery and the significance of current therapeutic strategies and nanotherapeutic approaches for a better understanding and enhanced drug delivery to the brain, which improve the quality of life of schizophrenia patients.
Collapse
Affiliation(s)
| | - Krishnakumar Neelakandha Menon
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Science and Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India
| | | |
Collapse
|
21
|
Tripathi S, Gupta U, Ujjwal RR, Yadav AK. Nano-lipidic formulation and therapeutic strategies for Alzheimer's disease via intranasal route. J Microencapsul 2021; 38:572-593. [PMID: 34591731 DOI: 10.1080/02652048.2021.1986585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIM The inability of drug molecules to cross the 'Blood-Brain Barrier' restrict the effective treatment of Alzheimer's disease. Lipid nanocarriers have proven to be a novel paradigm in brain targeting of bioactive by facilitating suitable therapeutic concentrations to be attained in the brain. METHODS The relevant information regarding the title of this review article was collected from the peer-reviewed published articles. Also, the physicochemical properties, and their in vitro and in vivo evaluations were presented in this review article. RESULTS Administration of lipid-based nano-carriers have abilities to target the brain, improve the pharmacokinetic and pharmacodynamics properties of drugs, and mitigate the side effects of encapsulated therapeutic active agents. CONCLUSION Unlike oral and other routes, the Intranasal route promises high bioavailability, low first-pass effect, better pharmacokinetic properties, bypass of the systemic circulation, fewer incidences of unwanted side effects, and direct delivery of anti-AD drugs to the brain via circumventing 'Blood-Brain Barrier'.
Collapse
Affiliation(s)
- Shourya Tripathi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Raebareli, Lucknow, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Raebareli, Lucknow, India
| | - Rewati Raman Ujjwal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Raebareli, Lucknow, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Raebareli, Lucknow, India
| |
Collapse
|
22
|
Nanotheranostic agents for neurodegenerative diseases. Emerg Top Life Sci 2021; 4:645-675. [PMID: 33320185 DOI: 10.1042/etls20190141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases (NDDs), including Alzheimer's disease (AD) and Parkinson's disease (PD), affect the ageing population worldwide and while severely impairing the quality of life of millions, they also cause a massive economic burden to countries with progressively ageing populations. Parallel with the search for biomarkers for early detection and prediction, the pursuit for therapeutic approaches has become growingly intensive in recent years. Various prospective therapeutic approaches have been explored with an emphasis on early prevention and protection, including, but not limited to, gene therapy, stem cell therapy, immunotherapy and radiotherapy. Many pharmacological interventions have proved to be promising novel avenues, but successful applications are often hampered by the poor delivery of the therapeutics across the blood-brain-barrier (BBB). To overcome this challenge, nanoparticle (NP)-mediated drug delivery has been considered as a promising option, as NP-based drug delivery systems can be functionalized to target specific cell surface receptors and to achieve controlled and long-term release of therapeutics to the target tissue. The usefulness of NPs for loading and delivering of drugs has been extensively studied in the context of NDDs, and their biological efficacy has been demonstrated in numerous preclinical animal models. Efforts have also been made towards the development of NPs which can be used for targeting the BBB and various cell types in the brain. The main focus of this review is to briefly discuss the advantages of functionalized NPs as promising theranostic agents for the diagnosis and therapy of NDDs. We also summarize the results of diverse studies that specifically investigated the usage of different NPs for the treatment of NDDs, with a specific emphasis on AD and PD, and the associated pathophysiological changes. Finally, we offer perspectives on the existing challenges of using NPs as theranostic agents and possible futuristic approaches to improve them.
Collapse
|
23
|
Deruyver L, Rigaut C, Lambert P, Haut B, Goole J. The importance of pre-formulation studies and of 3D-printed nasal casts in the success of a pharmaceutical product intended for nose-to-brain delivery. Adv Drug Deliv Rev 2021; 175:113826. [PMID: 34119575 DOI: 10.1016/j.addr.2021.113826] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/19/2021] [Accepted: 06/07/2021] [Indexed: 02/08/2023]
Abstract
This review aims to cement three hot topics in drug delivery: (a) the pre-formulation of new products intended for nose-to-brain delivery; (b) the development of nasal casts for studying the efficacy of potential new nose-to-brain delivery systems at the early of their development (pre-formulation); (c) the use of 3D printing based on a wide variety of materials (transparent, biocompatible, flexible) providing an unprecedented fabrication tool towards personalized medicine by printing nasal cast on-demand based on CT scans of patients. This review intends to show the links between these three subjects. Indeed, the pathway selected to administrate the drug to the brain not only influence the formulation strategies to implement but also the design of the cast, to get the most convincing measures from it. Moreover, the design of the cast himself influences the choice of the 3D-printing technology, which, in its turn, bring more constraints to the nasal replica design. Consequently, the formulation of the drug, the cast preparation and its realisation should be thought of as a whole and not separately.
