1
|
Monroy-Dosta MDC, Becerril-Cortés D, Lazo JP, Mena-López A, Negrete-Redondo P, Nogueda-Torres E, Navarro-Guillén C, Mata-Sotres JA. Effect of Biofloc Culture on the Daily Rhythmicity of the Activity and Expression of Digestive Enzymes in Tilapia, Oreochromis niloticus. AQUACULTURE NUTRITION 2025; 2025:6617425. [PMID: 39949359 PMCID: PMC11824837 DOI: 10.1155/anu/6617425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/27/2024] [Indexed: 02/16/2025]
Abstract
Biofloc technology (BFT) has recently attracted great attention due to minimal water exchange and reduced feed intake. This study aimed to recognize daily changes in the digestive physiology of Oreochromis niloticus between a traditional system and BFT. The enzyme activity of trypsin (try), chymotrypsin (chy), leucine aminopeptidase (lap), alkaline proteases (alk), lipase (lip), and amylase (amy), along with the gene expression of trypsin (try), chymotrypsin (chy), pepsin (pep), amylase (amy), and phospholipase (pla) were measured throughout a daily cycle. Samples were taken every 4 h in a 24 h cycle under a 12:12 L:D photoperiod. During 60 days, fish were feed three times a day (zeitgeber time, ZT: 0, 4, and 8) with a fishmeal-based diet containing 32% of crude protein and 5% of lipid, where molasses was added as a carbon source in BFT. No significant differences were found in fish performance among treatments at the end of the experiment. The activity of all tested enzymes significantly (p < 0.05) increases during the dark period in both treatments, where the same activity pattern was found in try and lip. The maximum expression levels of digestive gene enzymes between treatments show a marked effect dependent on the presence of light and dark phases. The cosinor analysis showed an activity in try, lap, and lip with a significant rhythmicity (p < 0.05). Our results demonstrate that some processes related to the digestive physiology of tilapia that respond directly to daily rhythmicity are modified under the constant presence of feed in BFT. These findings should be considered when establishing new optimized culture protocols.
Collapse
Affiliation(s)
- María del Carmen Monroy-Dosta
- Departamento El Hombre y su Ambiente, Universidad Autónoma Metropolitana-Unidad Xochimilco, Calzada del Hueso # 1100, Ciudad de México 04960, Mexico
| | - Daniel Becerril-Cortés
- Departamento El Hombre y su Ambiente, Universidad Autónoma Metropolitana-Unidad Xochimilco, Calzada del Hueso # 1100, Ciudad de México 04960, Mexico
| | - Juan Pablo Lazo
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana # 3918, Zona Playitas, Ensenada, Baja California 22860, Mexico
| | - Arturo Mena-López
- Departamento El Hombre y su Ambiente, Universidad Autónoma Metropolitana-Unidad Xochimilco, Calzada del Hueso # 1100, Ciudad de México 04960, Mexico
| | - Pilar Negrete-Redondo
- Departamento El Hombre y su Ambiente, Universidad Autónoma Metropolitana-Unidad Xochimilco, Calzada del Hueso # 1100, Ciudad de México 04960, Mexico
| | - Eliasid Nogueda-Torres
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana # 3918, Zona Playitas, Ensenada, Baja California 22860, Mexico
| | | | - José Antonio Mata-Sotres
- Departamento El Hombre y su Ambiente, Universidad Autónoma Metropolitana-Unidad Xochimilco, Calzada del Hueso # 1100, Ciudad de México 04960, Mexico
| |
Collapse
|
2
|
Mata-Sotres JA, Viana MT, Lazo JP, Navarro-Guillén C, Fuentes-Quesada JP. Daily rhythm in feeding behavior and digestive processes in totoaba (Totoaba macdonaldi) under commercial farming conditions. Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111026. [PMID: 39197584 DOI: 10.1016/j.cbpb.2024.111026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
To identify daily changes in the digestive physiology of Totoaba macdonaldi, the feed intake, activity (pepsin, trypsin, chymotrypsin, lipase, amylase, and L-aminopeptidase), and gene expression (aminopeptidase and maltase-glucoamylase) of key digestive enzymes were measured in the intestine and the pyloric caeca. Fish were fed for three weeks every four hours during the light period to apparent satiation, and samples were taken every four hours throughout a 24-h cycle under a 12:12 L:D photoperiod. The feed consumption steadily increased until the third feeding (16:00 h, ZT-8) and decreased significantly towards the end of the day. The activity of pepsin and alkaline enzymes (trypsin, chymotrypsin, lipase, amylase, and L-aminopeptidase) exhibited a pattern dependent on the presence of feed, showing a significant reduction during the hours of darkness (ZT-12 to ZT-24). Expression of the intestinal brush border enzyme (L-aminopeptidase) increased during the darkness period in anticipation of the feed ingestion associated with the subsequent light period. The cosinor analysis used to estimate the feed rhythms for all tested enzymes showed that activity in the intestine and pyloric caeca exhibited significant rhythmicity (p < 0.05). However, no rhythmicity was observed in the intestinal expression of maltase-glucoamylase. Our results demonstrate that some of the behavioral and digestive physiology features of totoaba directly respond to rhythmicity in feeding, a finding that should be considered when establishing optimized feeding protocols.
