1
|
Wei JP, Zhao B, Jiang ZJ, Wang PY, Xu Y, Ding N, Hu YY, Wang W, Jiang BT. Luteolin mitigates renal ischemia-reperfusion injury via anti-inflammatory, anti-apoptotic, and Nrf2/HO-1-mediated antioxidant effects. Eur J Pharmacol 2025; 999:177676. [PMID: 40306537 DOI: 10.1016/j.ejphar.2025.177676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
Renal ischemia/reperfusion (I/R) injury is the most common cause of acute kidney injury (AKI). It can progress to chronic injury and subsequently to chronic kidney disease (CKD) via the renal fibrosis pathway. Luteolin is one of the most commonly occurring flavonoids and exhibits potential therapeutic activity against various pathophysiological processes. In this study, we investigated the protective role of luteolin in counteracting renal I/R injury and its potential mechanisms through systematic network pharmacology, molecular docking, and in vivo experimental studies. Using network pharmacology, we constructed and analyzed a luteolin-renal I/R injury target network. We assessed the relationship between luteolin and renal I/R injury targets using molecular docking analysis. Subsequently, we established a rat model of AKI to CKD transition using unilateral ischemia/reperfusion injury (UIRI), and detected changes in the expression of related proteins using biochemical indices. Network pharmacological analysis and molecular docking showed that luteolin affected renal I/R injury through multiple targets and pathways. As demonstrated by in vivo experiments, luteolin significantly attenuated renal I/R-induced oxidative injury by inhibiting renal lipid peroxidation in rats through the modulation of the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. Luteolin attenuated the levels of relevant inflammatory markers, significantly upregulated the synthesis of apoptosis-related proteins, and downregulated the expression of anti-apoptotic proteins. Our results suggest that luteolin effectively inhibited oxidative damage, inflammation, apoptosis, and fibrosis caused by renal I/R injury, thus exerting a nephroprotective effect. The antioxidant effects of luteolin may be related to the regulation of Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Ji-Ping Wei
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, 437100, China
| | - Bo Zhao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, 437100, China
| | | | - Peng-Yu Wang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, 437100, China
| | - Yan Xu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, 437100, China
| | - Ning Ding
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, 437100, China
| | - Yuan-Yuan Hu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, 437100, China
| | - Wei Wang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, 437100, China
| | - Bo-Tao Jiang
- Department of Urology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, China.
| |
Collapse
|
2
|
Turan I, Ozacmak HS, Ozacmak VH, Barut F. Modulation of the Oxidative Stress and ICAM-1/TLR4/NF-Κβ Levels by Metformin in Intestinal Ischemia/Reperfusion Injury in Rats. Cell Biochem Biophys 2025:10.1007/s12013-025-01687-5. [PMID: 40009289 DOI: 10.1007/s12013-025-01687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 02/27/2025]
Abstract
Metformin, a biguanide drug, is used for its antihyperglycemic effects. The purpose of the present study was to investigate the effects of metformin on the experimental model of intestinal ischemia-reperfusion (I/R) injury. Ischemia was induced by superior mesenteric artery occlusion followed by reperfusion. Metformin was administered orally by gavage at doses of 50, 100 or 200 mg/kg for one week before the surgery. Rats were divided to five groups (n = 8 for each): Sham control group; I/R control group; Metformin50 treated I/R group; Metformin100 treated I/R group; and Metformin200 treated I/R group. Tissue levels of malondialdehyde (MDA), glutathione (GSH), myeloperoxidase (MPO) activity, intercellular adhesion molecule-1 (ICAM-1), toll-like receptor 4 (TLR4), and nuclear factor-κB (NF-κB) as well as histological analysis were evaluated. Metformin treatment decreased the levels of MDA in 100 and 200 mg/kg doses besides lowering the MPO activity and ICAM-1 levels in all doses. Metformin also reduced NF-κB levels at dose of 200 mg/kg and improved histopathological scores at doses of 100 and 200 mg/kg. The treatment with metformin can prevent I/R-induced intestinal injury through down-regulating ICAM-1 and NF-κB levels, reducing oxidative stress, and lowering neutrophil accumulation. We propose that metformin could be a therapeutic agent in intestinal I/R.
