1
|
Liu R, Shang X, Fu Y, Wang Y, Wang P, Yan S. Shared genetic architecture between hypothyroidism and rheumatoid arthritis: A large-scale cross-trait analysis. Mol Immunol 2024; 168:17-24. [PMID: 38368726 DOI: 10.1016/j.molimm.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND In recent years, mounting evidence has indicated a co-morbid relationship between hypothyroidism and rheumatoid arthritis (RA), however, the shared genetic factors underlying this association remain unclear. This study aims to investigate the common genetic architecture between hypothyroidism and RA. METHODS Genome-wide association study (GWAS) summary statistics from recently published studies were utilized to examine the genetic correlation, shared genetic loci, and potential causal relationship between hypothyroidism and RA. Statistical methods included linkage disequilibrium score regression (LDSC), high-definition likelihood (HDL), cross-trait meta-analyses, colocalization analysis, multi-marker analysis of genomic annotation (MAGMA), tissue-specific enrichment analysis (TSEA), functional enrichment analysis, and latent causal variable method (LCV). RESULTS Our study demonstrated a significant genetic correlation between hypothyroidism and RA(LDSC:rg=0.3803,p=7.23e-11;HDL:rg=0.3849,p=1.02e-21). Through cross-trait meta-analysis, we identified 1035 loci, including 43 novel genetic loci. By integrating colocalization analysis and the MAGMA algorithm, we found a substantial number of genes, such as PTPN22, TYK2, and CTLA-4, shared between the two diseases, which showed significant enrichment across 14 tissues. These genes were primarily associated with the regulation of alpha-beta T cell proliferation, positive regulation of T cell activation, positive regulation of leukocyte cell-cell adhesion, T cell receptor signaling pathway, and JAK-STAT signaling pathway. However, our study did not reveal a significant causal association between the two diseases using the LCV approach. CONCLUSION Based on these findings, there is a significant genetic correlation between hypothyroidism and RA, suggesting a shared genetic basis for these conditions.
Collapse
Affiliation(s)
- Ruiyan Liu
- Endocrine Ward II, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xin Shang
- Endocrine Ward II, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yu Fu
- Endocrine Ward II, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Ying Wang
- Department of Geriatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Ping Wang
- Endocrine Ward II, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China.
| | - Shuxun Yan
- Endocrine Ward II, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China.
| |
Collapse
|
2
|
Zervou MI, Tarlatzis BC, Grimbizis GF, Spandidos DA, Niewold TB, Goulielmos GN. Association of endometriosis with Sjögren's syndrome: Genetic insights (Review). Int J Mol Med 2024; 53:20. [PMID: 38186322 PMCID: PMC10781419 DOI: 10.3892/ijmm.2024.5344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024] Open
Abstract
Patients with a history of endometriosis have an increased risk of developing various autoimmune diseases such as rheumatoid arthritis, ankylosing spondylitis, systemic lupus erythematosus, multiple sclerosis and celiac disease. There is a potential association between endometriosis and an increased susceptibility for Sjögren's syndrome (SS). SS is a common chronic, inflammatory, systemic, autoimmune, multifactorial disease of complex pathology, with genetic, epigenetic and environmental factors contributing to the development of this condition. It occurs in 0.5‑1% of the population, is characterized by the presence of ocular dryness, lymphocytic infiltrations and contributes to neurological, gastrointestinal, vascular and dermatological manifestations. Endometriosis is an inflammatory, estrogen‑dependent, multifactorial, heterogeneous gynecological disease, affecting ≤10% of reproductive‑age women. It is characterized by the occurrence of endometrial tissue outside the uterine cavity, mainly in the pelvic cavity, and is associated with pelvic pain, dysmenorrhea, deep dyspareunia and either subfertility or infertility. It is still unclear whether SS appears as a secondary response to endometriosis, or it is developed due to any potential shared mechanisms of these conditions. The aim of the present review was to explore further the biological basis only of the co‑occurrence of these disorders but not their association at clinical basis, focusing on the analysis of the partially shared genetic background between endometriosis and SS, and the clarification of the possible similarities in the underlying pathogenetic mechanisms and the relevant molecular pathways.
Collapse
Affiliation(s)
- Maria I. Zervou
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71403 Heraklion, Greece
| | - Basil C. Tarlatzis
- First Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Grigoris F. Grimbizis
- Unit for Human Reproduction, First Department of Obstetrics and Gynecology, 'Papageorgiou' General Hospital, Aristotle University Medical School, 56403 Thessaloniki, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71403 Heraklion, Greece
| | - Timothy B. Niewold
- Barbara Volcker Center for Women and Rheumatic Disease, New York, NY 10021, USA
- Hospital for Special Surgery, New York, NY 10021, USA
| | - George N. Goulielmos
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71403 Heraklion, Greece
- Department of Internal Medicine, University Hospital of Heraklion, 71500 Heraklion, Greece
| |
Collapse
|
3
|
Huang Y, Xue Q, Chang J, Wang X, Miao C. Wnt5a: A promising therapeutic target for inflammation, especially rheumatoid arthritis. Cytokine 2023; 172:156381. [PMID: 37806072 DOI: 10.1016/j.cyto.2023.156381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/05/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Wnt5a is a member of the Wnt protein family, which acts on classical or multiple non-classical Wnt signaling pathways by binding to different receptors. The expression regulation and signal transduction of Wnt5a is closely related to the inflammatory response. Abnormal activation of Wnt5a signaling is an important part of inflammation and rheumatoid arthritis (RA). OBJECTIVES This paper mainly focuses on Wnt5a protein and its mediated signaling pathway, summarizes the latest research progress of Wnt5a in the pathological process of inflammation and RA, and looks forward to the main directions of Wnt5a in RA research, aiming to provide a theoretical basis for the prevention and treatment of RA diseases by targeting Wnt5a. RESULTS Wnt5a is highly expressed in activated blood vessels, histocytes and synoviocytes in inflammatory diseases such as sepsis, sepsis, atherosclerosis and rheumatoid arthritis. It mediates the production of pro-inflammatory cytokines and chemokines, regulates the migration and recruitment of various immune effector cells, and thus participates in the inflammatory response. Wnt5a plays a pathological role in synovial inflammation and bone destruction of RA, and may be an important clinical therapeutic target for RA. CONCLUSION Wnt5a is involved in the pathological process of inflammation and interacts with inflammatory factors. Wnt5a may be a new target for regulating the progression of RA disease and intervening therapy because of its multi-modal effects on the etiology of RA, especially as a regulator of osteoclast activity and inflammation.
Collapse
Affiliation(s)
- Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jun Chang
- Department of Orthopaedics, the First Affiliated Hospital, Anhui Medical University, Hefei 230032, China; Anhui Public Health Clinical Center, Hefei, China.
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China.
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
4
|
Turcinov S, Af Klint E, Van Schoubroeck B, Kouwenhoven A, Mia S, Chemin K, Wils H, Van Hove C, De Bondt A, Keustermans K, Van Houdt J, Reumers J, Felix N, Rao NL, Peeters P, Stevenaert F, Klareskog L, McKinnon M, Baker D, Suri A, Malmström V. Diversity and Clonality of T Cell Receptor Repertoire and Antigen Specificities in Small Joints of Early Rheumatoid Arthritis. Arthritis Rheumatol 2022; 75:673-684. [PMID: 36409582 DOI: 10.1002/art.42407] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/17/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE CD4+ T cells are implicated in rheumatoid arthritis (RA) pathology from the strong association between RA and certain HLA class II gene variants. This study was undertaken to examine the synovial T cell receptor (TCR) repertoire, T cell phenotypes, and T cell specificities in small joints of RA patients at time of diagnosis before therapeutic intervention. METHODS Sixteen patients, of whom 11 patients were anti-citrullinated protein antibody (ACPA)-positive and 5 patients were ACPA-, underwent ultrasound-guided synovial biopsy of a small joint (n = 13) or arthroscopic synovial biopsy of a large joint (n = 3), followed by direct sorting of single T cells for paired sequencing of the αβ TCR together with flow cytometry analysis. TCRs from expanded CD4+ T cell clones of 4 patients carrying an HLA-DRB1*04:01 allele were artificially reexpressed to study antigen specificity. RESULTS T cell analysis demonstrated CD4+ dominance and the presence of peripheral helper T-like cells in both patient groups. We identified >4,000 unique TCR sequences, as well as 225 clonal expansions. Additionally, T cells with double α-chains were a recurring feature. We identified a biased gene usage of the Vβ chain segment TRBV20-1 in CD4+ cells from ACPA+ patients. In vitro stimulation of T cell lines expressing selected TCRs with an extensive panel of citrullinated and viral peptides identified several different virus-specific TCRs (e.g., human cytomegalovirus and human herpesvirus 2). Still, the majority of clones remained orphans with unknown specificity. CONCLUSION Minimally invasive biopsies of the RA synovium allow for single-cell TCR sequencing and phenotyping. Clonally expanded, viral-reactive T cells account for part of the diverse CD4+ T cell repertoire. TRBV20-1 bias in ACPA+ patients suggests recognition of common antigens.