Collapse
Affiliation(s)
- José Antonio Mata-Sotres
- Departamento el Hombre y su Ambiente, Universidad Autónoma Metropolitana, Unidad Xochimilco, Ciudad de México 04960, Mexico
| | - María Teresa Viana
- Instituto de Investigaciones Oceanológicas (IIO-UABC), Baja California 22870, Mexico
| | - Juan Pablo Lazo
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California 22860, Mexico
| | | | - José Pablo Fuentes-Quesada
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California 22860, Mexico; Stolt Sea Farm, LG. Couso - La Grana s/n, Couso 15960, Spain.
| |
Collapse
|
3
|
Lu K, Wu J, Tang S, Wang Y, Zhang L, Chai F, Liang XF. Altered Visual Function in Short-Wave-Sensitive 1 ( sws1) Gene Knockout Japanese Medaka ( Oryzias latipes) Larvae. Cells 2023; 12:2157. [PMID: 37681889 PMCID: PMC10486665 DOI: 10.3390/cells12172157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/29/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
Visual perception plays a crucial role in foraging, avoiding predators, mate selection, and communication. The regulation of color vision is largely dependent on opsin, which is the first step in the formation of the visual transduction cascade in photoreceptor cells. Short-wave-sensitive 1 (sws1) is a visual pigment that mediates short-wavelength light transduction in vertebrates. The depletion of sws1 resulted in increased M-opsin in mice. However, there is still no report on the visual function of sws1 in teleost fish. Here, we constructed the sws1 knockout medaka using CRISPR/Cas9 technology. The 6 dph (days post-hatching) medaka sws1-/- larvae exhibited significantly decreased food intake and total length at the first feeding stage, and the mRNA levels of orexigenic genes (npy and agrp) were significantly upregulated after feeding. The swimming speed was significantly reduced during the period of dark-light transition stimulation in the sws1-mutant larvae. Histological analysis showed that the thickness of the lens was reduced, whereas the thickness of the ganglion cell layer (GCL) was significantly increased in sws1-/- medaka larvae. Additionally, the deletion of sws1 decreased the mRNA levels of genes involved in phototransduction (gnb3b, grk7a, grk7b, and pde6c). We also observed increased retinal cell apoptosis and oxidative stress in sws1 knockout medaka larvae. Collectively, these results suggest that sws1 deficiency in medaka larvae may impair visual function and cause retinal cell apoptosis, which is associated with the downregulation of photoconduction expression and oxidative stress.
Collapse
Affiliation(s)
- Ke Lu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (K.L.); (Y.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Jiaqi Wu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (K.L.); (Y.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Shulin Tang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (K.L.); (Y.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Yuye Wang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (K.L.); (Y.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Lixin Zhang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (K.L.); (Y.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Farui Chai
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (K.L.); (Y.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (K.L.); (Y.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
4
|
Cannibalism rate and mLeptin expression are influenced by photoperiod and diets in Piracanjuba, Brycon orbignyanus (Valenciennes, 1850) larvae. Res Vet Sci 2022; 143:142-147. [PMID: 35032766 DOI: 10.1016/j.rvsc.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 11/20/2022]
Abstract
Piracanjuba (Brycon orbignyanus) is a species with great productive potential, and during its larval phase, it presents intense cannibal activity. The photoperiod and diet are primary feed behaviour and cannibalism modulators to fishes. This experiment aimed to verify the effect of different photoperiods and diets in Piracanjuba larviculture. Larvae were kept under different photoperiods - 12 h light: 12 h dark (12 L: 12D); 24 h light:00 h dark (24hL: 00D) - Larvae were fed with Artemia nauplii and a formulated micro-diet in a factorial scheme for 10 days, and at the end of the experimental period, the influences of the treatments on performance and quantitative expression of mLeptin and mBmall1 were evaluated. In order to quantify the expression of mLeptin and mBmall1, qPCR adopting β-actin and Elongation Factor 1 as endogenous genes was used. The primers for all the analysed transcripts were obtained through multiple sequences alignments of different fish species. It was observed that the diet and photoperiod influence the performance of Piracanjuba (B. orbignyanus) larvae in the initial phase of larviculture. Feeding with artemia nauplii and the photoperiod of 24 L:00D reduce cannibalism rates in intensive Piracanjuba larviculture. The results on the rate of cannibalism, rate of survival and the relative expression of mLeptin are related to the survival rate of the larvae, and it is inversely proportional to the cannibalism rate. The expression levels of mBmall1 showed a correlation with the final weight of the larvae. Piracanjuba Larvae under a photoperiod of 24 light and fed Artemia nauplii showed more significant levels of mLeptin expression.
