1
|
Nuermaimaiti A, Chang L, Yan Y, Sun H, Xiao Y, Song S, Feng K, Lu Z, Ji H, Wang L. The role of sex hormones and receptors in HBV infection and development of HBV-related HCC. J Med Virol 2023; 95:e29298. [PMID: 38087447 DOI: 10.1002/jmv.29298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/02/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023]
Abstract
Gender disparity in hepatitis B virus (HBV)-related diseases has been extensively documented. Epidemiological studies consistently reported that males have a higher prevalence of HBV infection and incidence of hepatocellular carcinoma (HCC). Further investigations have revealed that sex hormone-related signal transductions play a significant role in gender disparity. Sex hormone axes showed significantly different responses to virus entry and replication. The sex hormones axes change the HBV-specific immune responses and antitumor immunity. Additionally, Sex hormone axes showed different effects on the development of HBV-related disease. But the role of sex hormones remains controversial, and researchers have not reached a consensus on the role of sex hormones and the use of hormone therapies in HCC treatment. In this review, we aim to summarize the experimental findings on sex hormones and provide a comprehensive understanding of their roles in the development of HCC and their implications for hormone-related HCC treatment.
Collapse
Affiliation(s)
- Abudulimutailipu Nuermaimaiti
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Le Chang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Ying Yan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Huizhen Sun
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yingzi Xiao
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shi Song
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kaihao Feng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhuoqun Lu
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Huimin Ji
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Lunan Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Cristi F, Gutiérrez T, Hitt MM, Shmulevitz M. Genetic Modifications That Expand Oncolytic Virus Potency. Front Mol Biosci 2022; 9:831091. [PMID: 35155581 PMCID: PMC8826539 DOI: 10.3389/fmolb.2022.831091] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/06/2022] [Indexed: 12/20/2022] Open
Abstract
Oncolytic viruses (OVs) are a promising type of cancer therapy since they selectively replicate in tumor cells without damaging healthy cells. Many oncolytic viruses have progressed to human clinical trials, however, their performance as monotherapy has not been as successful as expected. Importantly, recent literature suggests that the oncolytic potential of these viruses can be further increased by genetically modifying the viruses. In this review, we describe genetic modifications to OVs that improve their ability to kill tumor cells directly, to dismantle the tumor microenvironment, or to alter tumor cell signaling and enhance anti-tumor immunity. These advances are particularly important to increase virus spread and reduce metastasis, as demonstrated in animal models. Since metastasis is the principal cause of mortality in cancer patients, having OVs designed to target metastases could transform cancer therapy. The genetic alterations reported to date are only the beginning of all possible improvements to OVs. Modifications described here could be combined together, targeting multiple processes, or with other non-viral therapies with potential to provide a strong and lasting anti-tumor response in cancer patients.
Collapse
Affiliation(s)
- Francisca Cristi
- Shmulevitz Laboratory, Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Tomás Gutiérrez
- Goping Laboratory, Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mary M. Hitt
- Hitt Laboratory, Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Mary M. Hitt, ; Maya Shmulevitz,
| | - Maya Shmulevitz
- Shmulevitz Laboratory, Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Mary M. Hitt, ; Maya Shmulevitz,
| |
Collapse
|
3
|
Dunn J, Lenis VP, Hilton DA, Warta R, Herold-Mende C, Hanemann CO, Futschik ME. Integration and Comparison of Transcriptomic and Proteomic Data for Meningioma. Cancers (Basel) 2020; 12:E3270. [PMID: 33167358 PMCID: PMC7694371 DOI: 10.3390/cancers12113270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
Meningioma are the most frequent primary intracranial tumour. Management of aggressive meningioma is complex, and development of effective biomarkers or pharmacological interventions is hampered by an incomplete knowledge of molecular landscape. Here, we present an integrated analysis of two complementary omics studies to investigate alterations in the "transcriptome-proteome" profile of high-grade (III) compared to low-grade (I) meningiomas. We identified 3598 common transcripts/proteins and revealed concordant up- and downregulation in grade III vs. grade I meningiomas. Concordantly upregulated genes included FABP7, a fatty acid binding protein and the monoamine oxidase MAOB, the latter of which we validated at the protein level and established an association with Food and Drug Administration (FDA)-approved drugs. Notably, we derived a plasma signature of 21 discordantly expressed genes showing positive changes in protein but negative in transcript levels of high-grade meningiomas, including the validated genes CST3, LAMP2, PACS1 and HTRA1, suggesting the acquisition of these proteins by tumour from plasma. Aggressive meningiomas were enriched in processes such as oxidative phosphorylation and RNA metabolism, whilst concordantly downregulated genes were related to reduced cellular adhesion. Overall, our study provides the first transcriptome-proteome characterisation of meningioma, identifying several novel and previously described transcripts/proteins with potential grade III biomarker and therapeutic significance.