Collapse
Affiliation(s)
- Inci Turan
- Zonguldak Bulent Ecevit University Faculty of Medicine, Department of Physiology, Zonguldak, Turkey.
| | - Hale Sayan Ozacmak
- Zonguldak Bulent Ecevit University Faculty of Medicine, Department of Physiology, Zonguldak, Turkey
| | - Veysel Haktan Ozacmak
- Zonguldak Bulent Ecevit University Faculty of Medicine, Department of Physiology, Zonguldak, Turkey
| | - Figen Barut
- Zonguldak Bulent Ecevit University Faculty of Medicine, Department of Pathology, Zonguldak, Turkey
| |
Collapse
|
3
|
Zhang WL, Zhang LJ, Liang P, Fang HL, Wang XL, Liu YJ, Deng HF. Metformin Protects Against Acute Kidney Injury Induced by Lipopolysaccharide via Up-Regulating the MCPIP1/SIRT1 Pathway. Biochem Genet 2024; 62:4591-4602. [PMID: 38345758 DOI: 10.1007/s10528-024-10692-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/07/2024] [Indexed: 11/29/2024]
Abstract
In the present study, we aimed to explore the effect and underlying mechanism of metformin on lipopolysaccharide (LPS)-induced acute kidney injury (AKI). A total of 24 BALB/C mice were randomly divided into four groups: control group, LPS group and metformin group (50 or 100 mg/kg). The histological changes and cell apoptosis in kidney tissues were detected by hematoxylin-eosin staining and terminal-deoxynucleotidyl transferase-mediated nick end labeling assay, respectively. Enzyme-linked immunosorbent assay was applied to determine serum levels of blood urea nitrogen (BUN), kidney injury molecule-1 (Kim-1), creatinine (Cre), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β). Western blotting analysis were carried out to confirm the expressions of monocyte chemotactic protein-inducible protein 1 (MCPIP1), silent information regulator sirtuin 1 (SIRT1), and NF-κB p65 (acetyl K310). Compared with the control group, the mice in LPS group had glomerular capillary dilatation, renal interstitial edema, tubular cell damage and apoptosis. The serum levels of BUN, KIM-1, Cre, TNF-α, and IL-1β in LPS group were significantly higher than those in control group. Moreover, LPS also elevated the expressions of MCPIP1 and NF-κB p65 (acetyl K310) but decreased the expression of SIRT1 in kidney tissues. However, metformin distinctly decreased LPS-induced renal dysfunction, the serum levels of BUN, KIM-1, Cre, TNF-α, and IL-1β. In addition, metformin markedly increased the expressions of MCPIP1 and SIRT1 but decreased the expression of NF-κB p65 (acetyl K310) in kidney tissues. Metformin prevented LPS-induced AKI by up-regulating the MCPIP1/SIRT1 signaling pathway and subsequently inhibiting NF-κB-mediated inflammation response.
Collapse
Affiliation(s)
- Wen-Long Zhang
- The First Clinical Hospital, Xiangnan University, Chenzhou, 423000, Hunan, People's Republic of China
- Department of Medical Administration, the First People's Hospital of Chenzhou, Chenzhou, 423000, Hunan, People's Republic of China
| | - Long-Jun Zhang
- School of Basic Medical Science, Xiangnan University, Chenzhou, 423000, Hunan, People's Republic of China
| | - Piao Liang
- School of Basic Medical Science, Xiangnan University, Chenzhou, 423000, Hunan, People's Republic of China
| | - Hui-Long Fang
- School of Basic Medical Science, Xiangnan University, Chenzhou, 423000, Hunan, People's Republic of China
| | - Xiao-Li Wang
- Department of Pathology, Medical College of Jishou University, Jishou, 416000, Hunan, People's Republic of China
| | - Yan-Juan Liu
- Institute of Emergency Medicine, Hunan Provincial People's Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, People's Republic of China
| | - Hua-Fei Deng
- School of Basic Medical Science, Xiangnan University, Chenzhou, 423000, Hunan, People's Republic of China.