Collapse
|
5
|
Litopenaeus vannamei BMAL1 Is a Critical Mediator Regulating the Expression of Glucose Transporters and Can Be Suppressed by Constant Darkness. Animals (Basel) 2021; 11:ani11102893. [PMID: 34679914 PMCID: PMC8532828 DOI: 10.3390/ani11102893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Growing evidence has indicated that glucose absorption exhibits profound circadian rhythmicity, mediated entirely by glucose transporters. We observed that the daily profile of BMAL1, GLUT1 and SGLT1 expression was also synchronized in the intestine and the hepatopancreas of Litopenaeus vannamei. Our result identified for the first time that BMAL1 is a critical mediator regulating the expression of glucose transporters, which could be suppressed by constant darkness in L. vannamei. Abstract Aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1) is a core circadian transcription factor that controls the 24-h cycle of physiological processes. In shrimp, the role of BMAL1 in the regulating glucose metabolism remains unclear. Firstly, we observed that the daily profile of BMAL1, GLUT1 and SGLT1 expression were synchronized in the intestine and the hepatopancreas of Litopenaeus vannamei. Then we examined the effects of BMAL1 on the gene expression of glucose transporter type 1 (SGLT1) and sodium-glucose cotransporter 1 (GLUT1) in vivo and in vitro. BMAL1 in L. vannamei shares 70.91–96.35% of sequence identities with other shrimp species and possesses the conserved helix-loop-helix domain and polyadenylation site domain. The in vitro dual-luciferase reporter assay and in vivo RNA interference experiment demonstrated that BMAL1 exerted a positive regulation effect on the expression of glucose transporters in L. vannamei. Moreover, we conducted an eight-week treatment to investigate whether light/dark cycle change would influence growth performance, and gene expression of BMAL1, GLUT1 and SGLT1 in L. vannamei. Our result showed that compared with natural light treatment, constant darkness (24-h darkness) significantly decreased (p < 0.05) serum glucose concentration, and suppressed (p < 0.05) the gene expression of BMAL1, GLUT1 and SGLT1 in the hepatopancreas and the intestine. Growth performance and survival rate were also decreased (p < 0.05) by constant darkness treatment. Our result identified BMAL1 as a critical mediator regulating the expression of glucose transporters, which could be suppressed by constant darkness in L. vannamei. It would be quite interesting to explore the mechanism of dark/light cycles on glucose transport and metabolism in L. vannamei, which might provide a feeding strategy for improving carbohydrate utilization in the future.
Collapse
|
6
|
Xavier MJ, Dardengo GM, Navarro-Guillén C, Lopes A, Colen R, Valente LMP, Conceição LEC, Engrola S. Dietary Curcumin Promotes Gilthead Seabream Larvae Digestive Capacity and Modulates Oxidative Status. Animals (Basel) 2021; 11:1667. [PMID: 34205083 PMCID: PMC8229980 DOI: 10.3390/ani11061667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/22/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
The larval stage is highly prone to stress due to the ontogenetic and metabolic alterations occurring in fish. Curcumin inclusion in diets has been shown to improve growth by modulating oxidative status, immune response, and/or feed digestibility in several fish species. The aim of the present work was to assess if dietary curcumin could promote marine fish larvae digestive maturation and improve robustness. Gilthead seabream larvae were fed a diet supplemented with curcumin at dose of 0 (CTRL), 1.5 (LOW), or 3.0 g/Kg feed for 27 days. From 4 to 24 days after hatching (DAH), no differences were observed in growth performance. At the end of the experiment (31 DAH) LOW larvae had a better condition factor than CTRL fish. Moreover, HIGH larvae showed higher trypsin and chymotrypsin activity when compared to CTRL fish. LOW and HIGH larvae were able to maintain the mitochondrial reactive oxygen species production during development, in contrast to CTRL larvae. In conclusion, curcumin supplementation seems to promote larvae digestive capacity and modulate the oxidative status during ontogeny. Furthermore, the present results provide new insights on the impacts of dietary antioxidants on marine larvae development and a possible improvement of robustness in the short and long term.