Collapse
Affiliation(s)
- Jemma Dunn
- Faculty of Health: Medicine, Dentistry and Human Sciences, The Institute of Translational and Stratified Medicine, University of Plymouth, The John Bull Building, Plymouth Science Park, Research Way, Plymouth PL6 8BU, UK;
| | - Vasileios P. Lenis
- School of Health & Life Sciences, Centuria Building, Teesside University, Middlesbrough, Tees Valley TS1 3BX, UK;
| | - David A. Hilton
- Cellular and Anatomical Pathology, Plymouth Hospitals NHS Trust, Derriford Road, Plymouth PL6 8BU, UK;
| | - Rolf Warta
- Department of Neurosurgery, Division of Experimental Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (R.W.); (C.H.-M.)
| | - Christel Herold-Mende
- Department of Neurosurgery, Division of Experimental Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (R.W.); (C.H.-M.)
| | - C. Oliver Hanemann
- Faculty of Health: Medicine, Dentistry and Human Sciences, The Institute of Translational and Stratified Medicine, University of Plymouth, The John Bull Building, Plymouth Science Park, Research Way, Plymouth PL6 8BU, UK;
| | - Matthias E. Futschik
- Faculty of Medicine, School of Public Health, Imperial College London, Medical School, St Mary’s Hospital, Praed Street, London W2 1NY, UK
| |
Collapse
|
4
|
CADM1 inhibits ovarian cancer cell proliferation and migration by potentially regulating the PI3K/Akt/mTOR pathway. Biomed Pharmacother 2019; 123:109717. [PMID: 31865146 DOI: 10.1016/j.biopha.2019.109717] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022] Open
Abstract
Previous studies have shown that cell adhesion molecule 1 (CADM1), an immunoglobulin superfamily member, is frequently inactivated but functions as a tumor suppressor in many solid tumors. However, the characterization of CADM1 expression in ovarian cancer cells and the mechanisms of its tumor suppressor function are not fully understood. We generated ovarian cancer cell lines in which CADM1 was stably upregulated or downregulated. CADM1 expression was significantly decreased in ovarian cancer tissue and cells lines. Functionally, knockdown of CADM1 promoted the growth, migration and invasion of ovarian cancer cells. Conversely, further experimental evidence indicated that overexpression of CADM1 inhibited the migration and invasion of ovarian cancer cells potentially through inhibition of the PI3K/Akt/mTOR signaling pathway by regulating upstream regulators (LXR/RXR, IGF1, IFI44L and C4BPA) and downstream effectors (APP, EDN1, TGFBI and Rap1A). In conclusion, CADM1 inhibits ovarian cancer cell proliferation and migration by potentially regulating the PI3K/Akt/mTOR signaling pathway. CADM1 could be a potential therapeutic target for ovarian cancer.
Collapse
|
5
|
Zhang G, Zhong L, Luo H, Wang S. MicroRNA-155-3p promotes breast cancer progression through down-regulating CADM1. Onco Targets Ther 2019; 12:7993-8002. [PMID: 31579252 PMCID: PMC6773971 DOI: 10.2147/ott.s206180] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND/PURPOSE Cell adhesion molecule 1 (CADM1) functions as a tumor suppressor and has been identified to be frequently inactivated in breast cancer, and closely associated with patients' poor prognosis and advanced TNM stage. However, the mechanisms underlying CADM1 in breast cancer progression remains incompletely clear. miR-155, a predicted modulator of CADM1 was reported to be overexpressed in breast cancer, and its high expression level was closely related to the malignant progression of breast cancer. The present study aimed to explore whether miR-155-3p could modulate CADM1 expression and then involved in the progression of breast cancer. METHODS The expression patterns of miR-155-3p in breast cancer tissues and cell lines were determined by RT-PCR technology. The relationship between CADM1 and miR-155-3p were determined by the luciferase gene reporter and Western Blot (WB) assays. Cell proliferation, apoptosis rates and tumorigenesis were determined by CCK-8, flow cytometry and in vivo xenotransplanation experiments, respectively. RESULTS miR-155-3p was up-regulated in breast cancer tissues and cells when compared to the adjacent normal tissues and normal breast MCF 10A cells. The mRNA and protein levels of CADM1 showed opposite expression patterns to that of miR-155-3p expression detected, and miR-155-3p could negatively regulate CADM1 expression in breast cancer MCF-7 cells. Moreover, gain-of function assay showed that overexpression of miR-155-3p promoted cell proliferation, tumorigenesis and repressed cell apoptosis, but these effects were all significantly impaired when the cells were simultaneously transfected with OE-CADM1, the overexpressing vector of CADM1. CONCLUSION This study revealed that miR-155-3p could accelerate the progression of breast cancer via down-regulation of CADM1 expression.