Collapse
Affiliation(s)
- Laura Deruyver
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Clément Rigaut
- TIPs (Transfers, Interfaces and Processes), Université libre de Bruxelles, Brussels, Belgium
| | - Pierre Lambert
- TIPs (Transfers, Interfaces and Processes), Université libre de Bruxelles, Brussels, Belgium
| | - Benoît Haut
- TIPs (Transfers, Interfaces and Processes), Université libre de Bruxelles, Brussels, Belgium
| | - Jonathan Goole
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
24
|
Rizwanullah M, Ahmad MZ, Garg A, Ahmad J. Advancement in design of nanostructured lipid carriers for cancer targeting and theranostic application. Biochim Biophys Acta Gen Subj 2021; 1865:129936. [PMID: 34058266 DOI: 10.1016/j.bbagen.2021.129936] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/18/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cancer development is associated with abnormal, uncontrolled cell growth and causes significant economic and social burdens to society. The global statistics of different cancers have been increasing because of the aging population, and the increasing prevalence of risk factors such as stress condition, overweight, changing reproductive patterns, and smoking. The prognosis of cancer treatment is high, if diagnosed in the early stage. Late-stage diagnosis, however, is still a big challenge for the clinician. The usual treatment scheme involves chemotherapy and surgery followed by radiotherapy. SCOPE OF REVIEW Chemotherapy is the most widely used therapeutic approach against cancer. However, it suffers from the major limitation of poor delivery of anticancer therapeutics to specific cancer-targeted tissues/cells. MAJOR CONCLUSIONS Nanomedicines, particularly nanostructured lipid carriers (NLCs) can improve the efficacy of encapsulated payload either through an active or passive targeting approach against different cancers. The targeted nanomedicine can be helpful in transporting drug carriers to the specifically tumor-targeted tissue/cells while sparing abstaining from the healthy tissue/cells. The active targeting utilizes the binding of a specific cancer ligand to the surface of the NLCs, which improves the therapeutic efficacy and safety of the cancer therapeutics. GENERAL SIGNIFICANCE This review shed light on the utilization of NLCs system for targeted therapy in different cancers. Furthermore, modification of NLCs as cancer theranostics is a recent advancement that is also discussed in the manuscript with a review of contemporary research carried out in this field.
Collapse
Affiliation(s)
- Md Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Anuj Garg
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia.
| |
Collapse
|
25
|
Akel H, Ismail R, Katona G, Sabir F, Ambrus R, Csóka I. A comparison study of lipid and polymeric nanoparticles in the nasal delivery of meloxicam: Formulation, characterization, and in vitro evaluation. Int J Pharm 2021; 604:120724. [PMID: 34023443 DOI: 10.1016/j.ijpharm.2021.120724] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/21/2022]
Abstract
With the increasingly widespread of central nervous system (CNS) disorders and the lack of sufficiently effective medication, meloxicam (MEL) has been reported as a possible medication for Alzheimer's disease (AD) management. Unfortunately, following the conventional application routes, the low brain bioavailability of MEL forms a significant limitation. The intranasal (IN) administration route is considered revolutionary for CNS medications delivery. The objective of the present study was to develop two types of nanocarriers, poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) and solid lipid nanoparticles (SLNs), for the IN delivery of MEL adapting the Quality by Design approach (QbD). Turning then to further enhance the optimized nanoformulation behavior by chitosan-coating. SLNs showed higher encapsulation efficacy (EE) and drug loading (DL) than PLGA NPs 87.26% (EE) and 2.67% (DL); 72.23% (EE) and 2.55% (DL), respectively. MEL encapsulated into the nanoformulations improved in vitro release, mucoadhesion, and permeation behavior compared to the native drug with greater superiority of chitosan-coated SLNs (C-SLNs). In vitro-in vivo correlation (IVIVC) results estimated a significant in vivo brain distribution of the nanoformulations compared to native MEL with estimated greater potential in the C-SLNs. Hence, MEL encapsulation into C-SLNs towards IN route can be promising in enhancing its brain bioavailability.
Collapse
Affiliation(s)
- Hussein Akel
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - Ruba Ismail
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; Institute of Chemistry, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - Fakhara Sabir
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary.
| |
Collapse
|
26
|
El-Ganainy SO, Gowayed MA, Agami M, Mohamed P, Belal M, Farid RM, Hanafy AS. Galantamine nanoparticles outperform oral galantamine in an Alzheimer's rat model: pharmacokinetics and pharmacodynamics. NANOMEDICINE (LONDON, ENGLAND) 2021; 16:1281-1296. [PMID: 34013783 DOI: 10.2217/nnm-2021-0051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: Galantamine is an acetylcholinesterase inhibitor frequently used in Alzheimer's disease management. Its cholinergic adverse effects and rapid elimination limit its therapeutic outcomes. We investigated the pharmacodynamics and pharmacokinetics of 2-week intranasal galantamine-bound chitosan nanoparticles (G-NP) treatment in scopolamine-induced Alzheimer's disease rat model. Materials & methods: Behavioral, neurobiochemical and histopathological changes were assessed and compared with oral and nasal solutions. Brain uptake and pharmacokinetics were determined using a novel validated LC/MS assay. Results: G-NP enhanced spatial memory, exploring behavior and cholinergic transmission in rats. Beta-amyloid deposition and Notch signaling were suppressed and the histopathological degeneration was restored. G-NP potentiated galantamine brain delivery and delayed its elimination. Conclusion: G-NP hold promising therapeutic potentials and brain targeting, outperforming conventional galantamine therapy.