| |
Collapse
|
4
|
Peng B, Wang L, Pan S, Kang J, Wei L, Li B, Cheng Y. Metformin Attenuates Partial Epithelial-Mesenchymal Transition in Salivary Gland Inflammation via PI3K/Akt/GSK3β/Snail Signaling Axis. Inflammation 2024:10.1007/s10753-024-02142-y. [PMID: 39269669 DOI: 10.1007/s10753-024-02142-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Chronic inflammation in the salivary glands (SG) often triggers epithelial-mesenchymal transition (EMT), leading to the loss of acinar function and promoting fibrosis. This study explores the role of Metformin in mitigating partial EMT in SG inflammation. In vitro, human salivary gland epithelial cells (hSGECs) were treated with lipopolysaccharide (LPS) and Metformin. EMT markers and the PI3K/Akt/GSK3β/Snail signaling axis were assessed using RNA-seq and Western blot analysis. In vivo, a Wharton's duct ligation rat model was employed to mimic chronic sialadenitis (CS). Nine Wistar rats were randomly divided into three groups: Control, Ligation and Ligation + Metformin groups, with three rats per group. After ductal ligation, the Ligation + Metformin group received 100 mg/kg of Metformin via intragastric administration, while the Control and Ligation groups received an equivalent saline every 24 h. Histological analysis, immunohistochemical and immunofluorescence staining were conducted to evaluate acinar morphology, EMT, and the PI3K/Akt/GSK3β/Snail signaling axis. The results showed that in CS tissues, atrophied acinar cells underwent partial EMT. In vitro, Metformin reversed LPS-induced EMT in hSGECs. RNA-seq and Western blot revealed that Metformin achieved this effect by targeting the PI3K/Akt/GSK3β/Snail signaling axis (P < 0.01). In ductal ligation models, Metformin treatment restored ligation-induced acinar damage and functional loss (P < 0.01). Further histological evidence supported that Metformin mitigated EMT by inhibiting inflammatory activation of PI3K/Akt/GSK3β/Snail signaling axis (P < 0.01). In conclusion, Metformin alleviates partial EMT in SG inflammation by targeting the PI3K/Akt/GSK3β/Snail signaling axis, highlighting its potential as a therapeutic strategy for SG inflammation.
Collapse
Affiliation(s)
- Boyuan Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, NO.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China
| | - Lianhao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, NO.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China
| | - Shijiao Pan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, NO.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China
| | - Jialing Kang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, NO.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China
| | - Lili Wei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, NO.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China
- Department of Oral Radiology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Bo Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, NO.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China.
- Department of Oral Radiology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Yong Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, NO.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China.