Collapse
Affiliation(s)
- Guochao Zhang
- Department of Breast and Thyroid Surgery, Affiliated Jining No. 1 People’s Hospital of Jining Medical University, Jining Medical University, Jining, Shandong272011, People’s Republic of China
| | - Lele Zhong
- Department of Breast and Thyroid Surgery, Affiliated Jining No. 1 People’s Hospital of Jining Medical University, Jining Medical University, Jining, Shandong272011, People’s Republic of China
| | - Hao Luo
- Department of Breast and Thyroid Surgery, Affiliated Jining No. 1 People’s Hospital of Jining Medical University, Jining Medical University, Jining, Shandong272011, People’s Republic of China
| | - Shibing Wang
- Department of Breast and Thyroid Surgery, Affiliated Jining No. 1 People’s Hospital of Jining Medical University, Jining Medical University, Jining, Shandong272011, People’s Republic of China
| |
Collapse
|
6
|
Yin GW, Xia XX, Song FJ, Huang YH. Expression of Wnt-1 and TSLC1 in condyloma acuminatum. Clin Exp Dermatol 2019; 44:620-624. [PMID: 30793382 DOI: 10.1111/ced.13862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Despite its high contagiousness, high recurrence rate and potential for malignant transformation, effective treatments for condyloma acuminatum (CA) have not yet been developed. Accordingly, it is necessary to clarify the mechanisms underlying CA development. AIM To investigate the expression and significance of the proteins Wnt-1 and TSLC1 in patients with CA and in normal foreskin controls. METHODS Wnt-1 and TSLC1 were assessed by immunohistochemistry in 45 patients with CA. RESULTS Positive expression rates of Wnt-1 and TSLC1 were 82.22% (37/45) and 37.78% (17/45), respectively, in CA tissues, and 29.17% (7/24) and 91.67% (22/24), respectively, in normal foreskin controls. Wnt-1 expression intensity in CA was markedly higher (positive to strongly positive) than that in normal controls (negative to weakly positive), whereas TSLC1 expression intensity ranged from weakly positive to positive in CA, and nearly strongly positive in the normal control group. The differences in the positive expression rate and expression intensity of Wnt-1 and TSLC1 between the two groups were statistically significant (P < 0.05). In addition, Wnt-1 and TSLC1 were negatively correlated. (r = -0.336, P < 0.05). CONCLUSIONS Overexpression of Wnt-1 and low expression of TSLC1 may be associated with the growth of CA. These findings may provide a basis for the development of therapies to prevent recurrence or malignant transformation of CA.
Collapse
Affiliation(s)
- G W Yin
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - X X Xia
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - F J Song
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Y H Huang
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Identification of genes underlying the enhancement of immunity by a formula of lentinan, pachymaran and tremelia polysaccharides in immunosuppressive mice. Sci Rep 2018; 8:10082. [PMID: 29973708 PMCID: PMC6031631 DOI: 10.1038/s41598-018-28414-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/27/2018] [Indexed: 12/13/2022] Open
Abstract
The efficacy of polysaccharides is widespread, especially in immune regulation. However, the genetic basis of the changes in polysaccharides regulating immunity is unclear. To obtain genome-wide insights into transcriptome changes and regulatory networks, we designed a polysaccharide formula, comprising lentinan, pachymaran and tremelia, to increase the availability of their optimized active sites. In this case, we focused on a model of immunosuppression to investigate genes by digital gene expression (DGE) tag profiling in T and B cells. These genes were further validated by qRT-PCR and Western blot experiments. Consequently, polysaccharide formula treatment helped to recover the expression of immune-related genes, including CADM1, CCR2, IGLL1, LIGP1, and FCGR3, FCGR2 in B cells, as well as S100A8, S100A9, ChIL3, MMP8 and IFITM3 in T cells. These results suggest that treatment with polysaccharides improves the immunity of immunosuppressive mice by regulating genes associated with T and B cell functions.