Collapse
Affiliation(s)
- Samar O El-Ganainy
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, 21500, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, 21500, Egypt
| | - Mahmoud Agami
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21500, Egypt
| | - Passant Mohamed
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, 21500, Egypt
| | - Marwa Belal
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Beheira, 22511, Egypt
| | - Ragwa M Farid
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, 21500, Egypt
| | - Amira S Hanafy
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, 21500, Egypt
| |
Collapse
|
27
|
Patel HP, Chaudhari PS, Gandhi PA, Desai BV, Desai DT, Dedhiya PP, Vyas BA, Maulvi FA. Nose to brain delivery of tailored clozapine nanosuspension stabilized using (+)-alpha-tocopherol polyethylene glycol 1000 succinate: Optimization and in vivo pharmacokinetic studies. Int J Pharm 2021; 600:120474. [PMID: 33737093 DOI: 10.1016/j.ijpharm.2021.120474] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 01/03/2023]
Abstract
Clozapine is widely used to treat schizophrenia as an atypical antipsychotic. Low solubility, poor dissolution rate, degradation in the gastrointestinal tract, high hepatic first-pass metabolism, and eventually less drug transfer in the brain are all issues with oral clozapine administration. On account of this poor pharmacokinetic parameters, the authors aimed to develop clozapine nanosuspension using (+)-alpha-tocopherol polyethylene glycol 1000 succinate (TPGS) and polyvinylpyrrolidone K-30 (PVP K-30) and deliver it through the intranasal route. The nanosuspension was prepared by the high-speed homogenization method with 32 full factorial design for optimization of the product. Quality Target Product Profile (QTPP) was enlisted before the product development. The amount of TPGS and speed of homogenizer were selected as independent variables whereas, particle size and drug permeation profile after 24 h (Y2, %) were selected as dependent variables. As per the results of optimization, amount of TPGS and speed of homogenizer were chosen as 0.1% and 7000 rpm, respectively. The particle size of the optimized nanosuspension of clozapine was found to be 281 nm. The conversion of clozapine crystals to an amorphous form was verified by characterization studies (XRD and DSC). The drug permeability study showed 96.15% and 41.12% clozapine release after 24 h from nanosuspension and conventional suspension, respectively. The study of nasal cilio-toxicity (histopathological studies) demonstrated the appropriateness of nanosuspension for intranasal purposes. The single-dose in vivo pharmacokinetic analysis in the rat model showed a substantial increase in the therapeutic concentration of clozapine in the brain tissue in the case of intranasal nanosuspension (dose = 0.05 mg drug/0.1 mL, Cmax = 8.62 ± 0.45 μg/g, tmax = 1 h) compared to conventional oral clozapine suspension (dose = 26.43 mg drug/0.158 mL, Cmax = 1.14 ± 0.12 μg/g, tmax = 1 h).Ultimately, in the case of an intranasal route, a 3.56-fold increase in brain drug concentration was observed with a 528-fold lower drug dose compared with oral administration. The results suggest that clozapine nanosuspension may be used for successful nose-to-brain delivery.
Collapse
Affiliation(s)
- Hetal P Patel
- Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | | | | | - Bhargavi V Desai
- Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Ditixa T Desai
- Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Praful P Dedhiya
- Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Bhavin A Vyas
- Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Furqan A Maulvi
- Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, India.
| |
Collapse
|
28
|
Altinoglu G, Adali T. Alzheimer's Disease Targeted Nano-Based Drug Delivery Systems. Curr Drug Targets 2021; 21:628-646. [PMID: 31744447 DOI: 10.2174/1389450120666191118123151] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, and is part of a massive and growing health care burden that is destroying the cognitive function of more than 50 million individuals worldwide. Today, therapeutic options are limited to approaches with mild symptomatic benefits. The failure in developing effective drugs is attributed to, but not limited to the highly heterogeneous nature of AD with multiple underlying hypotheses and multifactorial pathology. In addition, targeted drug delivery to the central nervous system (CNS), for the diagnosis and therapy of neurological diseases like AD, is restricted by the challenges posed by blood-brain interfaces surrounding the CNS, limiting the bioavailability of therapeutics. Research done over the last decade has focused on developing new strategies to overcome these limitations and successfully deliver drugs to the CNS. Nanoparticles, that are capable of encapsulating drugs with sustained drug release profiles and adjustable physiochemical properties, can cross the protective barriers surrounding the CNS. Thus, nanotechnology offers new hope for AD treatment as a strong alternative to conventional drug delivery mechanisms. In this review, the potential application of nanoparticle based approaches in Alzheimer's disease and their implications in therapy is discussed.
Collapse
Affiliation(s)
- Gülcem Altinoglu
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, P.O. Box: 99138, North Cyprus via Mersin 10, Turkey.,Tissue Engineering and Biomaterials Research Centre, Centre of Excellence, Near East University, P.O. Box: 99138, North Cyprus via Mersin 10 Turkey
| | - Terin Adali
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, P.O. Box: 99138, North Cyprus via Mersin 10, Turkey.,Tissue Engineering and Biomaterials Research Centre, Centre of Excellence, Near East University, P.O. Box: 99138, North Cyprus via Mersin 10 Turkey
| |
Collapse
|
29
|
Froelich A, Osmałek T, Jadach B, Puri V, Michniak-Kohn B. Microemulsion-Based Media in Nose-to-Brain Drug Delivery. Pharmaceutics 2021; 13:201. [PMID: 33540856 PMCID: PMC7912993 DOI: 10.3390/pharmaceutics13020201] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 12/12/2022] Open
Abstract
Nose-to-brain drug delivery has recently attracted enormous attention as an alternative to other delivery routes, including the most popular oral one. Due to the unique anatomical features of the nasal cavity, drugs administered intranasally can be delivered directly to the central nervous system. The most important advantage of this approach is the ability to avoid the blood-brain barrier surrounding the brain and blocking the entry of exogenous substances to the central nervous system. Moreover, selective brain targeting could possibly avoid peripheral side effects of pharmacotherapy. The challenges associated with nose-to-brain drug delivery are mostly due to the small volume of the nasal cavity and insufficient drug absorption from nasal mucosa. These issues could be minimized by using a properly designed drug carrier. Microemulsions as potential drug delivery systems offer good solubilizing properties and the ability to enhance drug permeation through biological membranes. The aim of this review is to summarize the current status of the research focused on microemulsion-based systems for nose-to-brain delivery with special attention to the most extensively investigated neurological and psychiatric conditions, such as neurodegenerative diseases, epilepsy, and schizophrenia.