Collapse
Affiliation(s)
- Sara Turcinov
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institutet, and Theme of Inflammation and Ageing, Medical Unit Gastro, Derma, Rheuma, Karolinska University Hospital, Solna, Sweden
| | - Erik Af Klint
- Theme of Inflammation and Ageing, Medical Unit Gastro, Derma, Rheuma, Karolinska University Hospital, Solna, Sweden
| | | | | | - Sohel Mia
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institutet, Solna, Sweden
| | - Karine Chemin
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institutet, Solna, Sweden
| | - Hans Wils
- Janssen Research and Development, Beerse, Belgium
| | | | - An De Bondt
- Janssen Research and Development, Beerse, Belgium
| | | | | | - Joke Reumers
- Janssen Research and Development, Beerse, Belgium
| | - Nathan Felix
- Janssen Research and Development, Spring House, Pennsylvania
| | - Navin L Rao
- Janssen Research and Development, Horsham, Pennsylvania
| | | | | | - Lars Klareskog
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institutet, Solna, Sweden
| | | | - Daniel Baker
- Janssen Research and Development, Spring House, Pennsylvania
| | - Anish Suri
- Janssen Research and Development, Beerse, Belgium
| | - Vivianne Malmström
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institutet, Solna, Sweden
| |
Collapse
|
5
|
Tizaoui K, Shin JI, Jeong GH, Yang JW, Park S, Kim JH, Hwang SY, Park SJ, Koyanagi A, Smith L. Genetic Polymorphism of PTPN22 in Autoimmune Diseases: A Comprehensive Review. Medicina (B Aires) 2022; 58:medicina58081034. [PMID: 36013501 PMCID: PMC9415475 DOI: 10.3390/medicina58081034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
It is known that the etiology and clinical outcomes of autoimmune diseases are associated with a combination of genetic and environmental factors. In the case of the genetic factor, the SNPs of the PTPN22 gene have shown strong associations with several diseases. The recent exploding numbers of genetic studies have made it possible to find these associations rapidly, and a variety of autoimmune diseases were found to be associated with PTPN22 polymorphisms. Proteins encoded by PTPN22 play a key role in the adaptative and immune systems by regulating both T and B cells. Gene variants, particularly SNPs, have been shown to significantly disrupt several immune functions. In this review, we summarize the mechanism of how PTPN22 and its genetic variants are involved in the pathophysiology of autoimmune diseases. In addition, we sum up the findings of studies reporting the genetic association of PTPN22 with different types of diseases, including type 1 diabetes mellitus, systemic lupus erythematosus, juvenile idiopathic arthritis, and several other diseases. By understanding these findings comprehensively, we can explain the complex etiology of autoimmunity and help to determine the criteria of disease diagnosis and prognosis, as well as medication developments.
Collapse
Affiliation(s)
- Kalthoum Tizaoui
- Department of Basic Sciences, Division of Histology and Immunology, Faculty of Medicine Tunis, Tunis El Manar University, Tunis 2092, Tunisia;
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Gwang Hun Jeong
- College of Medicine, Gyeongsang National University, Jinju 52727, Korea;
| | - Jae Won Yang
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea;
| | - Seoyeon Park
- Yonsei University College of Medicine, Seoul 06273, Korea; (S.P.); (S.Y.H.)
| | - Ji Hong Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea;
- Correspondence: ; Tel.: +82-2-2019-3352; Fax: +82-2-3461-9473
| | - Soo Young Hwang
- Yonsei University College of Medicine, Seoul 06273, Korea; (S.P.); (S.Y.H.)
| | - Se Jin Park
- Department of Pediatrics, Eulji University School of Medicine, Daejeon 35233, Korea;
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, Dr. Antoni Pujadas, 42, Sant Boi de Llobregat, 08830 Barcelona, Spain;
- ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Lee Smith
- Centre for Health Performance and Wellbeing, Anglia Ruskin University, Cambridge CB1 1PT, UK;
| |
Collapse
|
6
|
OUP accepted manuscript. Rheumatology (Oxford) 2022; 61:4252-4262. [DOI: 10.1093/rheumatology/keac143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
|
7
|
Amoriello R, Mariottini A, Ballerini C. Immunosenescence and Autoimmunity: Exploiting the T-Cell Receptor Repertoire to Investigate the Impact of Aging on Multiple Sclerosis. Front Immunol 2021; 12:799380. [PMID: 34925384 PMCID: PMC8673061 DOI: 10.3389/fimmu.2021.799380] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/16/2021] [Indexed: 01/08/2023] Open
Abstract
T-cell receptor (TCR) repertoire diversity is a determining factor for the immune system capability in fighting infections and preventing autoimmunity. During life, the TCR repertoire diversity progressively declines as a physiological aging progress. The investigation of TCR repertoire dynamics over life represents a powerful tool unraveling the impact of immunosenescence in health and disease. Multiple Sclerosis (MS) is a demyelinating, inflammatory, T-cell mediated autoimmune disease of the Central Nervous System in which age is crucial: it is the most widespread neurological disease among young adults and, furthermore, patients age may impact on MS progression and treatments outcome. Crossing knowledge on the TCR repertoire dynamics over MS patients' life is fundamental to investigate disease mechanisms, and the advent of high- throughput sequencing (HTS) has significantly increased our knowledge on the topic. Here we report an overview of current literature about the impact of immunosenescence and age-related TCR dynamics variation in autoimmunity, including MS.
Collapse
Affiliation(s)
- Roberta Amoriello
- Dipartimento di Medicina Sperimentale e Clinica (DMSC), Laboratory of Neuroimmunology, University of Florence, Florence, Italy
| | - Alice Mariottini
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), University of Florence, Florence, Italy
| | - Clara Ballerini
- Dipartimento di Medicina Sperimentale e Clinica (DMSC), Laboratory of Neuroimmunology, University of Florence, Florence, Italy
| |
Collapse
|
8
|
Monserrat J, Bohórquez C, Gómez Lahoz AM, Movasat A, Pérez A, Ruíz L, Díaz D, Chara L, Sánchez AI, Albarrán F, Sanz I, Álvarez-Mon M. The Abnormal CD4+T Lymphocyte Subset Distribution and Vbeta Repertoire in New-onset Rheumatoid Arthritis Can Be Modulated by Methotrexate Treament. Cells 2019; 8:E871. [PMID: 31405169 PMCID: PMC6721760 DOI: 10.3390/cells8080871] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/17/2019] [Accepted: 08/06/2019] [Indexed: 12/29/2022] Open
Abstract
Patients with long-term, treated, rheumatoid arthritis (RA) show abnormalities in their circulating CD4+ T-lymphocytes, but whether this occurs in recently diagnosed naïve patients to disease-modifying drugs (DMARDs) is under discussion. These patients show heterogeneous clinical response to methotrexate (MTX) treatment. We have examined the count of circulating CD4+ T-lymphocytes, and their naïve (TN), central memory (TCM), effector memory (TEM) and effector (TE) subsets, CD28 expression and Vβ TCR repertoire distribution by polychromatic flow cytometry in a population of 68 DMARD-naïve recently diagnosed RA patients, before and after 3 and 6 months of MTX treatment. At pre-treatment baseline, patients showed an expansion of the counts of CD4+ TN, TEM, TE and TCM lymphocyte subsets, and of total CD4+CD28- cells and of the TE subset with a different pattern of numbers in MTX responder and non-responders. The expansion of CD4+TEM lymphocytes showed a predictive value of MTX non-response. MTX treatment was associated to different modifications in the counts of the CD4+ subsets and of the Vβ TCR repertoire family distribution and in the level of CD28 expression in responders and non-responders. In conclusion, the disturbance of CD4+ lymphocytes is already found in DMARD-naïve RA patients with different patterns of alterations in MTX responders and non-responders.
Collapse
Affiliation(s)
- Jorge Monserrat
- Laboratory of Immune System Diseases, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain
- Department of Medicine, University Hospital "Príncipe de Asturias", University of Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, 28871 Madrid, Spain
| | - Cristina Bohórquez
- Department of Medicine, University Hospital "Príncipe de Asturias", University of Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - Ana María Gómez Lahoz
- Laboratory of Immune System Diseases, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - Atusa Movasat
- Department of Medicine, University Hospital "Príncipe de Asturias", University of Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - Ana Pérez
- Department of Medicine, University Hospital "Príncipe de Asturias", University of Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - Lucía Ruíz
- Department of Medicine, University Hospital "Príncipe de Asturias", University of Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - David Díaz
- Laboratory of Immune System Diseases, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - Luis Chara
- Laboratory of Immune System Diseases, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - Ana Isabel Sánchez
- Department of Medicine, University Hospital "Príncipe de Asturias", University of Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - Fernando Albarrán
- Department of Medicine, University Hospital "Príncipe de Asturias", University of Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - Ignacio Sanz
- Division of Immunology and Rheumatology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Melchor Álvarez-Mon
- Laboratory of Immune System Diseases, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain.
- Department of Medicine, University Hospital "Príncipe de Asturias", University of Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, 28871 Madrid, Spain.