- Department of Oral Radiology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
5
|
Song B, Zhang G, Bao Y, Zhang M. Involvement of oxidative stress-AMPK-Cx43-NLRP3 pathway in extracellular matrix remodeling of gastric smooth muscle cells in rats with diabetic gastroparesis. Cell Stress Chaperones 2024; 29:440-455. [PMID: 38653383 PMCID: PMC11087914 DOI: 10.1016/j.cstres.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
This study aimed to investigate the changes in oxidative stress, adenosine monophosphate-activated protein kinase (AMPK), connexin43 (Cx43), nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) expression, and extracellular matrix (ECM) in the gastric smooth muscle tissues of rats with diabetic gastroparesis (DGP) and high glucose-cultured gastric smooth muscle cells, determine the existence of oxidative stress-AMPK-Cx43-NLRP3 pathway under high glucose condition, and the involvement of this pathway in ECM remodeling in DGP rats. The results showed that with increasing duration of diabetes, oxidation stress levels gradually increased, the AMPK activity decreased first and then increased, NLRP3, CX43 expression, and membrane/cytoplasm ratio of Cx43 expression were increased in the gastric smooth muscle tissues of diabetic rats. Changes in ECM of gastric smooth muscle cells were observed in DGP rats. The DGP group showed higher collagen type I content, increased expression of Caspase-1, transforming growth factor-beta 3 (TGF-β3), and matrix metalloproteinase-2 (MMP-2), decreased tissue inhibitor of metalloproteinase-1 (TIMP-1) expression, and higher interleukin-1 beta content when compared with the control group. For gastric smooth muscle cells cultured under higher glucose, the MMP-2 and TGF-β3 expression was decreased, TGF-β1 and TIMP-1 expression was increased, the interleukin-1 beta content was decreased in cells after inhibition of NLRP3 expression; the NLRP3 and Caspase-1 expression was decreased, and adenosine triphosphate content was lower after inhibition of Cx43; the expression of NLRP3, Caspase-1, P2X7, and the membrane/cytoplasm ratio of CX43 expression was decreased in cells after inhibition of AMPK and oxidative stress, the phospho-AMPK expression was also decreased after suppressing oxidative stress. Our findings suggest that high glucose induced the activation of the AMPK-Cx43-NLRP3 pathway through oxidative stress, and this pathway was involved in the ECM remodeling of gastric smooth muscles in DGP rats by regulating the biological functions of TGF-β3, TGF-β1, MMP-2, and TIMP-1.
Collapse
Affiliation(s)
- Baihui Song
- Department of Basic Medical Sciences, Changchun Medical College, Changchun, China
| | - Gaoyuan Zhang
- Department of Histology and Embryology, Medical College of Yanbian University, Yanji, China
| | - Yitegele Bao
- Department of Histology and Embryology, Medical College of Yanbian University, Yanji, China
| | - Mohan Zhang
- Department of Histology and Embryology, Medical College of Yanbian University, Yanji, China.
| |
Collapse
|
6
|
Barsotti GC, Luciano R, Kumar A, Meliambro K, Kakade V, Tokita J, Naik A, Fu J, Peck E, Pell J, Reghuvaran A, Tanvir E, Patel P, Zhang W, Li F, Moeckel G, Perincheri S, Cantley L, Moledina DG, Wilson FP, He JC, Menon MC. Rationale and Design of a Phase 2, Double-blind, Placebo-Controlled, Randomized Trial Evaluating AMP Kinase-Activation by Metformin in Focal Segmental Glomerulosclerosis. Kidney Int Rep 2024; 9:1354-1368. [PMID: 38707807 PMCID: PMC11068976 DOI: 10.1016/j.ekir.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Focal segmental glomerulosclerosis (FSGS), the most common primary glomerular disease leading to end-stage kidney disease (ESKD), is characterized by podocyte injury and depletion, whereas minimal change disease (MCD) has better outcomes despite podocyte injury. Identifying mechanisms capable of preventing podocytopenia during injury could transform FSGS to an "MCD-like" state. Preclinical data have reported conversion of an MCD-like injury to one with podocytopenia and FSGS by inhibition of AMP-kinase (AMPK) in podocytes. Conversely, in FSGS, AMPK-activation using metformin (MF) mitigated podocytopenia and azotemia. Observational studies also support beneficial effects of MF on proteinuria and chronic kidney disease (CKD) outcomes in diabetes. A randomized controlled trial (RCT) to test MF in podocyte injury with FSGS has not yet been conducted. Methods We report the rationale and design of phase 2, double-blind, placebo-controlled RCT evaluating the efficacy and safety of MF as adjunctive therapy in FSGS. By randomizing 30 patients with biopsy-confirmed FSGS to MF or placebo (along with standard immunosuppression), we will study mechanistic biomarkers that correlate with podocyte injury or depletion and evaluate outcomes after 6 months. We specifically integrate novel urine, blood, and tissue markers as surrogates for FSGS progression along with unbiased profiling strategies. Results and Conclusion Our phase 2 trial will provide insight into the potential efficacy and safety of MF as adjunctive therapy in FSGS-a crucial step to developing a larger phase 3 study. The mechanistic assays here will guide the design of other FSGS trials and contribute to understanding AMPK activation as a potential therapeutic target in FSGS. By repurposing an inexpensive agent, our results will have implications for FSGS treatment in resource-poor settings.