Collapse
Affiliation(s)
- Anna Froelich
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland; (T.O.); (B.J.)
| | - Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland; (T.O.); (B.J.)
| | - Barbara Jadach
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland; (T.O.); (B.J.)
| | - Vinam Puri
- Center for Dermal Research and Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (V.P.); (B.M.-K.)
| | - Bozena Michniak-Kohn
- Center for Dermal Research and Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (V.P.); (B.M.-K.)
| |
Collapse
|
30
|
Perrelli A, Fatehbasharzad P, Benedetti V, Ferraris C, Fontanella M, De Luca E, Moglianetti M, Battaglia L, Retta SF. Towards precision nanomedicine for cerebrovascular diseases with emphasis on Cerebral Cavernous Malformation (CCM). Expert Opin Drug Deliv 2021; 18:849-876. [PMID: 33406376 DOI: 10.1080/17425247.2021.1873273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Cerebrovascular diseases encompass various disorders of the brain vasculature, such as ischemic/hemorrhagic strokes, aneurysms, and vascular malformations, also affecting the central nervous system leading to a large variety of transient or permanent neurological disorders. They represent major causes of mortality and long-term disability worldwide, and some of them can be inherited, including Cerebral Cavernous Malformation (CCM), an autosomal dominant cerebrovascular disease linked to mutations in CCM1/KRIT1, CCM2, or CCM3/PDCD10 genes.Areas covered: Besides marked clinical and etiological heterogeneity, some commonalities are emerging among distinct cerebrovascular diseases, including key pathogenetic roles of oxidative stress and inflammation, which are increasingly recognized as major disease hallmarks and therapeutic targets. This review provides a comprehensive overview of the different clinical features and common pathogenetic determinants of cerebrovascular diseases, highlighting major challenges, including the pressing need for new diagnostic and therapeutic strategies, and focusing on emerging innovative features and promising benefits of nanomedicine strategies for early detection and targeted treatment of such diseases.Expert opinion: Specifically, we describe and discuss the multiple physico-chemical features and unique biological advantages of nanosystems, including nanodiagnostics, nanotherapeutics, and nanotheranostics, that may help improving diagnosis and treatment of cerebrovascular diseases and neurological comorbidities, with an emphasis on CCM disease.
Collapse
Affiliation(s)
- Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy
| | - Parisa Fatehbasharzad
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy
| | - Valerio Benedetti
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy
| | - Chiara Ferraris
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, Torino, Italy
| | - Marco Fontanella
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Elisa De Luca
- Nanobiointeractions & Nanodiagnostics, Center for Biomolecular Nanotechnologies, Arnesano, Lecce, Italy.,Institute for Microelectronics and Microsystems (IMM), CNR, Lecce, Italy
| | - Mauro Moglianetti
- Nanobiointeractions & Nanodiagnostics, Center for Biomolecular Nanotechnologies, Arnesano, Lecce, Italy.,Istituto Italiano Di Tecnologia, Nanobiointeractions & Nanodiagnostics, Genova, Italy
| | - Luigi Battaglia
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, Torino, Italy
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy
| |
Collapse
|
31
|
Ahmad J, Rizwanullah M, Amin S, Warsi MH, Ahmad MZ, Barkat MA. Nanostructured Lipid Carriers (NLCs): Nose-to-Brain Delivery and Theranostic Application. Curr Drug Metab 2020; 21:1136-1143. [PMID: 32682366 DOI: 10.2174/1389200221666200719003304] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/19/2020] [Accepted: 05/05/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nanostructured lipid carriers (NLCs) are in high demand in the existing pharmaceutical domain due to its high versatility. It is the newer generation of lipid nanoparticulate systems having a solid matrix and greater stability at room temperature. OBJECTIVE To review the evidence related to the current state of the art of the NLCs system and its drug delivery perspectives to the brain. METHODS Scientific data search, review of the current state of the art and drug delivery perspectives to the brain for NLCs were undertaken to assess the applicability of NLCs in the management of neurological disorders through an intranasal route of drug administration. RESULTS NLCs are designed to fulfill all the industrial needs like simple technology, low cost, scalability, and quantifications. Biodegradable and biocompatible lipids and surfactants used for NLCs have rendered them acceptable from regulatory perspectives as well. Apart from these, NLCs have unique properties of high drug payload, modulation of drug release profile, minimum drug expulsion during storage, and incorporation in various dosage forms like gel, creams, granules, pellets, powders for reconstitution and colloidal dispersion. Ease of surface- modification of NLCs enhances targeting efficiency and reduces systemic toxicity by providing site-specific delivery to the brain through the intranasal route of drug administration. CONCLUSION The present review encompasses the in-depth discussion over the current state of the art of NLCs, nose-to-brain drug delivery perspectives, and its theranostic application as useful tools for better management of various neurological disorders. Further, pharmacokinetic consideration and toxicity concern is also discussed specifically for the NLCs system exploited in nose-to-brain delivery.