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain.
| |
Collapse
|
9
|
Rožman P. How Could We Slow or Reverse the Human Aging Process and Extend the Healthy Life Span with Heterochronous Autologous Hematopoietic Stem Cell Transplantation. Rejuvenation Res 2019; 23:159-170. [PMID: 31203790 DOI: 10.1089/rej.2018.2164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The senescence of the immune system contributes considerably to the age-related diseases that are the main causes of death after the age of 65. In this study, we present an appealing option for the prevention of immune senescence and slowing or reversing the aging process, which can be achieved by heterochronous autologous hematopoietic stem cell transplantation (haHSCT), where healthy autologous bone marrow stem cells are collected from donors while young, cryopreserved and stored for a long period, and reinfused at a later time when indicated. After reinfusion and homing, these young HSCs could participate in normal hemato- and immunopoiesis and improve several immune functions by expanding the immune- as well as hematopoietic cell repertoire. Several animal studies have already confirmed the feasibility of this procedure, which extended the longevity of the treated animals. If translated to human medicine, haHSCT could prevent or mitigate age-related immune defects and extend the healthy life span. In this review, we describe the concept of haHSCT, recent studies that confirm its feasibility, and discuss the further research needed to translate this heterochronous methodology.
Collapse
Affiliation(s)
- Primož Rožman
- Immunohaematology Department, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| |
Collapse
|
10
|
Nakagawa R, Muroyama R, Saeki C, Oikawa T, Kaise Y, Koike K, Arai J, Nakano M, Matsubara Y, Takano K, Hirata Y, Saruta M, Zeniya M, Kato N. CD4 + T cells from patients with primary biliary cholangitis show T cell activation and differentially expressed T-cell receptor repertoires. Hepatol Res 2019; 49:653-662. [PMID: 30690835 DOI: 10.1111/hepr.13318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 01/08/2019] [Accepted: 01/22/2019] [Indexed: 02/08/2023]
Abstract
AIM Primary biliary cholangitis (PBC) is an autoimmune liver disease with unknown pathogenesis. In PBC, activation of T-cell receptor (TCR) signaling is associated with inflammatory cytokine production through N-Ras upregulation. Although the CD4+ T cell TCR repertoire could be associated with PBC pathogenesis, it has not been evaluated. Thus, we analyzed the PBC-CD4+ T cell TCR repertoire using next generation sequencing (NGS). METHODS Four PBC patients (one treatment-naïve and three receiving ursodeoxycholic acid) and three healthy individuals were enrolled. NRAS expression in CD4+ T cells was assessed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). N-Ras dynamics in CD4+ T cells were assessed by qRT-PCR and GTP-N-Ras activation assay. The TCR α- (TRA) and β-chain (TRB) repertoires on CD4+ T cells were analyzed by NGS and profiled using hierarchical analysis. Motif analysis was undertaken to elucidate the structure of PBC-specific TCRs. RESULTS NRAS was upregulated in PBC relative to control CD4+ T cells (P < 0.05), and N-Ras enhanced T cell activation in CD4+ T cells. Among 2668 TRAs and 841 TRBs, 20 and 11, respectively, were differentially expressed in PBC compared to that in controls (P < 0.05, fold-change >2). Among them, TRAV29/J22, TRBV6-5/J2-6, and TRBV10-1/J2-1 were expressed in PBC but the expression was negligible in the controls, with more mature and longer forms observed in PBC-CD4+ T cells. CONCLUSIONS N-Ras was upregulated in PBC-CD4+ T cells, and it enhanced TCR activation, indicating that PBC-CD4+ T cells were activated by N-Ras upregulation with differentially expressed TCR repertoires on their surfaces.
Collapse
Affiliation(s)
- Ryo Nakagawa
- Division of Advanced Genome Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Gastroenterology and Hepatology, Jikei University School of Medicine, Tokyo, Japan.,Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryosuke Muroyama
- Division of Advanced Genome Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Chisato Saeki
- Department of Gastroenterology and Hepatology, Jikei University School of Medicine, Tokyo, Japan
| | - Tsunekazu Oikawa
- Department of Gastroenterology and Hepatology, Jikei University School of Medicine, Tokyo, Japan
| | - Yoshimi Kaise
- Division of Advanced Genome Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology and Hepatology, Jikei University School of Medicine, Tokyo, Japan
| | - Jun Arai
- Division of Advanced Genome Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Masanori Nakano
- Department of Gastroenterology and Hepatology, Jikei University School of Medicine, Tokyo, Japan
| | - Yasuo Matsubara
- Division of Advanced Genome Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Keiko Takano
- Department of Gastroenterology and Hepatology, Jikei University School of Medicine, Tokyo, Japan
| | - Yoshihiro Hirata
- Division of Advanced Genome Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Masayuki Saruta
- Department of Gastroenterology and Hepatology, Jikei University School of Medicine, Tokyo, Japan
| | - Mikio Zeniya
- Sanno Medical Center, International University of Health and Welfare, Tokyo, Japan
| | - Naoya Kato
- Division of Advanced Genome Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
11
|
Musters A, Klarenbeek PL, Doorenspleet ME, Balzaretti G, Esveldt REE, van Schaik BDC, Jongejan A, Tas SW, van Kampen AHC, Baas F, de Vries N. In Rheumatoid Arthritis, Synovitis at Different Inflammatory Sites Is Dominated by Shared but Patient-Specific T Cell Clones. THE JOURNAL OF IMMUNOLOGY 2018; 201:417-422. [DOI: 10.4049/jimmunol.1800421] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/17/2018] [Indexed: 12/19/2022]
|
12
|
Rožman P. The potential of non-myeloablative heterochronous autologous hematopoietic stem cell transplantation for extending a healthy life span. GeroScience 2018; 40:221-242. [PMID: 29948868 PMCID: PMC6060192 DOI: 10.1007/s11357-018-0027-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/03/2018] [Indexed: 12/11/2022] Open
Abstract
Aging is a complex multifactorial process, a prominent component being the senescence of the immune system. Consequently, immune-related diseases develop, including atherosclerosis, cancer, and life-threatening infections, which impact on health and longevity. Rejuvenating the aged immune system could mitigate these diseases, thereby contributing to longevity and health. Currently, an appealing option for rejuvenating the immune system is heterochronous autologous hematopoietic stem cell transplantation (haHSCT), where healthy autologous bone marrow/peripheral blood stem cells are collected during the youth of an individual, cryopreserved, and re-infused when he or she has reached an older age. After infusion, young hematopoietic stem cells can reconstitute the compromised immune system and improve immune function. Several studies using animal models have achieved substantial extension of the life span of animals treated with haHSCT. Therefore, haHSCT could be regarded as a potential procedure for preventing age-related immune defects and extending healthy longevity. In this review, the pros, cons, and future feasibility of this approach are discussed.
Collapse
Affiliation(s)
- Primož Rožman
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000, Ljubljana, Slovenia.
| |
Collapse
|
13
|
Das S, Baruah C, Saikia AK, Bose S. Associative role of HLA-DRB1 SNP genotypes as risk factors for susceptibility and severity of rheumatoid arthritis: A North-east Indian population-based study. Int J Immunogenet 2017; 45:1-7. [PMID: 29168332 DOI: 10.1111/iji.12347] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 09/12/2017] [Accepted: 10/25/2017] [Indexed: 12/22/2022]
Abstract
Rheumatoid arthritis (RA) is a complex, multifactorial, systemic autoimmune disease. Reports are suggestive of the role of HLA especially HLA-DRB1 alterations in RA pathogenesis. Existing data involving different geographical populations on the role of alterations in specific locus of HLA-DRB1 in RA susceptibility and severity are equivocal, with no data available from ethnically distinct North-east Indian population, where RA cases are alarmingly increasing. This study aimed to evaluate the association of HLA-DRB1 gene SNPs (rs13192471, rs660895 and rs6457617) with susceptibility and severity of RA in an ethnically distinct North-east Indian population. Whole blood was collected from clinically characterized RA cases (satisfying the American College of Rheumatology 1987 criteria) (n = 123) and community-based age and sex-matched healthy controls (n = 156) with informed consent. The HLA-DRB1 SNP analysis was performed for all the RA and control cases using ARMS-PCR using case and control genomic DNA as template. Statistical analysis was performed by SPSSv13.0 software. The HLA-DRB1 rs660895 showed both wild (AA) and heterozygote (AG) genotype but the heterozygote allele was found to be associated with reduced risk of RA compared to controls [OR = 0.531, p = .024]. The difference in distribution of rs6457617 polymorphism between RA and control cases was comparable [OR = 0.525, p = .079]. Significantly higher distribution of variant rs13192471 genotype was observed in RA cases (69.92%) compared to controls (46.75%) (p < .001) and was associated with increased risk of susceptibility to RA [OR = 2.576, p < .001] compared to controls, as well as progression to severity in RA cases [OR = 2.404, p = .048]. Combinatorially also, the presence of rs13192471 variant genotype was associated with increased risk of RA susceptibility [OR = 8.267, p = .026] and RA severity [OR = 3.647, p = .280]. Alterations in HLA-DRB1 are associated with RA susceptibility. HLA-DRB1 rs13192471 SNP plays a critical role in RA susceptibility and severity in North-east Indian cases and has prognostic significance in RA.