Collapse
Affiliation(s)
- Maria J. Xavier
- Centro Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.J.X.); (G.M.D.); (C.N.-G.); (A.L.); (R.C.)
- SPAROS Lda., Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal;
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal;
- Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Gian Marco Dardengo
- Centro Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.J.X.); (G.M.D.); (C.N.-G.); (A.L.); (R.C.)
| | - Carmen Navarro-Guillén
- Centro Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.J.X.); (G.M.D.); (C.N.-G.); (A.L.); (R.C.)
| | - André Lopes
- Centro Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.J.X.); (G.M.D.); (C.N.-G.); (A.L.); (R.C.)
| | - Rita Colen
- Centro Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.J.X.); (G.M.D.); (C.N.-G.); (A.L.); (R.C.)
| | - Luisa M. P. Valente
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal;
- Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | | | - Sofia Engrola
- Centro Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.J.X.); (G.M.D.); (C.N.-G.); (A.L.); (R.C.)
| |
Collapse
|
7
|
Vergès-Castillo A, González-Vargas IA, Muñoz-Cueto JA, Martín-Robles ÁJ, Pendon C. Establishment and characterisation of single cell-derived embryonic stem cell lines from the gilthead seabream, Sparus aurata. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110626. [PMID: 34044158 DOI: 10.1016/j.cbpb.2021.110626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 04/16/2021] [Accepted: 05/21/2021] [Indexed: 12/27/2022]
Abstract
An important bottleneck in fish aquaculture research is the supply and maintenance of embryos, larvae, juvenile and adult specimens. In this context, cell lines represent alternative experimental models for in vitro studies that complement in vivo assays. This allows us to perform easier experimental design and sampling and avoid the sacrifice of animals. Embryonic stem (ES) cell lines have attracted increasing attention because they have the capability to proliferate indefinitely and could be differentiated into any cell type of the organism. To minimise cell heterogeneity and increase uniformity of in vitro studies results, in this manuscript we report the development and characterisation of two single cell-derived ES cell lines (monoclonal) from the morula stage embryos of the gilthead seabream, Sparus aurata, named as SAEC-A3 and SAEC-H7. Both cell lines have been passaged for over 100 times, indicating the establishment of long-term, immortalised ES cell cultures. Sequence analyses confirmed the seabream origin of the cell lines, and growth analyses evidenced their high viability and proliferating activity, particularly in culture medium supplemented with 10-15% fetal bovine serum and 22 °C. Both cell lines showed the ability to generate embryoid bodies and show different sensitivity and response to all-trans retinoic acid. The analysis of epithelial (col1α1) and neuronal (sox3) markers in differentiated cultures revealed that SAEC-A3 tended to differentiate towards epithelial-like cells whereas SAEC-H7 tended to differentiate towards neuronal-like cells. Both cell lines were efficiently transfected with pDsRed2-ER and/or pEGFP-N1 plasmids, indicating that they could represent useful biotechnological tools. Daily expression of pcna showed significant expression rhythms, with maximum levels of cell proliferation during the day-night transition. Currently, these cell lines are being successfully used as experimental models for the study of cellular metabolism, physiology and rhythms as well as for toxicological, pharmacological and gene expression analyses.
Collapse
Affiliation(s)
- A Vergès-Castillo
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real, Cádiz, Spain.
| | - I A González-Vargas
- Bioquímica y Biología Molecular, Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, Puerto Real, Cádiz, Spain; Departamento de Ciencias Naturales, Exactas y Estadística, Facultad de Ciencias, Universidad de Santiago de Cali, Cali, Colombia
| | - J A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real, Cádiz, Spain; INMAR Research Institute, Marine Campus of International Excellence (CEIMAR), Agrifood Campus of International Excellence (ceiA3), The European University of the Seas (SEA-EU), University of Cádiz, Puerto Real, Cádiz, Spain.
| | - Á J Martín-Robles
- Bioquímica y Biología Molecular, Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, Puerto Real, Cádiz, Spain; INMAR Research Institute, Marine Campus of International Excellence (CEIMAR), Agrifood Campus of International Excellence (ceiA3), The European University of the Seas (SEA-EU), University of Cádiz, Puerto Real, Cádiz, Spain.