Collapse
|
8
|
Kwekel JC, Vijay V, Han T, Moland CL, Desai VG, Fuscoe JC. Sex and age differences in the expression of liver microRNAs during the life span of F344 rats. Biol Sex Differ 2017; 8:6. [PMID: 28174625 PMCID: PMC5291947 DOI: 10.1186/s13293-017-0127-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/27/2017] [Indexed: 12/19/2022] Open
Abstract
Background Physiological factors such as age and sex have been shown to be risk factors for adverse effects in the liver, including liver diseases and drug-induced liver injury. Previously, we have reported age- and sex-related significant differences in hepatic basal gene expression in rats during the life span that may be related to susceptibility to such adverse effects. However, the underlying mechanisms of the gene expression changes were not fully understood. In recent years, increasing evidence for epigenetic mechanisms of gene regulation has fueled interest in the role of microRNAs (miRNAs) in toxicogenomics and biomarker discovery. We therefore proposed that significant age and sex differences exist in baseline liver miRNA expression, and that comprehensive profiling of miRNAs will provide insights into the epigenetic regulation of gene expression in rat liver. Methods To address this, liver tissues from male and female F344 rats were examined at 2, 5, 6, 8, 15, 21, 52, 78, and 104 weeks of age for the expression of 677 unique miRNAs. Following data processing, predictive pathway analysis was performed on selected miRNAs that exhibited prominent age and/or sex differences in expression. Results Of the 314 miRNAs found to be expressed, 214 were differentially expressed; 65 and 212 miRNAs showed significant (false discovery rate (FDR) <5% and ≥1.5-fold change) sex- and age-related differences in expression, respectively. Thirty-eight miRNAs showed 2-week-specific expression, of which 31 miRNAs were found to be encoded within the Dlk1-Dio3 cluster located on chromosome 6. This cluster has been associated with tissue proliferation and differentiation, and liver energy homeostasis in postnatal development. Predictive pathway analysis linked sex-biased miRNA expression with sexually dimorphic molecular functions and toxicological functions that may reflect sex differences in hepatic physiology and disease. The expression of miRNAs (miR-18a, miR-99a, and miR-203, miR-451) was also found to associate with specific sexually dimorphic hepatic histopathology. The expression of miRNAs involved in regulating cell death, cell proliferation, and cell cycle was found to change as the rats matured from adult to old age. Conclusions Overall, significant age- and sex-related differences in liver miRNA expression were identified and linked to histopathological findings and predicted functional pathways that may underlie susceptibilities to liver toxicity and disease. Electronic supplementary material The online version of this article (doi:10.1186/s13293-017-0127-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joshua C Kwekel
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR USA.,Present address: Department of Math & Science, Central Baptist College, Conway, AR USA
| | - Vikrant Vijay
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR USA
| | - Tao Han
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR USA
| | - Carrie L Moland
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR USA
| | - Varsha G Desai
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR USA
| | - James C Fuscoe
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR USA
| |
Collapse
|
9
|
Chen Y, Yang Y, Liu L, Wang S, Song H, Liu X. Tumor Suppressor in Lung Cancer-1 Is a Prognostic Predictor for the Recurrence and Progression of Non-Muscle-Invasive Bladder Cancer. Urol Int 2015; 96:142-7. [PMID: 26894268 DOI: 10.1159/000438492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/09/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To investigate the relationship between the expression of tumor suppressor in lung cancer-1 (TSLC1) and clinicopathological characteristics of patients with non-muscle-invasive bladder cancer (NMIBC) and evaluate the prognostic significance of TSLC1. METHODS TSLC1 expression in 241 specimens of NMIBC was examined by immunohistochemistry. The correlation between TSLC1 expression and clinicopathological characteristics was evaluated using the chi-square test. The prognostic significance of TSLC1 was analyzed by univariate, multivariate analysis and Kaplan-Meier survival curves. RESULTS The total negative rate of TSLC1 expression was 47.3% in NMIBC. Decreased expression of TSLC1 was correlated with a higher clinical stage, higher pathological grade, the number of tumors, lager tumor size, tumor recurrence and progression. TSLC1 expression was an independent risk factor for predicting tumor recurrence (p = 0.005) and progression (p < 0.001). CONCLUSION Decreased expression of TSLC1 is correlated with the malignancy of NMIBC tissues and low TSLC1 expression may serve as a predictor for bladder cancer recurrence and progression.
Collapse
Affiliation(s)
- Yegang Chen
- Department of Urology, Second Hospital of Tianjin Medical University and Tianjin Institute of Urology, Tianjin, China
| | | | | | | | | | | |
Collapse
|
10
|
Tian YE, Xie XU, Lin Y, Tan G, Zhong WU. Androgen receptor in hepatocarcinogenesis: Recent developments and perspectives. Oncol Lett 2015; 9:1983-1988. [PMID: 26136999 DOI: 10.3892/ol.2015.3025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 02/13/2015] [Indexed: 02/06/2023] Open
Abstract
Previous studies have indicated that males are at a higher risk of developing hepatocellular carcinoma (HCC) compared with females. Identifying the factors that cause this gender-specific difference in the incidence of HCC has long been considered important for revealing the molecular mechanisms involved in hepatocarcinogenesis. Given the unprecedented tools that are now available for molecular research, genetic studies have established that the androgen receptor (AR) may be partly responsible for gender disparity in HCC. AR has a dual role, promoting HCC initiation and development, as well as suppressing HCC metastasis. The present review provides an overview of the involvement of AR signaling in HCC. The review highlighted important studies, examples of the direct AR transcriptional target genes involved in HCC and novel theories concerning the conventional concept, suggesting that targeting the AR, rather than the androgen, may provide an improved therapeutic approach for the treatment of HCC.