Collapse
Affiliation(s)
- S Das
- Department of Bio-engineering and Technology, Gauhati University, Guwahati, Assam, India
| | - C Baruah
- Department of Medicine, Gauhati Medical College and Hospital, Guwahati, Assam, India
| | - A K Saikia
- Department of Gastroenterology, Central Railway Hospital, Maligaon, Assam, India
| | - S Bose
- Department of Bio-engineering and Technology, Gauhati University, Guwahati, Assam, India.,Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| |
Collapse
|
14
|
Ramaswamy S, Jain S, Ravindran V. Hematopoietic stem cell transplantation for auto immune rheumatic diseases. World J Transplant 2016; 6:199-205. [PMID: 27011918 PMCID: PMC4801796 DOI: 10.5500/wjt.v6.i1.199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/04/2015] [Accepted: 12/18/2015] [Indexed: 02/05/2023] Open
Abstract
Stem cells have their origins in the embryo and during the process of organogenesis, these differentiate into specialized cells which mature to form tissues. In addition, stem cell are characterized by an ability to indefinitely self renew. Stem cells are broadly classified into embryonic stem cells and adult stem cells. Adult stem cells can be genetically reprogrammed to form pluripotent stem cells and exist in an embroyonic like state. In the early phase of embryogenesis, human embryonic stem cells only exist transiently. Adult stem cells are omnipresent in the body and function to regenerate during the process of apoptosis or tissue repair. Hematopoietic stem cells (HSC) are adult stem cells that form blood and immune cells. Autoimmune responses are sustained due to the perennial persistence of tissue self autoantigens and/or auto reactive lymphocytes. Immune reset is a process leading to generation of fresh self-tolerant lymphocytes after chemotherapy induced elimination of self or autoreactive lymphocytes. This forms the basis for autologous HSC transplantation (HSCT). In the beginning HSCT had been limited to refractory autoimmune rheumatic diseases (AIRD) due to concern about transplant related mortality and morbidity. However HSCT for AIRD has come a long way with better understanding of patient selection, conditioning regime and supportive care. In this narrative review we have examined the available literature regarding the HSCT use in AIRD.
Collapse
|
15
|
Klarenbeek PL, de Hair MJH, Doorenspleet ME, van Schaik BDC, Esveldt REE, van de Sande MGH, Cantaert T, Gerlag DM, Baeten D, van Kampen AHC, Baas F, Tak PP, de Vries N. Inflamed target tissue provides a specific niche for highly expanded T-cell clones in early human autoimmune disease. Ann Rheum Dis 2012; 71:1088-93. [PMID: 22294635 DOI: 10.1136/annrheumdis-2011-200612] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To profile quantitatively the T-cell repertoire in multiple joints and peripheral blood of patients with recent onset (early) or established rheumatoid arthritis (RA) using a novel next-generation sequencing protocol to identify potential autoreactive clones. METHODS Synovium of patients with recent onset (early) RA (<6 months) (n=6) or established RA (>18 months) (n=6) was screened for T-cell clones by sequencing over 10 000 T-cell receptors (TCR) per sample. T cells from paired blood samples were analysed for comparison. From two patients synovial T cells were obtained from multiple inflamed joints. The degree of expansion of each individual clone was based on its unique CDR3 sequence frequency within a sample. Clones with a frequency of over 0.5% were considered to be highly expanded clones (HEC). RESULTS In early RA synovium, the T-cell repertoire was dominated by 35 HEC (median, range 2-70) accounting for 56% of the TCR sequenced. The clonal dominance in the synovium was patient specific and significantly greater than in established RA (median of 11 HEC (range 5-24) in established RA synovium accounting for 9.8% of T cells; p<0.01). 34% (range 28-40%) of the most expanded T-cell clones were shared between different joints in the same patients, compared with only 4% (range 0-8%) between synovium and blood (p=0.01). CONCLUSIONS In RA, a systemic autoimmune disease, the inflamed synovium forms a niche for specific expanded T-cell clones, especially in early disease. This suggests that, at least in RA, autoreactive T cells should be addressed specifically in the inflamed tissue, preferably in the early phase of the disease.
Collapse
Affiliation(s)
- P L Klarenbeek
- Department of Clinical Immunology and Rheumatology, Academic Medical Center/ University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Cantaert T, Brouard S, Thurlings RM, Pallier A, Salinas GF, Braud C, Klarenbeek PL, de Vries N, Zhang Y, Soulillou JP, Tak PP, Baeten D. Alterations of the synovial T cell repertoire in anti-citrullinated protein antibody-positive rheumatoid arthritis. ACTA ACUST UNITED AC 2009; 60:1944-56. [DOI: 10.1002/art.24635] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
18
|
Tran CN, Davis MJ, Tesmer LA, Endres JL, Motyl CD, Smuda C, Somers EC, Chung KC, Urquhart AG, Lundy SK, Kovats S, Fox DA. Presentation of arthritogenic peptide to antigen-specific T cells by fibroblast-like synoviocytes. ACTA ACUST UNITED AC 2007; 56:1497-506. [PMID: 17469112 DOI: 10.1002/art.22573] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To assess the ability of rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) to function as antigen-presenting cells (APCs) for arthritogenic autoantigens found within inflamed joint tissues. METHODS Human class II major histocompatibility complex (MHC)-typed FLS were used as APCs for murine class II MHC-restricted CD4 T cell hybridomas. Interferon-gamma (IFNgamma)-treated, antigen-loaded FLS were cocultured with T cell hybridomas specific for immunodominant portions of human cartilage gp-39 (HC gp-39) or human type II collagen (CII). T cell hybridoma activation was measured by enzyme-linked immunosorbent assay of culture supernatants for interleukin-2. Both synthetic peptide and synovial fluid (SF) were used as sources of antigen. APC function in cocultures was inhibited by using blocking antibodies to human class II MHC, CD54, or CD58, or to murine CD4, CD11a, or CD2. RESULTS Human FLS could present peptides from the autoantigens HC gp-39 and human CII to antigen-specific MHC-restricted T cell hybridomas. This response required pretreatment of FLS with IFNgamma, showed MHC restriction, and was dependent on human class II MHC and murine CD4 for effective antigen presentation. Furthermore, FLS were able to extract and present antigens found within human SF to both the HC gp-39 and human CII T cell hybridomas in an IFNgamma-dependent and MHC-restricted manner. CONCLUSION RA FLS can function as APCs and are able to present peptides derived from autoantigens found within joint tissues to activated T cells in vitro. In the context of inflamed synovial tissues, FLS may be an important and hitherto overlooked subset of APCs that could contribute to autoreactive immune responses.
Collapse
Affiliation(s)
- Chinh N Tran
- University of Michigan Rheumatic Disease Core Center, Ann Arbor, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Rheumatoid arthritis (RA) is represents the most common chronic inflammatory joint disease and is still a major medical challenge because of unsolved issues related to the etiologic and pathogenetic questions. Intensive research has been conducted over the last years that focused on the inappropriate activation of the immune system: although T cells have long been deemed to play a central role in the origin and propagation of joint inflammation, data accumulated so far have widened this perspective recognizing the contribution of other cells, as well as the major histocompatibility complex class II proteins and a composite set of costimulatory signals responsible for the production of proinflammatory cytokines and other soluble mediators implicated in tissue destruction typical of the disease. This paper will provide an insight into the immune system in RA, dissecting cellular and humoral aspects both in serum and in synovium of patients.
Collapse
Affiliation(s)
- Rossana Scrivo
- Dipartimento di Clinica e Terapia Medica, Sapienza Università di Roma, Policlinico Umberto I, Roma, Italy
| | | | | | | |
Collapse
|
20
|
Epling-Burnette PK, Painter JS, Rollison DE, Ku E, Vendron D, Widen R, Boulware D, Zou JX, Bai F, List AF. Prevalence and clinical association of clonal T-cell expansions in Myelodysplastic Syndrome. Leukemia 2007; 21:659-67. [PMID: 17301813 DOI: 10.1038/sj.leu.2404590] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Selected patients with Myelodysplastic Syndromes (MDS) are responsive to immunosuppressive therapy, suggesting that hematopoietic suppressive T cells have a pathogenic role in ineffective hematopoiesis. We assessed T-cell receptor (TCR) clonality through combined flow cytometry and molecular analysis of the complementarity determining region (CDR)-3 of the T-cell receptor-Vbeta gene. We identified clonal T cells in 50% of MDS patients (n=52) compared to 5% of age-matched normal controls (n=20). The presence of T-cell clones was not associated with features linked previously to immunosuppression response, including WHO diagnostic category, karyotype, marrow cellularity, IPSS category, sex or age <or=60. Using flow cytometry to identify expanded Vbeta-families, we found that T cells showed greater expansion in the bone marrow compared with peripheral blood, and were characterized as CD8(+)/CD57(+)/CD28(-) effector T cells. Expanded effector T cell were CD62L negative and expressed the natural killer C-lectin-family receptor NKG2D and CD244 (2B4). We conclude that clonal T-cell expansion is common among all MDS prognostic subgroups.