| | - C Pendon
- Bioquímica y Biología Molecular, Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, Puerto Real, Cádiz, Spain; INBIO, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz, Spain.
| |
Collapse
|
8
|
Bottalico LN, Weljie AM. Cross-species physiological interactions of endocrine disrupting chemicals with the circadian clock. Gen Comp Endocrinol 2021; 301:113650. [PMID: 33166531 PMCID: PMC7993548 DOI: 10.1016/j.ygcen.2020.113650] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 10/09/2020] [Accepted: 10/17/2020] [Indexed: 02/06/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are endocrine-active chemical pollutants that disrupt reproductive, neuroendocrine, cardiovascular and metabolic health across species. The circadian clock is a transcriptional oscillator responsible for entraining 24-hour rhythms of physiology, behavior and metabolism. Extensive bidirectional cross talk exists between circadian and endocrine systems and circadian rhythmicity is present at all levels of endocrine control, from synthesis and release of hormones, to sensitivity of target tissues to hormone action. In mammals, a range of hormones directly alter clock gene expression and circadian physiology via nuclear receptor (NR) binding and subsequent genomic action, modulating physiological processes such as nutrient and energy metabolism, stress response, reproductive physiology and circadian behavioral rhythms. The potential for EDCs to perturb circadian clocks or circadian-driven physiology is not well characterized. For this reason, we explore evidence for parallel endocrine and circadian disruption following EDC exposure across species. In the reviewed studies, EDCs dysregulated core clock and circadian rhythm network gene expression in brain and peripheral organs, and altered circadian reproductive, behavioral and metabolic rhythms. Circadian impacts occurred in parallel to endocrine and metabolic alterations such as impaired fertility and dysregulated metabolic and energetic homeostasis. Further research is warranted to understand the nature of interaction between circadian and endocrine systems in mediating physiological effects of EDC exposure at environmental levels.
Collapse
Affiliation(s)
- Lisa N Bottalico
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Aalim M Weljie
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Galal-Khallaf A, Mohammed-Geba K, Yúfera M, Martínez-Rodríguez G, Mancera JM, López-Olmeda JF. Daily rhythms in endocrine factors of the somatotropic axis and their receptors in gilthead sea bream (Sparus aurata) larvae. Comp Biochem Physiol A Mol Integr Physiol 2020; 250:110793. [PMID: 32805414 DOI: 10.1016/j.cbpa.2020.110793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
Living organisms have adapted to environmental oscillations in light and temperature through evolving biological clocks. Biological rhythms are pervasive at all levels of the endocrine system, including the somatotropic (growth) axis. The objective of the present research was to study the existence of daily rhythms on the somatotropic axis of a marine teleost species, specifically, the gilthead sea bream (Sparus aurata). Larvae of S. aurata at 30 dph (days post hatching), kept under a 9 L:15D (light-dark) photoperiod, were collected every 3 h throughout a 36 h cycle. The expression of the following somatotropic axis genes was analyzed by quantitative PCR: pituitary adenylate cyclase-activating polypeptide 1 (adcyap1), prepro-somatostatin-1 (pss1), growth hormone (gh), growth hormone receptor types 1 and 2 (ghr1 and ghr2, respectively), insulin-like growth factor 1 (igf1) and igf1 receptor a (igf1ra). All genes displayed significant differences among time points and, with the exception of adcyap1, all showed statistically significant daily rhythms. The acrophases of gh, ghr1, ghr2, igf1 and igf1ra were located around the end of the dark phase, between ZT19:44 and ZT0:48 h, whereas the highest expression levels of adcyap1 occurred at ZT18 h. On the other hand, the acrophase of pss1, an inhibitor of Gh secretion, was located at ZT10:16 h, hence it was shifted by several hours with respect to the other genes. The present results provide the first thorough description of somatotropic axis rhythms in gilthead sea bream. Such knowledge provides insights into the role of rhythmic regulation of the Gh/Igf1 axis system in larval growth and metabolism, and it can also improve the implementation of more species-specific feeding regimes.