Collapse
Affiliation(s)
- Y E Tian
- Department of Emergency Medicine, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, P.R. China
| | - X U Xie
- Department of General Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yao Lin
- Department of Urology, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Guang Tan
- Department of General Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - W U Zhong
- Department of Emergency Medicine, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
11
|
Wikman H, Westphal L, Schmid F, Pollari S, Kropidlowski J, Sielaff-Frimpong B, Glatzel M, Matschke J, Westphal M, Iljin K, Huhtala H, Terracciano L, Kallioniemi A, Sauter G, Müller V, Witzel I, Lamszus K, Kemming D, Pantel K. Loss of CADM1 expression is associated with poor prognosis and brain metastasis in breast cancer patients. Oncotarget 2015; 5:3076-87. [PMID: 24833255 PMCID: PMC4102793 DOI: 10.18632/oncotarget.1832] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Breast cancer brain metastases (BCBM) are detected with increasing incidence. In order to detect potential genes involved in BCBM, we first screened for genes down-regulated by methylation in cell lines with site-specific metastatic ability. The expression of five genes, CADM1, SPARC, RECK, TNFAIP3 and CXCL14, which were also found down-regulated in gene expression profiling analyses of BCBM tissue samples, was verified by qRT-PCR in a larger patient cohort. CADM1 was chosen for further down-stream analyses. A higher incidence of CADM1 methylation, correlating with lower expression levels, was found in BCBM as compared to primary BC. Loss of CADM1 protein expression was detected most commonly among BCBM samples as well as among primary tumors with subsequent brain relapse. The prognostic role of CADM1 expression was finally verified in four large independent breast cancer cohorts (n=2136). Loss of CADM1 protein expression was associated with disease stage, lymph node status, and tumor size in primary BC. Furthermore, all analyses revealed a significant association between loss of CADM1 and shorter survival. In multivariate analyses, survival was significantly shorter among patients with CADM1-negative tumors. Loss of CADM1 expression is an independent prognostic factor especially associated with the development of brain metastases in breast cancer patients.
Collapse
Affiliation(s)
- Harriet Wikman
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Tomimaru Y, Koga H, Yano H, de la Monte S, Wands JR, Kim M. Upregulation of T-cell factor-4 isoform-responsive target genes in hepatocellular carcinoma. Liver Int 2013; 33:1100-12. [PMID: 23651211 PMCID: PMC3706555 DOI: 10.1111/liv.12188] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 04/01/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND The Wnt/β-catenin signalling pathway regulates genes involved in cell proliferation, survival, migration and invasion through regulation by T-cell factor (TCF)-4 transcription factor proteins. However, the role of TCF-4 isoforms generated by alternative splicing events in hepatocellular carcinoma (HCC) is unknown. AIM Here, we investigated TCF-4 isoforms (TCF-4J and K)-responsive target genes that are important in hepatic oncogenesis and tumour development. METHODS Gene expression microarray was performed on HCC cells overexpressing TCF-4J and K isoforms. Expression level of selected target genes was evaluated and correlations were made between their expression level and that of TCF-4 isoform in 47 pairs of human HCC tumours. RESULTS Comparison by gene expression microarray revealed that 447 genes were upregulated and 343 downregulated more than 2.0-fold in TCF-4J compared with TCF-4K expressing cells. We validated expression of 18 selected target genes involved in Wnt/β-catenin, insulin/IGF-1/IRS1 and Notch signalling pathways in 47 pairs of human HCCs and adjacent uninvolved liver tissues. It was observed that 13 genes (CLDN2, STK17B, SPP1, AXIN2, WISP2, MMP7, IRS1, ANXA1, CAMK2N1, ASPH, GPR56, CD24 and JAG1) activated by TCF-4J isoform in HCC cells, were also upregulated in HCC tumours compared with adjacent peritumour tissue; more importantly, 10 genes exhibited a significant correlation with the TCF-4J expression level in tumour. CONCLUSION TCF-4 isoforms (TCF-4J and K) activated different downstream target genes in HCC. The biological consequence of TCF-4J isoform expression was upregulation of genes associated with tripartite Wnt/β-catenin, insulin/IGF-1/IRS1 and Notch signal transduction pathway activation, which contribute to the pathogenesis of HCC.