Collapse
Affiliation(s)
- P K Epling-Burnette
- Immunology Program, H Lee Moffitt Cancer Center, Department of Interdisciplinary Oncology, University of South Florida, Tampa, FL 33612, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Brennan FM, Foey AD, Feldmann M. The importance of T cell interactions with macrophages in rheumatoid cytokine production. Curr Top Microbiol Immunol 2006; 305:177-94. [PMID: 16724806 DOI: 10.1007/3-540-29714-6_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The analysis of suppression of cytokines in rheumatoid synovial tissue and fluid pioneered the studies of human cytokines in diseased tissue due to the relative ease of staining samples, even at the height of the inflammatory process. These studies led to the study of synovial cytokine regulation, and the identification of TNF as a therapeutic target, which has been amply validated in clinical trials and now routine therapy. The next key question was how is TNF disregulated in synovium. Are there differences between the mechanisms of synovial TNF production compared to the production of protective TNF during an immune response? Are there differences between the induction of the pro-inflammatory TNF and the anti inflammatory IL-10? The analysis of the interaction of the two most abundant synovial cells, T lymphocytes and macrophages has provided interesting clues to new therapeutic approaches based on disrupting T-macrophage interaction.
Collapse
Affiliation(s)
- F M Brennan
- Imperial College of Science, Technology and Medicine, Kennedy Institute of Rheumatology Division, Faculty of Medicine, London, UK.
| | | | | |
Collapse
|
22
|
Bryl E, Vallejo AN, Matteson EL, Witkowski JM, Weyand CM, Goronzy JJ. Modulation of CD28 expression with anti-tumor necrosis factor alpha therapy in rheumatoid arthritis. ACTA ACUST UNITED AC 2005; 52:2996-3003. [PMID: 16200579 DOI: 10.1002/art.21353] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The immune system of patients with rheumatoid arthritis (RA) is characterized by the accumulation of CD4+ T cells deficient in CD28 expression and the up-regulation of tumor necrosis factor alpha (TNFalpha). Previous in vitro studies have shown that TNFalpha induces transcriptional silencing of the CD28 gene. Because reduced expression of CD28 in T cells compromises immunocompetence, we examined whether CD28 expression is reduced in patients with RA in vivo and whether the reduction is related to TNFalpha. METHODS Patients with RA and age-matched individuals were recruited. Peripheral blood mononuclear cells were stained for CD3, CD4, CD8, CD28, TNF receptor I (TNFRI), and TNFRII, and analyzed by quantitative flow cytometry. The number of CD28 and TNFR molecules was monitored in a subgroup of patients with RA undergoing treatment with anti-TNFalpha. RESULTS In addition to higher frequencies of CD28null T cells, patients with RA had significantly reduced numbers of CD28 and TNFRI molecules on CD4+,CD28+ T cells. Normal expression could be restored in vitro by overnight culture, suggesting that CD28 in patients was modulated by exogenous factors. In contrast, treatment with TNFalpha in vitro resulted in further down-regulation. CD28 expression was normalized in patients undergoing TNFalpha-neutralizing therapy. CONCLUSION Overproduction of TNFalpha in RA induces a global down-regulation of CD28 in CD4+ T cells and may cause reduced sensitivity to costimulatory signals in T cell responses.
Collapse
Affiliation(s)
- Ewa Bryl
- Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | | | | | | | | | |
Collapse
|
23
|
Seyler TM, Park YW, Takemura S, Bram RJ, Kurtin PJ, Goronzy JJ, Weyand CM. BLyS and APRIL in rheumatoid arthritis. J Clin Invest 2005; 115:3083-92. [PMID: 16239971 PMCID: PMC1257539 DOI: 10.1172/jci25265] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 08/23/2005] [Indexed: 11/17/2022] Open
Abstract
The cytokines B lymphocyte stimulator (BLyS) and a proliferation-inducing ligand (APRIL) enhance autoimmune disease by sustaining B cell activation. In RA, B cells contribute to the formation of 3 functionally distinct types of lymphoid microarchitectures in the inflamed synovium: ectopic GCs; T cell-B cell aggregates lacking GC reactions; and unorganized, diffuse infiltrates. We examined 72 tissues representing the 3 types of synovitis for BLyS and APRIL production and for expression of APRIL/BLyS receptors. Biologic effects of BLyS and APRIL were explored by treating human synovium-SCID mouse chimeras with the APRIL and BLyS decoy receptor transmembrane activator and CAML interactor:Fc (TACI:Fc). GC+ synovitis had the highest levels of APRIL, produced exclusively by CD83+ DCs. BLyS was present in similar levels in all tissue types and derived exclusively from CD68+ macrophages. In GC+ synovitis, treatment with TACI:Fc resulted in GC destruction and marked inhibition of IFN-gamma and Ig transcription. In contrast, inhibition of APRIL and BLyS in aggregate and diffuse synovitis left Ig levels unaffected and enhanced IFN-gamma production. These differential immunomodulatory effects correlated with the presence of TACI+ T cells in aggregate and diffuse synovitis and their absence in GC+ synovitis. We propose that BLyS and APRIL regulate B cell as well as T cell function and have pro- and antiinflammatory activities in RA.
Collapse
Affiliation(s)
- Thorsten M Seyler
- Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Li H, Van Vranken S, Zhao Y, Li Z, Guo Y, Eisele L, Li Y. Crystal structures of T cell receptor (beta) chains related to rheumatoid arthritis. Protein Sci 2005; 14:3025-38. [PMID: 16260763 PMCID: PMC2253245 DOI: 10.1110/ps.051748305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The crystal structures of the Vbeta17+ beta chains of two human T cell receptors (TCRs), originally derived from the synovial fluid (SF4) and tissue (C5-1) of a patient with rheumatoid arthritis (RA), have been determined in native (SF4) and mutant (C5-1(F104-->Y/C187-->S)) forms, respectively. These TCR beta chains form homo-dimers in solution and in crystals. Structural comparison reveals that the main-chain conformations in the CDR regions of the C5-1 and SF4 Vbeta17 closely resemble those of a Vbeta17 JM22 in a bound form; however, the CDR3 region shows different conformations among these three Vbeta17 structures. At the side-chain level, conformational differences were observed at the CDR2 regions between our two ligand-free forms and the bound JM22 form. Other significant differences were observed at the Vbeta regions 8-12, 40-44, and 82-88 between C5-1/SF4 and JM22 Vbeta17, implying that there is considerable variability in the structures of very similar beta chains. Structural alignments also reveal a considerable variation in the Vbeta-Cbeta associations, and this may affect ligand recognition. The crystal structures also provide insights into the structure basis of T cell recognition of Mycoplasma arthritidis mitogen (MAM), a superantigen that may be implicated in the development of human RA. Structural comparisons of the Vbeta domains of known TCR structures indicate that there are significant similarities among Vbeta regions that are MAM-reactive, whereas there appear to be significant structural differences among those Vbeta regions that lack MAM-reactivity. It further reveals that CDR2 and framework region (FR) 3 are likely to account for the binding of TCR to MAM.
Collapse
MESH Headings
- Amino Acid Sequence
- Arthritis, Rheumatoid/metabolism
- Binding Sites
- Crystallography, X-Ray
- Dimerization
- Humans
- Ligands
- Models, Molecular
- Molecular Sequence Data
- Protein Structure, Quaternary
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- Solubility
- Structural Homology, Protein
Collapse
Affiliation(s)
- Hongmin Li
- Wadsworth Center, 150 New Scotland Avenue, CMS-1155, Albany, NY 12208, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Rheumatoid arthritis (RA), like other autoimmune diseases, has a complex genetic basis. Rapid technical advances in high-throughput genotyping and analysis have now reached a point where genes of low-to-moderate risk can be identified using a variety of study designs, including whole genome association studies. The availability of large, well-characterized populations of cases and controls are critical to the success of these efforts. A functional variant (R620W) of the intracellular protein tyrosine phosphatase N22 (PTPN22) has now been conclusively shown to confer approximately two-fold risk for seropositive RA as well as several other autoimmune disorders. PTPN22 appears to act primarily by setting thresholds for T-cell receptor signaling, and the current data suggest that the PTPN22 620W allele is likely to be a general risk factor for the development of humoral autoimmunity. PTPN22 is expressed widely in hematopoietic cells, but other than in T cells, its role is unknown. These results provide strong evidence for the longstanding hypothesis that common genes underlie different autoimmune phenotypes and emphasize that finding genes of only moderate risk can provide important insights into disease pathogenesis.
Collapse
Affiliation(s)
- Peter K Gregersen
- Robert S. Boas Center for Genomics and Human Genetics, The Institute for Medical Research at North Shore/LIJ, Manhasset, NY 11030, USA.
| |
Collapse
|
26
|
Hill JA, Southwood S, Sette A, Jevnikar AM, Bell DA, Cairns E. Cutting edge: the conversion of arginine to citrulline allows for a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB1*0401 MHC class II molecule. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:538-41. [PMID: 12847215 DOI: 10.4049/jimmunol.171.2.538] [Citation(s) in RCA: 476] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rheumatoid arthritis (RA) is genetically associated with MHC class II molecules that contain the shared epitope. These MHC molecules may participate in disease pathogenesis by selectively binding arthritogenic peptides for presentation to autoreactive CD4(+) T cells. The nature of the arthritogenic Ag is not known, but recent work has identified posttranslationally modified proteins containing citrulline (deiminated arginine) as specific targets of the IgG Ab response in RA patients. To understand how citrulline might evoke an autoimmune reaction, we have studied T cell responses to citrulline-containing peptides in HLA-DRB1*0401 transgenic (DR4-IE tg) mice. In this study, we demonstrate that the conversion of arginine to citrulline at the peptide side-chain position interacting with the shared epitope significantly increases peptide-MHC affinity and leads to the activation CD4(+) T cells in DR4-IE tg mice. These results reveal how DRB1 alleles with the shared epitope could initiate an autoimmune response to citrullinated self-Ags in RA patients.