Collapse
Affiliation(s)
- Asmaa Galal-Khallaf
- Department of Marine Biology and Aquaculture, Marine Sciences Institute of Andalusia, Spanish National Research Council (CSIC), E-11510 Puerto Real (Cádiz), Spain; Molecular Biology and Biotechnology Lab, Department of Zoology, College of Science, Menoufia University, Shebin El- Kom, Menoufia, Egypt; Department of Biology, College of Marine and Environmental Sciences, University Institute of Marine Research (INMAR), University of Cádiz, Campus of International Excellence of the Sea (CEI·MAR), E-11510 Puerto Real, Cádiz, Spain.
| | - Khaled Mohammed-Geba
- Department of Marine Biology and Aquaculture, Marine Sciences Institute of Andalusia, Spanish National Research Council (CSIC), E-11510 Puerto Real (Cádiz), Spain; Molecular Biology and Biotechnology Lab, Department of Zoology, College of Science, Menoufia University, Shebin El- Kom, Menoufia, Egypt; Department of Biology, College of Marine and Environmental Sciences, University Institute of Marine Research (INMAR), University of Cádiz, Campus of International Excellence of the Sea (CEI·MAR), E-11510 Puerto Real, Cádiz, Spain.
| | - Manuel Yúfera
- Department of Marine Biology and Aquaculture, Marine Sciences Institute of Andalusia, Spanish National Research Council (CSIC), E-11510 Puerto Real (Cádiz), Spain
| | - Gonzalo Martínez-Rodríguez
- Department of Marine Biology and Aquaculture, Marine Sciences Institute of Andalusia, Spanish National Research Council (CSIC), E-11510 Puerto Real (Cádiz), Spain
| | - Juan Miguel Mancera
- Department of Biology, College of Marine and Environmental Sciences, University Institute of Marine Research (INMAR), University of Cádiz, Campus of International Excellence of the Sea (CEI·MAR), E-11510 Puerto Real, Cádiz, Spain
| | - Jose F López-Olmeda
- Department of Physiology, College of Biology, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
10
|
The circadian transcriptome of marine fish (Sparus aurata) larvae reveals highly synchronized biological processes at the whole organism level. Sci Rep 2017; 7:12943. [PMID: 29021622 PMCID: PMC5636797 DOI: 10.1038/s41598-017-13514-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/22/2017] [Indexed: 02/07/2023] Open
Abstract
The regulation of circadian gene expression remains largely unknown in farmed fish larvae. In this study, a high-density oligonucleotide microarray was used to examine the daily expression of 13,939 unique genes in whole gilthead sea bream (Sparus aurata) larvae with fast growth potentiality. Up to 2,229 genes were differentially expressed, and the first two components of Principal Component Analysis explained more than 81% of the total variance. Clustering analysis of differentially expressed genes identified 4 major clusters that were triggered sequentially, with a maximum expression at 0 h, 3 h, 9–15 h and 18-21 h zeitgeber time. Various core clock genes (per1, per2, per3, bmal1, cry1, cry2, clock) were identified in clusters 1–3, and their expression was significantly correlated with several genes in each cluster. Functional analysis revealed a daily consecutive activation of canonical pathways related to phototransduction, intermediary metabolism, development, chromatin remodeling, and cell cycle regulation. This daily transcriptome of whole larvae resembles a cell cycle (G1/S, G2/M, and M/G1 transitions) in synchronization with multicellular processes, such as neuromuscular development. This study supports that the actively feeding fish larval transcriptome is temporally organized in a 24-h cycle, likely for maximizing growth and development.
Collapse
|
11
|
Rønnestad I, Gomes AS, Murashita K, Angotzi R, Jönsson E, Volkoff H. Appetite-Controlling Endocrine Systems in Teleosts. Front Endocrinol (Lausanne) 2017; 8:73. [PMID: 28458653 PMCID: PMC5394176 DOI: 10.3389/fendo.2017.00073] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/27/2017] [Indexed: 12/15/2022] Open
Abstract
Mammalian studies have shaped our understanding of the endocrine control of appetite and body weight in vertebrates and provided the basic vertebrate model that involves central (brain) and peripheral signaling pathways as well as environmental cues. The hypothalamus has a crucial function in the control of food intake, but other parts of the brain are also involved. The description of a range of key neuropeptides and hormones as well as more details of their specific roles in appetite control continues to be in progress. Endocrine signals are based on hormones that can be divided into two groups: those that induce (orexigenic), and those that inhibit (anorexigenic) appetite and food consumption. Peripheral signals originate in the gastrointestinal tract, liver, adipose tissue, and other tissues and reach the hypothalamus through both endocrine and neuroendocrine actions. While many mammalian-like endocrine appetite-controlling networks and mechanisms have been described for some key model teleosts, mainly zebrafish and goldfish, very little knowledge exists on these systems in fishes as a group. Fishes represent over 30,000 species, and there is a large variability in their ecological niches and habitats as well as life history adaptations, transitions between life stages and feeding behaviors. In the context of food intake and appetite control, common adaptations to extended periods of starvation or periods of abundant food availability are of particular interest. This review summarizes the recent findings on endocrine appetite-controlling systems in fish, highlights their impact on growth and survival, and discusses the perspectives in this research field to shed light on the intriguing adaptations that exist in fish and their underlying mechanisms.