Collapse
Affiliation(s)
- Yoshito Tomimaru
- Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Hironori Koga
- Division of Gastroenterology, Department of Medicine, Kurume University of School of Medicine, Kurume, Japan
| | - Hirohisa Yano
- Department of Pathology, Kurume University of School of Medicine, Kurume, Japan
| | - Suzanne de la Monte
- Department of Pathology, the Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Jack R. Wands
- Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Miran Kim
- Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
13
|
Liang QL, Wang BR, Li ZY, Chen GQ, Zhou Y. Effect of TSLC1 gene on growth and apoptosis in human esophageal carcinoma Eca109 cells. Arch Med Sci 2012; 8:987-92. [PMID: 23319971 PMCID: PMC3542483 DOI: 10.5114/aoms.2012.31251] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 10/14/2011] [Accepted: 01/02/2012] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION To explore the effect of tumor suppressor in lung cancer 1 (TSLC1) on proliferation and apoptosis in esophageal cancer Eca109 cells. MATERIAL AND METHODS Eca109 cells were divided into three groups: TSLC1 transfected group (TTG), mock group (MG) and untransfected group (UTG). The TTG and MG were transfected transiently with the pIRES2-EGFP-TSLC1 eukaryotic expression vector and pIRES2-EGFP vector respectively. The UTG was a blank control. The TSLC1 expression in TTG was analyzed with the fluorogram and RT-PCR method. Cell proliferation was measured with 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium (MTT) assay. Cell cycle was measured by flow cytometry (FCM). Cell apoptosis was detected by Annexin-V/PI double staining FCM. RESULTS Green color was found in TTG and MG. The band of TSLC1 mRNA of TTG was located at about 1400 bp by RT-PCR and agarose gel electrophoresis assay. The TSLC1 inhibited cell proliferation significantly in MTT assay, and the cell proliferation was slower in TTG than MG and UTG. After TSLC1 transfection, cell numbers increased in G0/G1 phase and decreased in S phase. Forty-eight hours after transfection, the apoptosis rate and death rate of TTG were higher than MG and UTG. Thus TSLC1 induced Eca109 cells to apoptosis. CONCLUSIONS The TSLC1 gene had a potent effect on cell proliferation inhibition, G1/S cell cycle arrest and induction of cell apoptosis in Eca109 cells.
Collapse
Affiliation(s)
- Qi-Lian Liang
- Department of Oncology, Affiliated Hospital, Guangdong Medical College, Zhanjiang, China
| | - Bi-Rong Wang
- Department of Chemotherapy, Affiliated Tumor Hospital, Guangzhou Medical College, Guangzhou, China
| | - Zhou-Yu Li
- Department of Radiotherapy, Affiliated Tumor Hospital, Guangzhou Medical College, Guangzhou, China
| | - Guo-Qiang Chen
- Department of Oncology, Affiliated Hospital, Guangdong Medical College, Zhanjiang, China
| | - Yuan Zhou
- Department of Oncology, Affiliated Hospital, Guangdong Medical College, Zhanjiang, China
| |
Collapse
|
14
|
Buraschi S, Neill T, Owens RT, Iniguez LA, Purkins G, Vadigepalli R, Evans B, Schaefer L, Peiper SC, Wang ZX, Iozzo RV. Decorin protein core affects the global gene expression profile of the tumor microenvironment in a triple-negative orthotopic breast carcinoma xenograft model. PLoS One 2012; 7:e45559. [PMID: 23029096 PMCID: PMC3446891 DOI: 10.1371/journal.pone.0045559] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/21/2012] [Indexed: 12/21/2022] Open
Abstract
Decorin, a member of the small leucine-rich proteoglycan gene family, exists and functions wholly within the tumor microenvironment to suppress tumorigenesis by directly targeting and antagonizing multiple receptor tyrosine kinases, such as the EGFR and Met. This leads to potent and sustained signal attenuation, growth arrest, and angiostasis. We thus sought to evaluate the tumoricidal benefits of systemic decorin on a triple-negative orthotopic breast carcinoma xenograft model. To this end, we employed a novel high-density mixed expression array capable of differentiating and simultaneously measuring gene signatures of both Mus musculus (stromal) and Homo sapiens (epithelial) tissue origins. We found that decorin protein core modulated the differential expression of 374 genes within the stromal compartment of the tumor xenograft. Further, our top gene ontology classes strongly suggests an unexpected and preferential role for decorin protein core to inhibit genes necessary for immunomodulatory responses while simultaneously inducing expression of those possessing cellular adhesion and tumor suppressive gene properties. Rigorous verification of the top scoring candidates led to the discovery of three genes heretofore unlinked to malignant breast cancer that were reproducibly found to be induced in several models of tumor stroma. Collectively, our data provide highly novel and unexpected stromal gene signatures as a direct function of systemic administration of decorin protein core and reveals a fundamental basis of action for decorin to modulate the tumor stroma as a biological mechanism for the ascribed anti-tumorigenic properties.