Collapse
Affiliation(s)
- Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Md Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Saima Amin
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Musarrat Husain Warsi
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif-Al-Haweiah 21974, Saudi Arabia
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al Jamiah, Hafr Al Batin 39524, Saudi Arabia
| |
Collapse
|
32
|
Md S, Karim S, Saker SR, Gie OA, Hooi LC, Yee PH, Kang AWC, Zhe CK, Ian N, Aldawsari HM, Hosny KM, Alhakamy NA. Current Status and Challenges in Rotigotine Delivery. Curr Pharm Des 2020; 26:2222-2232. [PMID: 32175832 DOI: 10.2174/1381612826666200316154300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
Abstract
Rotigotine is a non-ergoline, high lipophilic dopamine agonist. It is indicated as the first-line therapy for Parkinson's disease (PD) and Restless Leg Syndrome (RLS). However, the precise mechanism of rotigotine is yet to be known. Rotigotine has similar safety and tolerability to the other oral non-ergolinic dopamine antagonists in clinical trials, which include nausea, dizziness and somnolence. Neupro® was the first marketed transdermal patch formulation having rotigotine. The transdermal delivery system is advantageous as it enables continuous administration of the drug, thus providing steady-state plasma drug concentration for 24-hours. Intranasal administration of rotigotine allows the drug to bypass the blood-brain barrier enabling it to reach the central nervous system within minutes. Rotigotine can also be formulated as an extended-release microsphere for injection. Some challenges remain in other routes of rotigotine administration such as oral, parenteral and pulmonary, whereby resolving these challenges will be beneficial to patients as they are less invasive and comfortable in terms of administration. This review compiles recent work on rotigotine delivery, challenges and its future perspective.
Collapse
Affiliation(s)
- Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shahid Karim
- Department of Pharmacology, College of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sanggetha R Saker
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Ooi A Gie
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Lim C Hooi
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Phua H Yee
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Alvin W C Kang
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chen K Zhe
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Ng Ian
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Hibah M Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khaled M Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni- Suef University, Beni-Suef, Egypt
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
33
|
Development of Meloxicam-Human Serum Albumin Nanoparticles for Nose-to-Brain Delivery via Application of a Quality by Design Approach. Pharmaceutics 2020; 12:pharmaceutics12020097. [PMID: 31991767 PMCID: PMC7076499 DOI: 10.3390/pharmaceutics12020097] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to optimize the formulation of meloxicam (MEL)-containing human serum albumin (HSA) nanoparticles for nose-to-brain via a quality by design (QbD) approach. Liquid and dried formulations of nanoparticles containing Tween 80 and without the surfactant were investigated. Various properties, such as the Z-average, zeta potential, encapsulation efficacy (EE), conjugation of MEL and HSA, physical stability, in vitro dissolution, in vitro permeability, and in vivo plasma and brain distribution of MEL were characterized. From a stability point of view, a solid product (Mel-HSA-Tween) is recommended for further development since it met the desired critical parameters (176 ± 0.3 nm Z-average, 0.205 ± 0.01 PdI, -14.1 ± 0.7 mV zeta potential) after 6 months of storage. In vitro examination showed a significantly increased drug dissolution and permeability of MEL-containing nanoparticles, especially in the case of applying Tween 80. The in vivo studies confirmed both the trans-epithelial and axonal transport of nanoparticles, and a significantly higher cerebral concentration of MEL was detected with nose-to-brain delivery, in comparison with intravenous or per os administration. These results indicate intranasal the administration of optimized MEL-containing HSA formulations as a potentially applicable "value-added" product for the treatment of neuroinflammation.
Collapse
|
34
|
Rehman S, Nabi B, Zafar A, Baboota S, Ali J. Intranasal delivery of mucoadhesive nanocarriers: a viable option for Parkinson's disease treatment? Expert Opin Drug Deliv 2019; 16:1355-1366. [PMID: 31663382 DOI: 10.1080/17425247.2019.1684895] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Intranasal drug delivery is a largely unexplored, promising approach for the treatment of various neurological disorders. However, due to the challenging constraints available in the pathway of nose-to-brain delivery, finding an effective treatment for Parkinsonism is still an impending mission for research workers. This warrants development of novel treatment alternatives for Parkinson's disease (PD). Intranasal delivery of mucoadhesive nanocarriers is one such novel approach which might help in curbing the glitches associated with the currently available therapy.Areas covered: This review summarizes the evidences supporting nose-to-brain delivery of polymer-based mucoadhesive nanocarriers for the treatment of PD. A concise insight into the lipid-based mucoadhesive nanocarriers has also been presented. The recent researches have been compiled pertaining to the use of mucoadhesive nanocarrriers for improving the treatment outcomes of PD via intranasal drug delivery.Expert opinion: Although the use of nanocarrier-based strategies for site-specific delivery via intranasal route has proven effective, the magnitude of improvement remains moderate resulting in limited translation from industry to the market. Comprehensive understanding of the mucoadhesive polymer, its characteristics and mechanisms involved for an effective nose-to-brain uptake of the drug is a promising avenue to develop novel formulations for effective management of Parkinson disease.