Collapse
Affiliation(s)
- Jonathan A Hill
- Department of Medicine, University of Western Ontario, London Health Sciences Center, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
The limitations associated with the different approaches into the pathogenesis of the IIM have resulted in incomplete knowledge of disease mechanisms in myositis. In most research, in which muscle tissue was used to study the different aspects of disease, biopsies with inflammatory infiltrates have been selected. Although inflammatory cell infiltrates are a characteristic feature of myositis, selecting patients with inflammatory cell infiltrates for investigations naturally introduces a selection bias. Only a few studies have been published on patients without inflammatory infiltrates but with muscle weakness, and few studies have included follow-up biopsies after different therapies. The heterogeneity of the population of patients with myositis is another limitation of the studies of pathogenic mechanisms. Although most studies classify patients according to the Bohan and Peter criteria [118, 119], some studies used histopathologic criteria [6], and only a few studies included characterization with myositis-specific autoantibodies. Because myositis-specific autoantibodies are often associated with certain clinical profiles, classification according to autoantibody profiles could be important to define differences in the pathogenesis of different phenotypes [3]. From available data on pathogenic mechanisms it is evident that cellular and humoral immune responses are involved in disease mechanisms of myositis, but whether there is a muscle-specific immune response cannot be answered by current studies. It is likely that other mechanisms are important for development of muscle weakness, including metabolic disturbances, and muscle weakness could be caused by different mechanisms in different IIM subsets or in patients in different phases of the disease. There could be early changes, which reversibly affect the metabolism, and later, irreversible changes, that could be dependent on muscle fiber damage and replacement of muscle tissue by connective tissue and fat. Current findings suggest that cytokines, which are produced in muscle tissue from different cell sources including inflammatory cells, endothelial cells, and muscle fibers, could affect muscle function. Careful follow-up studies, including the effect of therapies targeting different molecules on molecular expression in muscle tissue, are likely to increase our knowledge on disease mechanisms. A better understanding of which molecules and mechanisms affect muscle function is likely to lead to improved, less toxic therapies in patients with myositis. Many possible target molecules for blocking therapies, especially the proinflammatory cytokines IL-1 and TNF-alpha, have been identified and should be studied in appropriate clinical settings given the currently poor outcomes of many patients with IIM.
Collapse
Affiliation(s)
- Ingrid E Lundberg
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska Hospital, SE-171 76, Stockholm, Sweden.
| | | |
Collapse
|
28
|
Furst DE, Saag K, Fleischmann MR, Sherrer Y, Block JA, Schnitzer T, Rutstein J, Baldassare A, Kaine J, Calabrese L, Dietz F, Sack M, Senter RG, Wiesenhutter C, Schiff M, Stein CM, Satoi Y, Matsumoto A, Caldwell J, Harris RE, Moreland LW, Hurd E, Yocum D, Stamler DA. Efficacy of tacrolimus in rheumatoid arthritis patients who have been treated unsuccessfully with methotrexate: a six-month, double-blind, randomized, dose-ranging study. ARTHRITIS AND RHEUMATISM 2002; 46:2020-8. [PMID: 12209503 DOI: 10.1002/art.10427] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To assess the efficacy, safety, and optimal dose of tacrolimus monotherapy in patients with rheumatoid arthritis (RA). METHODS This phase II, randomized, double-blind, placebo-controlled monotherapy study was set in 12 community sites and 9 university-based sites. Two hundred sixty-eight patients with RA who were resistant to or intolerant of methotrexate (mean dose 15.2 mg/week) and had active disease for at least 6 months (mean tender joint count 28.2, mean erythrocyte sedimentation rate 46.5 mm/hour) were randomized to receive treatment after discontinuation of methotrexate. Those who received at least 1 dose of tacrolimus were analyzed; 141 completed the study. Stable dosages of nonsteroidal antiinflammatory drugs and low-dose prednisone were allowed during treatment. All patients were given 1, 3, or 5 mg of tacrolimus or placebo once daily for 24 weeks. The American College of Rheumatology definition of 20% improvement (ACR20) and the tender and swollen joint counts at the end of treatment were the primary outcomes. RESULTS ACR20 response rates demonstrated a clear dose response. The ACR20 response was observed in 15.5% of patients receiving placebo (95% confidence interval [95% CI] 7.1-23.9%), 29% of the 1 mg tacrolimus group (95% CI 18.3-39.7%) (P < 0.058); 34.4% of the 3 mg group (95% CI 22.7-46.0%) (P < 0.013), and 50% of the 5 mg group (95% CI 37.8-62.3%) (P < or = 0.001). The tender joint count improved statistically significantly in all tacrolimus groups. The swollen joint count, physical function, and patient-assessed pain improved statistically significantly in the 3 mg and 5 mg groups. The incidence of creatinine elevation > or =40% above baseline levels increased in a dose-dependent manner. Dropout rates were high (41-59%) and were more common for inefficacy in the placebo patients (71.4%), whereas they were more common for toxicity in the high-dose tacrolimus groups (31-33%). Discontinuation for creatinine elevation occurred in the 3 mg (3.1%) and 5 mg (10.9%) tacrolimus groups. CONCLUSION Tacrolimus improved disease activity in methotrexate-resistant or -intolerant patients with RA. A dose response was observed when efficacy and toxicity were assessed at different doses. The optimal dose of tacrolimus appears to be >1 mg but < or=3 mg daily.
Collapse
Affiliation(s)
- Daniel E Furst
- University of California at Los Angeles Medical School, CA 90024, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Burt RK, Slavin S, Burns WH, Marmont AM. Induction of tolerance in autoimmune diseases by hematopoietic stem cell transplantation: getting closer to a cure? Int J Hematol 2002; 76 Suppl 1:226-47. [PMID: 12430858 DOI: 10.1007/bf03165251] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hematopoietic stem cells (HSCs) are the earliest cells of the immune system, giving rise to B and T lymphocytes, monocytes, tissue macrophages, and dendritic cells. In animal models, adoptive transfer of HSCs, depending on circumstances, may cause, prevent, or cure autoimmune diseases. Clinical trials have reported early remission of otherwise refractory autoimmune disorders after either autologous or allogeneic hematopoietic stem cell transplantation (HSCT). By percentage of transplantations performed, autoimmune diseases are the most rapidly expanding indication for stem cell transplantation. Although numerous editorials or commentaries have been previously published, no prior review has focused on the immunology of transplantation tolerance or development of phase 3 autoimmune HSCT trials. Results from current trials suggest that mobilization of HSCs, conditioning regimen, eligibility and exclusion criteria, toxicity, outcome, source of stem cells, and posttransplantation follow-up need to be disease specific. HSCT-induced remission of an autoimmune disease allows for a prospective analysis of events involved in immune tolerance not available in cross-sectional studies.
Collapse
Affiliation(s)
- Richard K Burt
- Northwestern University Medical Center, Division of Immune Therapy and Autoimmune Disease, Chicago, IL, USA
| | | | | | | |
Collapse
|
30
|
Lard LR, Boers M, Verhoeven A, Vos K, Visser H, Hazes JMW, Zwinderman AH, Schreuder GMT, Breedveld FC, De Vries RRP, van der Linden S, Zanelli E, Huizinga TWJ. Early and aggressive treatment of rheumatoid arthritis patients affects the association of HLA class II antigens with progression of joint damage. ARTHRITIS AND RHEUMATISM 2002; 46:899-905. [PMID: 11953965 DOI: 10.1002/art.10151] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The presence of certain HLA class II antigens is strongly associated with the progression of joint destruction in rheumatoid arthritis (RA). Such antigens may be more effective than other class II antigens in inducing the formation of autoreactive T cells after presentation of (auto)antigens. We investigated whether early and aggressive treatment with disease-modifying antirheumatic drugs could modify this relationship. METHODS We analyzed data from 2 studies of patients with early RA treated according to different strategies. The first study consisted of 2 cohorts, one (n = 109; median disease duration before treatment 4 months) was treated according to the pyramid strategy (initial nonsteroidal antiinflammatory drugs, followed by chloroquine [CQ] or sulfasalazine [SSZ] when necessary), and the other (n = 97; median disease duration before treatment 2 weeks) was immediately treated with CQ or SSZ. The second study comprised 155 patients (median disease duration 4 months) from the Combinatietherapie Bij Reumatoide Artritis (COBRA) trial, in which patients were randomly assigned to combination treatment with step-down prednisolone, methotrexate (MTX), and SSZ (n = 76) or with SSZ alone (n = 79). Prednisolone and MTX dosages were tapered and stopped after 28 and 40 weeks, respectively. The extent of joint damage was measured by the modified Sharp method. RESULTS In the pyramid treatment cohort, the median increase in Sharp score after 2 years was 12 in patients positive for the shared epitope (SE) and 1 in SE- patients. In the immediate treatment cohort, the median increase was 3 in SE+ patients and 2 in SE- patients. In the SSZ group of the COBRA study, the median increase in Sharp score after 1 year was 11 in DR4+ patients and 3 in DR4- patients. In the combination treatment group, the median increase was 4 in DR4+ patients and 2 in DR4- patients. Significance was confirmed by multiple regression using log-transformed scores. CONCLUSION Early and aggressive antirheumatic drug treatment affects the association of HLA class II alleles with progression of joint damage in RA.