Collapse
Affiliation(s)
- Simone Buraschi
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Rick T. Owens
- LifeCell Corporation, Branchburg, New Jersey, United States of America
| | - Leonardo A. Iniguez
- Roche NimbleGen, Inc., Research and Development, Madison, Wisconsin, United States of America
| | - George Purkins
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Rajanikanth Vadigepalli
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Barry Evans
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Liliana Schaefer
- Department of Pharmacology, Goethe University, Frankfurt, Germany
| | - Stephen C. Peiper
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Zi-Xuan Wang
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
15
|
Chen PJ, Yeh SH, Liu WH, Lin CC, Huang HC, Chen CL, Chen DS, Chen PJ. Androgen pathway stimulates microRNA-216a transcription to suppress the tumor suppressor in lung cancer-1 gene in early hepatocarcinogenesis. Hepatology 2012; 56:632-43. [PMID: 22392644 DOI: 10.1002/hep.25695] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 02/23/2012] [Indexed: 12/21/2022]
Abstract
UNLABELLED Deregulation of microRNAs (miRNAs) is common in advanced human hepatocellular carcinoma (HCC); however, the ones involved in early carcinogenesis have not yet been investigated. By examining the expression of 22 HCC-related miRNAs between precancerous and cancerous liver tissues, we found miR-216a and miR-224 were significantly up-regulated, starting from the precancerous stage. Furthermore, the elevation of miR-216a was mainly identified in male patients. To study this gender difference, we demonstrated that pri-miR-216a is activated transcriptionally by the androgen pathway in a ligand-dependent manner and is further enhanced by the hepatitis B virus X protein. The transcription initiation site for pri-miR-216a was delineated, and one putative androgen-responsive element site was identified within its promoter region. Mutation of this site abolished the elevation of pri-miR-216a by the androgen pathway. One target of miR-216a was shown to be the tumor suppressor in lung cancer-1 gene (TSLC1) messenger RNA (mRNA) through the three target sites at its 3' untranslated region. Finally, the androgen receptor level increased in male liver tissues during hepatocarcinogenesis, starting from the precancerous stage, with a concomitant elevation of miR-216a but a decrease of TSLC1. CONCLUSION The current study discovered the up-regulation of miRNA-216a by the androgen pathway and a subsequent suppression of TSLC1 as a new mechanism for the androgen pathway in early hepatocarcinogenesis.
Collapse
Affiliation(s)
- Po-Jen Chen
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhang J, Ning J, Geng J, Cui B, Dong X. Down-regulation of tumor suppressor in lung cancer 1 (TSLC1) expression correlates with poor prognosis in patients with colon cancer. J Mol Histol 2012; 43:715-21. [DOI: 10.1007/s10735-012-9438-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 07/22/2012] [Indexed: 11/30/2022]
|
17
|
Reamon-Buettner SM, Borlak J. Dissecting epigenetic silencing complexity in the mouse lung cancer suppressor gene Cadm1. PLoS One 2012; 7:e38531. [PMID: 22701659 PMCID: PMC3368868 DOI: 10.1371/journal.pone.0038531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 05/07/2012] [Indexed: 11/19/2022] Open
Abstract
Disease-oriented functional analysis of epigenetic factors and their regulatory mechanisms in aberrant silencing is a prerequisite for better diagnostics and therapy. Yet, the precise mechanisms are still unclear and complex, involving the interplay of several effectors including nucleosome positioning, DNA methylation, histone variants and histone modifications. We investigated the epigenetic silencing complexity in the tumor suppressor gene Cadm1 in mouse lung cancer progenitor cell lines, exhibiting promoter hypermethylation associated with transcriptional repression, but mostly unresponsive to demethylating drug treatments. After predicting nucleosome positions and transcription factor binding sites along the Cadm1 promoter, we carried out single-molecule mapping with DNA methyltransferase M.SssI, which revealed in silent promoters high nucleosome occupancy and occlusion of transcription factor binding sites. Furthermore, M.SssI maps of promoters varied within and among the different lung cancer cell lines. Chromatin analysis with micrococcal nuclease also indicated variations in nucleosome positioning to have implications in the binding of transcription factors near nucleosome borders. Chromatin immunoprecipitation showed that histone variants (H2A.Z and H3.3), and opposing histone modification marks (H3K4me3 and H3K27me3) all colocalized in the same nucleosome positions that is reminiscent of epigenetic plasticity in embryonic stem cells. Altogether, epigenetic silencing complexity in the promoter region of Cadm1 is not only defined by DNA hypermethylation, but high nucleosome occupancy, altered nucleosome positioning, and ‘bivalent’ histone modifications, also likely contributed in the transcriptional repression of this gene in the lung cancer cells. Our results will help define therapeutic intervention strategies using epigenetic drugs in lung cancer.