Collapse
Affiliation(s)
- Saleha Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Bushra Nabi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Kingdom of Saudi Arabia (KSA)
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
35
|
Nose-to-brain delivery of lipid-based nanosystems for epileptic seizures and anxiety crisis. J Control Release 2019; 295:187-200. [PMID: 30610952 DOI: 10.1016/j.jconrel.2018.12.049] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/30/2018] [Accepted: 12/31/2018] [Indexed: 12/28/2022]
Abstract
Epileptic seizures and anxiety crisis are severe conditions that require fast and effective treatment, targeting the brain. Current emergency antiepiletics and anxiolytics have limited brain bioavailability, following oral, intravenous or rectal administration. This relates with the limited extent at which these drugs bypass the blood brain barrier (BBB). Thereby, the development of strategies that significantly improve the brain bioavailability of these drugs, along with a simple and safe administration by patients, attenuating and/or preventing epileptic seizures or anxiety crisis, are still a major need. In this respect, the nasal/intranasal route has been suggested as a promising strategy for drug targeting to the brain, thus avoiding the BBB. Besides, the use of lipid-based nanosystems, such as solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), liposomes, nanoemulsions and microemulsions, have been demonstrating high efficiency for nose-to-brain transport. This review highlights the potential of using lipid-based nanosystems in the management of epilepsy and anxiety, by means of the nasal/intranasal route. So far, the reported studies have shown promising results, being required more in vivo experiments to further advance for clinical trials. Furthermore, toxicological concerns related to the need of evaluate the impairment on the mucociliary clearance mechanism have been pointed.
Collapse
|
36
|
Crespo C, Liberia T, Blasco-Ibáñez JM, Nácher J, Varea E. Cranial Pair I: The Olfactory Nerve. Anat Rec (Hoboken) 2018; 302:405-427. [PMID: 29659152 DOI: 10.1002/ar.23816] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/29/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022]
Abstract
The olfactory nerve constitutes the first cranial pair. Compared with other cranial nerves, it depicts some atypical features. First, the olfactory nerve does not form a unique bundle. The olfactory axons join other axons and form several small bundles or fascicles: the fila olfactoria. These fascicles leave the nasal cavity, pass through the lamina cribrosa of the ethmoid bone and enter the brain. The whole of these fascicles is what is known as the olfactory nerve. Second, the olfactory sensory neurons, whose axons integrate the olfactory nerve, connect the nasal cavity and the brain without any relay. Third, the olfactory nerve is composed by unmyelinated axons. Fourth, the olfactory nerve contains neither Schwann cells nor oligodendrocytes wrapping its axons. But it contains olfactory ensheathing glia, which is a type of glia unique to this nerve. Fifth, the olfactory axons participate in the circuitry of certain spherical structures of neuropil that are unique in the brain: the olfactory glomeruli. Sixth, the axons of the olfactory nerve are continuously replaced and their connections in the central nervous system are remodeled continuously. Therefore, the olfactory nerve is subject to lifelong plasticity. Finally seventh, the olfactory nerve can be a gateway for the direct entrance of viruses, neurotoxins and other xenobiotics to the brain. In the same way, it can be used as a portal of entry to the brain for therapeutic substances, bypassing the blood-brain barrier. In this article, we analyze some features of the anatomy and physiology of the first cranial pair. Anat Rec, 302:405-427, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Carlos Crespo
- Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Teresa Liberia
- Departments of Neurosurgery and Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - José Miguel Blasco-Ibáñez
- Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Juan Nácher
- Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Emilio Varea
- Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| |
Collapse
|
37
|
Surface-Modified Nanocarriers for Nose-to-Brain Delivery: From Bioadhesion to Targeting. Pharmaceutics 2018; 10:pharmaceutics10010034. [PMID: 29543755 PMCID: PMC5874847 DOI: 10.3390/pharmaceutics10010034] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 01/20/2023] Open
Abstract
In the field of nasal drug delivery, nose-to-brain delivery is among the most fascinating applications, directly targeting the central nervous system, bypassing the blood brain barrier. Its benefits include dose lowering and direct brain distribution of potent drugs, ultimately reducing systemic side effects. Recently, nasal administration of insulin showed promising results in clinical trials for the treatment of Alzheimer’s disease. Nanomedicines could further contribute to making nose-to-brain delivery a reality. While not disregarding the need for devices enabling a formulation deposition in the nose’s upper part, surface modification of nanomedicines appears the key strategy to optimize drug delivery from the nasal cavity to the brain. In this review, nanomedicine delivery based on particle engineering exploiting surface electrostatic charges, mucoadhesive polymers, or chemical moieties targeting the nasal epithelium will be discussed and critically evaluated in relation to nose-to-brain delivery.