Collapse
Affiliation(s)
- L R Lard
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Brennan F, Foey A. Cytokine regulation in RA synovial tissue: role of T cell/macrophage contact-dependent interactions. ARTHRITIS RESEARCH 2002; 4 Suppl 3:S177-82. [PMID: 12110137 PMCID: PMC3240132 DOI: 10.1186/ar556] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2002] [Accepted: 03/05/2002] [Indexed: 11/22/2022]
Abstract
Several groups have documented the expression of cytokines in rheumatoid arthritis synovial tissue over the past 15 years or so. These studies have indicated that most cytokines examined are expressed at the mRNA levels at least, and many other cytokines are found in abundance as proteins. Our attention has recently focused on the mechanisms that induce and regulate tumour necrosis factor and IL-10. Other workers and ourselves have found that cell-cell contact is an important signal for the induction of cytokines, and our work has demonstrated that tumour necrosis factor and IL-10 production in rheumatoid arthritis synovial joint cells cultures is dependent on T cell/macrophage interaction. In this chapter, we review recent advances in this area and also highlight areas where new therapeutic intervention opportunities arise.
Collapse
Affiliation(s)
- Fionula Brennan
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College of Science, Technology and Medicine, London, UK.
| | | |
Collapse
|
32
|
Takemura S, Klimiuk PA, Braun A, Goronzy JJ, Weyand CM. T cell activation in rheumatoid synovium is B cell dependent. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4710-8. [PMID: 11591802 DOI: 10.4049/jimmunol.167.8.4710] [Citation(s) in RCA: 357] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rheumatoid arthritis results from a T cell-driven inflammation in the synovial membrane that is frequently associated with the formation of tertiary lymphoid structures. The significance of this extranodal lymphoid neogenesis is unknown. Microdissection was used to isolate CD4 T cells residing in synovial tissue T cell/B cell follicles. CD4 T cells with identical TCR sequences were represented in independent, nonadjacent follicles, suggesting recognition of the same Ag in different germinal centers. When adoptively transferred into rheumatoid arthritis synovium-SCID mouse chimeras, these CD4 T cell clones enhanced the production of IFN-gamma, IL-1beta, and TNF-alpha. In vivo activity of adoptively transferred CD4 T cells required matching of HLA-DRB1 alleles and also the presence of T cell/B cell follicles. HLA-DRB1-matched synovial tissues that were infiltrated by T cells, macrophages, and dendritic cells, but that lacked B cells, did not support the activation of adoptively transferred CD4 T cell clones, raising the possibility that B cells provided a critical function in T cell activation or harbored the relevant Ag. Dependence of T cell activation on B cells was confirmed in B cell depletion studies. Treatment of chimeric mice with anti-CD20 mAb inhibited the production of IFN-gamma and IL-1beta, indicating that APCs other than B cells could not substitute in maintaining T cell activation. The central role of B cells in synovial inflammation identifies them as excellent targets for immunosuppressive therapy.
Collapse
Affiliation(s)
- S Takemura
- Department of Medicine and Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
33
|
Weyand CM, Bryl E, Goronzy JJ. The Role of T Cells in Rheumatoid Arthritis. Autoimmunity 2001. [DOI: 10.1007/978-94-010-0981-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Vallejo AN, Schirmer M, Weyand CM, Goronzy JJ. Clonality and longevity of CD4+CD28null T cells are associated with defects in apoptotic pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:6301-7. [PMID: 11086066 DOI: 10.4049/jimmunol.165.11.6301] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD4(+)CD28(null) T cells are oligoclonal lymphocytes rarely found in healthy individuals younger than 40 yr, but are found in high frequencies in elderly individuals and in patients with chronic inflammatory diseases. Contrary to paradigm, they are functionally active and persist over many years. Such clonogenic potential and longevity suggest altered responses to apoptosis-inducing signals. In this study, we show that CD4(+)CD28(null) T cells are protected from undergoing activation-induced cell death. Whereas CD28(+) T cells underwent Fas-mediated apoptosis upon cross-linking of CD3, CD28(null) T cells were highly resistant. CD28(null) T cells were found to progress through the cell cycle, and cells at all stages of the cell cycle were resistant to apoptosis, unlike their CD28(+) counterparts. Neither the activation-induced up-regulation of the IL-2R alpha-chain (CD25) nor the addition of exogenous IL-2 renders them susceptible to Fas-mediated apoptosis. These properties of CD28(null) T cells were related to high levels of Fas-associated death domain-like IL-1-converting enzyme-like inhibitory protein, an inhibitor of Fas signaling that is normally degraded in T cells following activation in the presence of IL-2. Consistent with previous data showing protection of CD28(null) cells from spontaneous cell death, the present studies unequivocally show dysregulation of apoptotic pathways in CD4(+)CD28(null) T cells that favor their clonal outgrowth and maintenance in vivo.
Collapse
Affiliation(s)
- A N Vallejo
- Departments of Medicine and Immunology, Mayo Clinic and Foundation, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
35
|
Teng YT, Nguyen H, Gao X, Kong YY, Gorczynski RM, Singh B, Ellen RP, Penninger JM. Functional human T-cell immunity and osteoprotegerin ligand control alveolar bone destruction in periodontal infection. J Clin Invest 2000; 106:R59-67. [PMID: 10995794 PMCID: PMC3102542 DOI: 10.1172/jci10763] [Citation(s) in RCA: 362] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Periodontitis, a prime cause of tooth loss in humans, is implicated in the increased risk of systemic diseases such as heart failure, stroke, and bacterial pneumonia. The mechanisms by which periodontitis and antibacterial immunity lead to alveolar bone and tooth loss are poorly understood. To study the human immune response to specific periodontal infections, we transplanted human peripheral blood lymphocytes (HuPBLs) from periodontitis patients into NOD/SCID mice. Oral challenge of HuPBL-NOD/SCID mice with Actinobacillus actinomycetemcomitans, a well-known Gram-negative anaerobic microorganism that causes human periodontitis, activates human CD4(+) T cells in the periodontium and triggers local alveolar bone destruction. Human CD4(+) T cells, but not CD8(+) T cells or B cells, are identified as essential mediators of alveolar bone destruction. Stimulation of CD4(+) T cells by A. actinomycetemcomitans induces production of osteoprotegerin ligand (OPG-L), a key modulator of osteoclastogenesis and osteoclast activation. In vivo inhibition of OPG-L function with the decoy receptor OPG diminishes alveolar bone destruction and reduces the number of periodontal osteoclasts after microbial challenge. These data imply that the molecular explanation for alveolar bone destruction observed in periodontal infections is mediated by microorganism-triggered induction of OPG-L expression on CD4(+) T cells and the consequent activation of osteoclasts. Inhibition of OPG-L may thus have therapeutic value to prevent alveolar bone and/or tooth loss in human periodontitis.
Collapse
Affiliation(s)
- Y T Teng
- Divisions of Periodontics and Oral Biology, and Department of Microbiology and Immunology, Faculty of Medicine and Dentistry, the University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Namekawa T, Snyder MR, Yen JH, Goehring BE, Leibson PJ, Weyand CM, Goronzy JJ. Killer cell activating receptors function as costimulatory molecules on CD4+CD28null T cells clonally expanded in rheumatoid arthritis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:1138-45. [PMID: 10878393 DOI: 10.4049/jimmunol.165.2.1138] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Expansion of CD4+CD28null T cells is a characteristic finding in patients with rheumatoid arthritis. Despite lacking CD28 molecules, these unusual CD4 T cells undergo clonal proliferation and form large and long-lived clonal populations. They produce high levels of IFN-gamma, exhibit autoreactivity, and have cytolytic function. The mechanisms facilitating the expansion and longevity of CD4+CD28null T cell clones in vivo are unknown. Here, we report that CD4+CD28null, but not CD4+CD28+, T cells express MHC class I-recognizing receptors normally found on NK cells. CD4+CD28null T cells preferentially expressed killer cell activating receptors (KAR), often in the absence of killer cell inhibitory receptors. Cross-linking of KAR molecules enhanced the proliferative response to TCR-mediated stimulation, but not the cytolytic function of CD4+CD28null T cells, suggesting different signaling pathways in CD4 T cells and NK cells. Triggering of KAR signaling led to the phosphorylation of several cellular targets, although the pattern of phosphorylation differed from that induced by the TCR. Aberrant expression of KAR molecules in the absence of inhibitory receptors and in the appropriate HLA setting may lead to the clonal outgrowth of autoreactive CD4+CD28null T cells commonly seen in rheumatoid arthritis.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adjuvants, Immunologic/physiology
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- CD28 Antigens/biosynthesis
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/pathology
- Cell Division/immunology
- Clone Cells
- Cytotoxicity, Immunologic
- Histocompatibility Antigens Class I/metabolism
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphocyte Activation
- Membrane Proteins
- Phosphorylation
- Phosphotyrosine/metabolism
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/physiology
- Receptors, KIR
- Receptors, Natural Killer Cell
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
Collapse
Affiliation(s)
- T Namekawa
- Department of Medicine/Rheumatology and Immunology, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Sen M, Lauterbach K, El-Gabalawy H, Firestein GS, Corr M, Carson DA. Expression and function of wingless and frizzled homologs in rheumatoid arthritis. Proc Natl Acad Sci U S A 2000; 97:2791-6. [PMID: 10688908 PMCID: PMC16008 DOI: 10.1073/pnas.050574297] [Citation(s) in RCA: 234] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Rheumatoid arthritis (RA) is accompanied by synovial inflammation, proliferation, and cartilage destruction. The reasons the activation of synovial fibroblasts often persists despite antiinflammatory therapy are not known. One possibility is that the synovial membrane becomes gradually repopulated with immature mesenchymal and bone marrow cells with altered properties. To explore this hypothesis, we have investigated the expression in RA synovial tissues of various embryonic growth factors from the wingless (wnt) and frizzled (fz) families, which have been implicated in cell-fate determination in both bone marrow progenitors and limb-bud mesenchyme. Reverse transcriptase-PCR analysis revealed expression of five wnt (wnt1, 5a, 10b, 11, and 13) and three fz (fz2, 5, and 7) isoforms in RA synovial tissues. Osteoarthritis synovial tissues expressed much less wnt5a and fz5. Northern blotting confirmed the overexpression of wnt5a and fz5 in RA synovial tissues, in comparison to a panel of normal adult tissues. Compared with normal synovial fibroblasts, cultured RA fibroblast-like synoviocytes expressed higher levels of IL-6, IL-8, and IL-15. Transfection of normal fibroblasts with a wnt5a expression vector reproduced this pattern of cytokine expression and stimulated IL-15 secretion. These results suggest that the unusual phenotypic properties of RA fibroblasts may be attributable partly to their replacement with primitive fibroblast-like synoviocytes with characteristics of immature bone marrow and mesenchymal cells. Clear delineation of the signaling pathway(s) initiated by the wnt5a/fz5 ligand-receptor pair in the RA synovium may yield new targets for therapeutic intervention.