Collapse
Affiliation(s)
- Ivar Rønnestad
- Department of Biology, University of Bergen, Bergen, Norway
| | - Ana S. Gomes
- Department of Biology, University of Bergen, Bergen, Norway
| | - Koji Murashita
- Department of Biology, University of Bergen, Bergen, Norway
- Research Center for Aquaculture Systems, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Tamaki, Mie, Japan
| | - Rita Angotzi
- Department of Biology, University of Bergen, Bergen, Norway
| | - Elisabeth Jönsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St John’s, NL, Canada
| |
Collapse
|
12
|
Perera E, Yúfera M. Effects of soybean meal on digestive enzymes activity, expression of inflammation-related genes, and chromatin modifications in marine fish (Sparus aurata L.) larvae. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:563-578. [PMID: 27807713 DOI: 10.1007/s10695-016-0310-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
The effects of soybean meal (SBM) in early diet of Sparus aurata larvae at two developmental windows were assessed. Prolonged (beyond 14 days post-hatch, dph) feeding with SBM decreased the activity of pancreatic enzymes of larvae. In the absence of SBM these larvae later resumed enzyme activities, but exhibited a significant delay in development. Larvae response to SBM involved up-regulation of extracellular matrix remodeling enzymes and pro-inflammatory cytokines, coupled with a drop in putative intestinal enzymes. Larvae receiving SBM at first feeding appear later to have lower expression of inflammation-related genes, especially those fed SBM until 14 dph. Multivariate analysis confirmed that the duration of the SBM early feeding period drives the physiology of larvae in different directions. Feeding larvae with SBM increased global histone H3 acetylation, whereas upon removal of SBM the process was reverted. A more in deep analysis revealed a dynamic interplay among several reversible histone modifications such as H3K14ac and H3K27m3. Finally, we showed that SBM feeding of larvae results in global hypomethylation that persist after SBM removal. This study is the first demonstrating an effect of diet on marine fish epigenetics. It is concluded that there are limitations for extending SBM feeding of S. aurata larvae beyond 14 dph even under co-feeding with live feed, affecting key physiological processes and normal growth. However, up to 14 dph, SBM does not affect normal development, and produces apparently lasting effects on some key enzymes, genes, and chromatin modifications.
Collapse
Affiliation(s)
- Erick Perera
- Departamento de Biología Marina y Acuicultura, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Puerto Real, 11510, Cádiz, Spain.
- Control of Food Intake Group, Department of Fish Physiology and Biotechnology, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain.
| | - Manuel Yúfera
- Departamento de Biología Marina y Acuicultura, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Puerto Real, 11510, Cádiz, Spain
| |
Collapse
|
13
|
Navarro-Guillén C, Yúfera M, Engrola S. Daily feeding and protein metabolism rhythms in Senegalese sole post-larvae. Biol Open 2017; 6:77-82. [PMID: 27895049 PMCID: PMC5278429 DOI: 10.1242/bio.021642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/23/2016] [Indexed: 12/03/2022] Open
Abstract
Fish hatcheries must adapt larval feeding protocols to feeding behavior and metabolism patterns to obtain more efficient feed utilization. Fish larvae exhibit daily ingesting rhythms rather than ingesting food continuously throughout the day. The aim of this study was to determine the daily patterns of feed intake, protein digestibility, protein retention and catabolism in Senegalese sole post-larvae (Solea senegalensis; 33 days post-hatching) using 14C-labeled Artemia protein and incubation in metabolic chambers. Sole post-larvae were fed at 09:00, 15:00, 21:00, 03:00 and 09:00+1 day; and those fed at 09:00, 21:00, 03:00 and 09:00+1 day showed significantly higher feed intake than post-larvae fed at 15:00 h (P=0.000). Digestibility and evacuation rate of ingested protein did not change during the whole cycle (P=0.114); however, post-larvae fed at 21:00 and 03:00 h showed the significantly highest protein retention efficiency and lowest catabolism (P=0.002). Therefore, results confirm the existence of daily rhythmicity in feeding activity and in the utilization of the ingested nutrients in Senegalese sole post-larvae.