Collapse
|
38
|
Nano-carrier enabled drug delivery systems for nose to brain targeting for the treatment of neurodegenerative disorders. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.09.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Lembo D, Donalisio M, Civra A, Argenziano M, Cavalli R. Nanomedicine formulations for the delivery of antiviral drugs: a promising solution for the treatment of viral infections. Expert Opin Drug Deliv 2017; 15:93-114. [DOI: 10.1080/17425247.2017.1360863] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- David Lembo
- Department of Clinical and Biological Sciences, University of Torino, S. Luigi Gonzaga Hospital, Torino, Italy
| | - Manuela Donalisio
- Department of Clinical and Biological Sciences, University of Torino, S. Luigi Gonzaga Hospital, Torino, Italy
| | - Andrea Civra
- Department of Clinical and Biological Sciences, University of Torino, S. Luigi Gonzaga Hospital, Torino, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Torino, Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Torino, Turin, Italy
| |
Collapse
|
40
|
Khunt D, Shah B, Misra M. Role of butter oil in brain targeted delivery of Quetiapine fumarate microemulsion via intranasal route. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Katare YK, Piazza JE, Bhandari J, Daya RP, Akilan K, Simpson MJ, Hoare T, Mishra RK. Intranasal delivery of antipsychotic drugs. Schizophr Res 2017; 184:2-13. [PMID: 27913162 DOI: 10.1016/j.schres.2016.11.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 12/31/2022]
Abstract
Antipsychotic drugs are used to treat psychotic disorders that afflict millions globally and cause tremendous emotional, economic and healthcare burdens. However, the potential of intranasal delivery to improve brain-specific targeting remains unrealized. In this article, we review the mechanisms and methods used for brain targeting via the intranasal (IN) route as well as the potential advantages of improving this type of delivery. We extensively review experimental studies relevant to intranasal delivery of therapeutic agents for the treatment of psychosis and mental illnesses. We also review clinical studies in which intranasal delivery of peptides, like oxytocin (7 studies) and desmopressin (1), were used as an adjuvant to antipsychotic treatment with promising results. Experimental animal studies (17) investigating intranasal delivery of mainstream antipsychotic drugs have revealed successful targeting to the brain as suggested by pharmacokinetic parameters and behavioral effects. To improve delivery to the brain, nanotechnology-based carriers like nanoparticles and nanoemulsions have been used in several studies. However, human studies assessing intranasal delivery of mainstream antipsychotic drugs are lacking, and the potential toxicity of nanoformulations used in animal studies has not been explored. A brief discussion of future directions anticipates that if limitations of low aqueous solubility of antipsychotic drugs can be overcome and non-toxic formulations used, IN delivery (particularly targeting specific tissues within the brain) will gain more importance moving forward given the inherent benefits of IN delivery in comparison to other methods.
Collapse
Affiliation(s)
- Yogesh K Katare
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Justin E Piazza
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Jayant Bhandari
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Ritesh P Daya
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Kosalan Akilan
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Madeline J Simpson
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Ram K Mishra
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
42
|
Escalona-Rayo O, Fuentes-Vázquez P, Leyva-Gómez G, Cisneros B, Villalobos R, Magaña JJ, Quintanar-Guerrero D. Nanoparticulate strategies for the treatment of polyglutamine diseases by halting the protein aggregation process. Drug Dev Ind Pharm 2017; 43:871-888. [PMID: 28142290 DOI: 10.1080/03639045.2017.1281949] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polyglutamine (polyQ) diseases are a class of neurodegenerative disorders that cause cellular dysfunction and, eventually, neuronal death in specific regions of the brain. Neurodegeneration is linked to the misfolding and aggregation of expanded polyQ-containing proteins, and their inhibition is one of major therapeutic strategies used commonly. However, successful treatment has been limited to date because of the intrinsic properties of therapeutic agents (poor water solubility, low bioavailability, poor pharmacokinetic properties), and difficulty in crossing physiological barriers, including the blood-brain barrier (BBB). In order to solve these problems, nanoparticulate systems with dimensions of 1-1000 nm able to incorporate small and macromolecules with therapeutic value, to protect and deliver them directly to the brain, have recently been developed, but their use for targeting polyQ disease-mediated protein misfolding and aggregation remains scarce. This review provides an update of the polyQ protein aggregation process and the development of therapeutic strategies for halting it. The main features that a nanoparticulate system should possess in order to enhance brain delivery are discussed, as well as the different types of materials utilized to produce them. The final part of this review focuses on the potential application of nanoparticulate system strategies to improve the specific and efficient delivery of therapeutic agents to the brain for the treatment of polyQ diseases.
Collapse
Affiliation(s)
- Oscar Escalona-Rayo
- a Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México (UNAM) , Cuautitlán Izcalli , Mexico
| | - Paulina Fuentes-Vázquez
- a Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México (UNAM) , Cuautitlán Izcalli , Mexico
| | - Gerardo Leyva-Gómez
- b Laboratory of Connective Tissue , CENIAQ, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra , Mexico City , Mexico
| | - Bulmaro Cisneros
- c Department of Genetics and Molecular Biology , CINVESTAV-IPN , Mexico City , Mexico
| | - Rafael Villalobos
- d División de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México (UNAM) , Cuautitlán Izcalli , Mexico
| | - Jonathan J Magaña
- e Laboratory of Genomic Medicine, Department of Genetics , Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra , Mexico City , Mexico
| | - David Quintanar-Guerrero
- a Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México (UNAM) , Cuautitlán Izcalli , Mexico
| |
Collapse
|
43
|
Zhang TT, Li W, Meng G, Wang P, Liao W. Strategies for transporting nanoparticles across the blood-brain barrier. Biomater Sci 2017; 4:219-29. [PMID: 26646694 DOI: 10.1039/c5bm00383k] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The existence of blood-brain barrier (BBB) hampers the effective treatment of central nervous system (CNS) diseases. Almost all macromolecular drugs and more than 98% of small molecule drugs cannot pass the BBB. Therefore, the BBB remains a big challenge for delivery of therapeutics to the central nervous system. With the structural and mechanistic elucidation of the BBB under both physiological and pathological conditions, it is now possible to design delivery systems that could cross the BBB effectively. Because of their advantageous properties, nanoparticles have been widely deployed for brain-targeted delivery. This review paper presents the current understanding of the BBB under physiological and pathological conditions, and summarizes strategies and systems for BBB crossing with a focus on nanoparticle-based drug delivery systems. In summary, with wider applications and broader prospection the treatment of brain targeted therapy, nano-medicines have proved to be more potent, more specific and less toxic than traditional drug therapy.