Collapse
Affiliation(s)
- Stella Marie Reamon-Buettner
- Toxicology and Environmental Hygiene, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany.
| | | |
Collapse
|
18
|
van der Weyden L, Arends MJ, Rust AG, Poulogiannis G, McIntyre RE, Adams DJ. Increased tumorigenesis associated with loss of the tumor suppressor gene Cadm1. Mol Cancer 2012; 11:29. [PMID: 22553910 PMCID: PMC3489691 DOI: 10.1186/1476-4598-11-29] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 05/03/2012] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND CADM1 encodes an immunoglobulin superfamily (IGSF) cell adhesion molecule. Inactivation of CADM1, either by promoter hypermethylation or loss of heterozygosity, has been reported in a wide variety of tumor types, thus it has been postulated as a tumor suppressor gene. FINDINGS We show for the first time that Cadm1 homozygous null mice die significantly faster than wildtype controls due to the spontaneous development of tumors at an earlier age and an increased tumor incidence of predominantly lymphomas, but also some solid tumors. Tumorigenesis was accelerated after irradiation of Cadm1 mice, with the reduced latency in tumor formation suggesting there are genes that collaborate with loss of Cadm1 in tumorigenesis. To identify these co-operating genetic events, we performed a Sleeping Beauty transposon-mediated insertional mutagenesis screen in Cadm1 mice, and identified several common insertion sites (CIS) found specifically on a Cadm1-null background (and not wildtype background). CONCLUSION We confirm that Cadm1 is indeed a bona fide tumor suppressor gene and provide new insights into genetic partners that co-operate in tumorigenesis when Cadm1-expression is lost.
Collapse
Affiliation(s)
- Louise van der Weyden
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK
| | - Mark J Arends
- Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 2QQ, UK
| | - Alistair G Rust
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK
| | - George Poulogiannis
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Rebecca E McIntyre
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK
| | - David J Adams
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK
| |
Collapse
|
19
|
Gao T, Nie Y, Hu H, Liang Z. Hypermethylation of IGSF4 gene for noninvasive prenatal diagnosis of thalassemia. Med Sci Monit 2012; 18:BR33-40. [PMID: 22207107 PMCID: PMC3560666 DOI: 10.12659/msm.882199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background For patients with pregnancy-induced thalassemia, fetal cord blood or amniotic fluid is invasively collected in the traditional diagnosis and prediction of thalassemia. However, there is no specific molecular target in the diagnosis of thalassemia using fetal DNA from the plasma of pregnant women. Material/Methods The promoter of cell surface adhesion molecule (IGSF4) gene was found to be down-regulated in patients with homozygous thalassemia, and the expression of IGSF4 was closely associated with the methylation of its promoter. In the present study, mass spectrometric sequencing of methylation was performed using MassARRAY to detect the 12 CpG sites in the promoter of IGSF4 gene. Results The methylation degree of these 12 CpG sites was significantly higher than that in healthy subjects (P<0.05). Hierarchical clustering was done in 23 patients with thalassemia and 5 healthy individuals. Results revealed the promoter of IGSF4 gene was highly methylated in thalassemia patients, which was dramatically different from that in healthy subjects (P<0.05). Methylation-specific PCR (MSP) was employed to confirm the methylation of the promoter of IGSF4 gene and results were consistence with those obtained in sequencing with MassARRAY. Real-time PCR showed, when compared with heterozygous subjects, the expression of IGSF4 was significantly down-regulated in thalassemia patients (ratio=0.18). Conclusions The expression of IGSF4 was closely related to the methylation of its promoter, suggesting the methylation of IGSF4 gene is tissue-specific for thalassemia. These findings provide evidence for the non-invasive prenatal diagnosis of thalassemia in terms of epigenetics.
Collapse
Affiliation(s)
- Tian Gao
- Department of Gynecology and Obstetrics, Southwest Hospital, 3rd Military Medical University, Chongqing, China
| | | | | | | |
Collapse
|