Collapse
Affiliation(s)
- Carmen Navarro-Guillén
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Apartado Oficial, Cádiz, Puerto Real 11519, Spain
| | - Manuel Yúfera
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Apartado Oficial, Cádiz, Puerto Real 11519, Spain
| | - Sofia Engrola
- Centro de Ciências do Mar (CCMAR), Edifício 7, Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal
| |
Collapse
|
14
|
Mata-Sotres JA, Moyano FJ, Martínez-Rodríguez G, Yúfera M. Daily rhythms of digestive enzyme activity and gene expression in gilthead seabream (Sparus aurata) during ontogeny. Comp Biochem Physiol A Mol Integr Physiol 2016; 197:43-51. [DOI: 10.1016/j.cbpa.2016.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/02/2016] [Accepted: 03/10/2016] [Indexed: 10/22/2022]
|
15
|
Ben-Attia M, Reinberg A, Smolensky MH, Gadacha W, Khedaier A, Sani M, Touitou Y, Boughamni NG. Blooming rhythms of cactusCereus peruvianuswith nocturnal peak at full moon during seasons of prolonged daytime photoperiod. Chronobiol Int 2016; 33:419-30. [DOI: 10.3109/07420528.2016.1157082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Reinberg A, Smolensky MH, Touitou Y. The full moon as a synchronizer of circa-monthly biological rhythms: Chronobiologic perspectives based on multidisciplinary naturalistic research. Chronobiol Int 2016; 33:465-79. [DOI: 10.3109/07420528.2016.1157083] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Alain Reinberg
- Unité de Chronobiologie, Fondation A de Rothschild, Paris cedex 19, France
| | - Michael H. Smolensky
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Yvan Touitou
- Unité de Chronobiologie, Fondation A de Rothschild, Paris cedex 19, France
| |
Collapse
|
17
|
Mata-Sotres JA, Martos-Sitcha JA, Astola A, Yúfera M, Martínez-Rodríguez G. Cloning and molecular ontogeny of digestive enzymes in fed and food-deprived developing gilthead seabream (Sparus aurata) larvae. Comp Biochem Physiol B Biochem Mol Biol 2015; 191:53-65. [PMID: 26415864 DOI: 10.1016/j.cbpb.2015.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/09/2015] [Accepted: 09/17/2015] [Indexed: 12/23/2022]
Abstract
We have determined the expression pattern of key pancreatic enzymes precursors (trypsinogen, try; chymotrypsinogen, ctrb; phospholipase A2, pla2; bile salt-activated lipase, cel; and α-amylase, amy2a) during the larval stage of gilthead seabream (Sparus aurata) up to 60days after hatching (dph). Previously, complete sequences of try, cel, and amy2a were cloned and phylogenetically analyzed. One new isoform was found for cel transcript (cel1b). Expression of all enzyme precursors was detected before the mouth opening. Expression of try and ctrb increased during the first days of development and then maintained high values with some fluctuations during the whole larval stage. The prolipases pla2 and cel1b increased from first-feeding with irregular fluctuation until the end of the experiment. Contrarily, cel1a maintained low expression values during most of the larval stage increasing at the end of the period. Nevertheless, cel1a expression was negligible as compared with cel1b. The expression of amy2a sharply increased during the first week followed by a gradual decrease. In addition, a food-deprivation experiment was performed to find the differences in relation to presence/absence of gut content after the opening of the mouth. The food-deprived larvae died at 10dph. The expression levels of all digestive enzymes increased up to 7dph, declining sharply afterwards. This expression pattern up to 7dph was the same observed in fed larvae, confirming the genetic programming during the early development. Main digestive enzymes in gilthead seabream larvae exhibited the same expression profiles than other marine fish with carnivorous preferences in their juvenile stages.
Collapse
Affiliation(s)
- José Antonio Mata-Sotres
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Campus Universitario Río San Pedro, 11519 Puerto Real, Cádiz, Spain
| | - Juan Antonio Martos-Sitcha
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Campus Universitario Río San Pedro, 11519 Puerto Real, Cádiz, Spain
| | - Antonio Astola
- Departamento de Biomedicina, Biotecnología y Salud Pública, Facultad de Ciencias, Universidad de Cádiz, Campus Universitario Río San Pedro, 11519 Puerto Real, Cádiz, Spain
| | - Manuel Yúfera
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Campus Universitario Río San Pedro, 11519 Puerto Real, Cádiz, Spain.
| | - Gonzalo Martínez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Campus Universitario Río San Pedro, 11519 Puerto Real, Cádiz, Spain
| |
Collapse
|