Collapse
Affiliation(s)
- Tian-Tian Zhang
- Department of Food Science and Technology, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong, China.
| | - Wen Li
- IHRC, Inc., 2 Ravinia Dr NE, Atlanta, GA 30346, USA
| | - Guanmin Meng
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, 234 Gucui Road, Hangzhou 310012, China
| | - Pei Wang
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, USA
| | - Wenzhen Liao
- Department of Food Science and Technology, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong, China.
| |
Collapse
|
44
|
Essential Oils May Lead α-Synuclein towards Toxic Fibrils Formation. PARKINSONS DISEASE 2016; 2016:6219249. [PMID: 27313947 PMCID: PMC4894988 DOI: 10.1155/2016/6219249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/10/2016] [Accepted: 03/27/2016] [Indexed: 11/17/2022]
Abstract
α-Synuclein (α-Syn) fibrillation links with Parkinson's disease (PD) and several related syndromes. It is believed that exposure to the factors which promote fibrillation may induce and progress such neurodegenerative diseases (NDs). Herein, the effects of some wildly used essential oils including Myrtus communis (M. communis) on α-Syn fibrillation were examined. M. communis particularly increased α-Syn fibrillation in a concentration dependent manner. Given that applications of M. communis are very extensive in Asian societies, especially Zoroastrians, this study was extended towards its role on α-Syn fibrillation/cytotoxicity. By using a unilamellar vesicle, it was shown that the aggregated species with tendency to perturb membrane were increased in the presence of M. communis. In this regard, the cytotoxicity of α-Syn on SH-SH5Y cells was also increased significantly. Inappropriately, the effects of fibrillation inhibitors, baicalein and cuminaldehyde, were modulated in the presence of M. communis. However, major components of M. communis did not induce fibrillation and also the effect of M. communis was limited on other fibrinogenic proteins. Assuming that essential oils have the ability to pass through the blood brain barrier (BBB) along with the popular attention on aromatherapy for the incurable ND, these findings suggest an implementation of fibrillation tests for essential oils.
Collapse
|
45
|
"Application of Box-Behnken design for optimization and development of quetiapine fumarate loaded chitosan nanoparticles for brain delivery via intranasal route* ". Int J Biol Macromol 2016; 89:206-18. [PMID: 27130654 DOI: 10.1016/j.ijbiomac.2016.04.076] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/23/2016] [Accepted: 04/25/2016] [Indexed: 01/01/2023]
Abstract
The objective of the present investigation was to optimize and develop quetiapine fumarate (QF) loaded chitosan nanoparticles (QF-NP) by ionic gelation method using Box-Behnken design. Three independent variables viz., X1-Concentration of chitosan, X2-Concentration of sodium tripolyphosphate and X3-Volume of sodium tripolyphosphate were taken to investigate their effect on dependent variables (Y1-Size, Y2-PDI and Y3-%EE). Optimized formula of QF-NP was selected from the design space which was further evaluated for physicochemical, morphological, solid state characterization, nasal diffusion and in-vivo distribution for brain targeting following non-invasive intranasal administration. The average particle size, PDI, %EE and nasal diffusion were found to be 131.08±7.45nm, 0.252±0.064, 89.93±3.85% and 65.24±5.26% respectively. Neither toxicity nor structural damage on nasal mucosa was observed upon histopathological examination. Significantly higher brain/blood ratio and 2 folds higher nasal bioavailability in brain with QF-NP in comparison to drug solution following intranasal administration revealed preferential nose to brain transport bypassing blood-brain barrier and prolonged retention of QF at site of action suggesting superiority of chitosan as permeability enhancer. Overall, the above finding shows promising results in the area of developing non-invasive intranasal route as an alternative to oral route for brain delivery.
Collapse
|
46
|
Hanafy AS, Farid RM, Helmy MW, ElGamal SS. Pharmacological, toxicological and neuronal localization assessment of galantamine/chitosan complex nanoparticles in rats: future potential contribution in Alzheimer’s disease management. Drug Deliv 2016; 23:3111-3122. [DOI: 10.3109/10717544.2016.1153748] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Amira S. Hanafy
- Department of Pharmaceutics and Drug Manufacturing, Faculty of Pharmacy & Drug Manufacturing, Pharos University in Alexandria (PUA), Alexandria, Egypt,
| | - Ragwa M. Farid
- Department of Pharmaceutics and Drug Manufacturing, Faculty of Pharmacy & Drug Manufacturing, Pharos University in Alexandria (PUA), Alexandria, Egypt,
| | - Maged W. Helmy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Damanhour University, Damanhur, Egypt, and
| | - Safaa S. ElGamal
- Department of Pharmaceutics, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt
| |
Collapse
|