Collapse
Affiliation(s)
- M Sen
- Department of Medicine and the Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, La Jolla, CA 92093-0663, USA
| | | | | | | | | | | |
Collapse
|
38
|
McInnes IB, Leung BP, Liew FY. Cell-cell interactions in synovitis. Interactions between T lymphocytes and synovial cells. ARTHRITIS RESEARCH 2000; 2:374-8. [PMID: 11094451 PMCID: PMC130139 DOI: 10.1186/ar115] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2000] [Accepted: 05/23/2000] [Indexed: 11/20/2022]
Abstract
Mechanisms whereby T lymphocytes contribute to synovial inflammation in rheumatoid arthritis are poorly understood. Here we review data that indicate an important role for cell contact between synovial T cells, adjacent macrophages and fibroblast-like synoviocytes (FLS). Thus, T cells activated by cytokines, endothelial transmigration, extracellular matrix or by auto-antigens can promote cytokine, particularly TNF alpha, metalloproteinase production by macrophages and FLS through cell-membrane interactions, mediated at least through beta-integrins and membrane cytokines. Since soluble factors thus induced may in turn contribute directly to T cell activation, positive feedback loops are likely to be created. These novel pathways represent exciting potential therapeutic targets.
Collapse
Affiliation(s)
- I B McInnes
- Centre for Rheumatic Diseases, Glasgow Royal Infirmary, University of Glasgow, Glasgow, UK.
| | | | | |
Collapse
|
39
|
Weyand CM, Goronzy JJ. Association of MHC and rheumatoid arthritis. HLA polymorphisms in phenotypic variants of rheumatoid arthritis. ARTHRITIS RESEARCH 2000; 2:212-6. [PMID: 11094432 PMCID: PMC130005 DOI: 10.1186/ar90] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2000] [Accepted: 02/29/2000] [Indexed: 11/10/2022]
Abstract
Genes in the human leukocyte antigen (HLA) region remain the most powerful disease risk genes in rheumatoid arthritis (RA). Several allelic variants of HLA-DRB1 genes have been associated with RA, supporting a role for T-cell receptor-HLA-antigen interactions in the pathologic process. Disease-associated HLA-DRB1 alleles are similar but not identical and certain allelic variants are preferentially enriched in patient populations with defined clinical characteristics. Also, a gene dosing effect of HLA-DRB1 alleles has been suggested by the accumulation of patients with two RA-associated alleles, especially in patient subsets with a severe disease course. Therefore, polymorphisms in HLA genes are being explored as tools to dissect the clinical heterogeneity of the rheumatoid syndrome. Besides HLA polymorphisms, other risk genes will be helpful in defining genotypic profiles correlating with disease phenotypes. One such phenotype is the type of synovial lesion generated by the patient. HLA genes in conjunction with other genetic determinants may predispose patients to a certain pathway of synovial inflammation. Also, patients may or may not develop extraarticular manifestations, which are critical in determining morbidity and mortality. HLA genes, complemented by other RA risk genes, are likely involved in shaping the T-cell repertoire, including the emergence of an unusual T-cell population characterized by the potential of vascular injury, such as seen in extraarticular RA.
Collapse
Affiliation(s)
- C M Weyand
- Department of Medicine, Mayo Clinic Foundation, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|
40
|
Weyand CM, Goronzy JJ. T-cell responses in rheumatoid arthritis: systemic abnormalities-local disease. Curr Opin Rheumatol 1999; 11:210-7. [PMID: 10328581 DOI: 10.1097/00002281-199905000-00010] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
One manifestation of rheumatoid arthritis (RA) is a destructive inflammation of the joint, but many other organs can be targeted by this disease, classifying it as a truly systemic disorder. Accordingly, pathogenic models have to account for the multiorgan character of RA. This article proposes that the primary abnormalities in RA lie in the assembly of the T-cell pool and in the maintenance of T-cell homeostasis. Evidence has accumulated that the repertoire of CD4 T cells in RA patients is distinct and includes a high frequency of disease-relevant T cells. Emergence of T cells with self-aggressive potential could indicate a failure of negative selection in the thymus. Also, the turnover of mature T cells in the periphery is altered in RA patients with a sharp contraction in diversity. Loss of diversity results from the replacement of rare T-cell specificities by multiplying T-cell clones. Large clonal T-cell populations in RA patients acquire a distinct phenotype (CD4+CD28null) and functional profile (overproduction of interferon-gamma, cytotoxicity), giving them the ability to function as proinflammatory cells. Optimal conditions for T-cell stimulation are encountered in the synovium, where ectopic lymphoid tissue with germinal centers is formed. Considering the systemic nature of RA, therapeutic strategies suppressing synovial inflammation while ignoring systemic abnormalities could lack the potential of a curative intervention.
Collapse
Affiliation(s)
- C M Weyand
- Department of Medicine, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
41
|
Weyand CM, Klimiuk PA, Goronzy JJ. Heterogeneity of rheumatoid arthritis: from phenotypes to genotypes. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 1998; 20:5-22. [PMID: 9836366 DOI: 10.1007/bf00831996] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Rheumatoid arthritis (RA) is now recognized as a multigene disorder with a number of genetic polymorphisms contributing to disease pathogenesis. Here, we propose that the diagnostic category of RA includes multiple subtypes of disease and that the different phenotypes of RA correlate to different genotypes. Support for this concept has come from a reappraisal of the clinical heterogeneity of RA and the observation that HLA-DRB1 polymorphisms are useful in describing genetic heterogeneity of RA phenotypes. A series of HLA-DRB1 genes has been identified as RA associated, and in recent years emphasis has been put on the sequence similarities of these alleles. An alternative view focuses on the amino acid variations found in RA-associated HLA-DRB1 alleles with different alleles being enriched in distinct subtypes of RA. Rheumatoid factor-positive destructive joint disease is predominantly associated with the HLA-DRB1*0401 allele, while HLA-DRB1*0404 and B1*0101 predispose for milder and often seronegative disease. Expression of disease-associated alleles on both haplotypes carries a high risk for extra-articular manifestations. In particular, patients homozygous for HLA-DRB1*0401 frequently develop rheumatoid vasculities on follow-up. Besides HLA gene polymorphisms, abnormalities in the generation and function of CD4 T cells and in inflammatory pathways established in synovial lesions can be used to dissect patient subsets with different variants of RA. Emergence of CD28-deficient CD4 T cells identifies RA patients with extra-articular manifestations. These cells undergo clonal expansion in vivo, produce high amounts of IFN-gamma, and exhibit autoreactivity. Concordance of monozygotic twins for the expression of CD4+ CD28- T cells suggests a role for genetic factors in the generation of these unusual T cells. Evidence for heterogeneity of the synovial component of RA comes from studies describing three distinct patterns of lymphoid organization in the synovium. Based upon the topography of tissue-infiltrating mononuclear cells, diffuse, follicular, and granulomatous variants of rheumatoid synovitis can be distinguished. Each pattern of lymphoid organization correlates with a unique profile of tissue cytokines, demonstrating that several pathways of immune deviation modulate disease expression in RA. A dissection of RA variants would have major implications on how the disease is studied, treated, and managed. Identifying combinations of RA risk genes that correlate with disease variants could, therefore, become an important diagnostic tool.
Collapse
Affiliation(s)
- C M Weyand
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | |
Collapse
|