Collapse
Affiliation(s)
- Gabriel C. Barsotti
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Randy Luciano
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ashwani Kumar
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kristin Meliambro
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vijayakumar Kakade
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Joji Tokita
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Abhijit Naik
- Division of Nephrology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Elizabeth Peck
- Clinical Research Coordinator, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John Pell
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anand Reghuvaran
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - E.M. Tanvir
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Prashant Patel
- Investigational Drug Service, Department of Pharmacy Services, Yale New Haven Hospital, Connecticut, USA
| | - Weijia Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fan Li
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Gilbert Moeckel
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sudhir Perincheri
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Lloyd Cantley
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dennis G. Moledina
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - F. Perry Wilson
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - John C. He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Madhav C. Menon
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Oruc M, Gedik ME, Uner M, Ulug E, Unal RN, Gunaydin G, Dogrul AB. Effectiveness of metformin for the reversal of cold-ischemia-induced damage in hepatosteatosis. Clin Res Hepatol Gastroenterol 2024; 48:102314. [PMID: 38467276 DOI: 10.1016/j.clinre.2024.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/12/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Primary dysfunction and rejection are more common in donor liver tissues with steatosis. AMP-activated protein kinase (AMPK) assumes organ-protective functions during ischemia. Metformin was used for the activation of AMPK in hepatocytes. The aim of this study is to investigate the effectiveness of metformin administration for the reversal of cold-ischemia-induced damage in hepatosteatosis. MATERIAL AND METHODS Seven-week-old C7BL56 male-mice (n = 109) were separated into four groups depending on diet type and metformin use. A specific diet model was followed for 10 weeks to induce hepatosteatosis. A group of the animals was administered with metformin for the last four weeks via oral gavage. After resection, the liver tissues were perfused and kept for 0-6-12-24 h in the UW solution. Histopathological examinations were performed, and Western blot was utilized to analyze p-AMPK and AMPK expression levels. RESULTS Hepatosteatosis decreased significantly with metformin. The steatotic liver group had more prominent pericentral inflammation, necrosis as well as showing a decreased and more delayed AMPK response than the non-fat group. All these alterations could be corrected using metformin. CONCLUSION Metformin can increase the resistance of livers with hepatosteatosis to cold-ischemia-induced damage, which in turn may pave the way for successful transplantation of fatty living-donor livers.
Collapse
Affiliation(s)
- Mustafa Oruc
- Department of General Surgery, Faculty Of Medicine, School of Medicine, Hacettepe University, Floor B, 06230, Ankara, Altindag 06230, Turkey
| | - Mustafa Emre Gedik
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara 06230, Turkey
| | - Meral Uner
- Department of Pathology, Hacettepe University School of Medicine, Ankara 06230, Turkey
| | - Elif Ulug
- Department of Nutrition and Dietetics, Hacettepe University, Ankara 06230, Turkey
| | - Reyhan Nergiz Unal
- Department of Nutrition and Dietetics, Hacettepe University, Ankara 06230, Turkey
| | - Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara 06230, Turkey
| | - Ahmet Bulent Dogrul
- Department of General Surgery, Faculty Of Medicine, School of Medicine, Hacettepe University, Floor B, 06230, Ankara, Altindag 06230, Turkey.
| |
Collapse
|
8
|
Zhang J, Zhao Y, Gong N. XBP1 Modulates the Aging Cardiorenal System by Regulating Oxidative Stress. Antioxidants (Basel) 2023; 12:1933. [PMID: 38001786 PMCID: PMC10669121 DOI: 10.3390/antiox12111933] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
X-box binding protein 1 (XBP1) is a unique basic-region leucine zipper (bZIP) transcription factor. Over recent years, the powerful biological functions of XBP1 in oxidative stress have been gradually revealed. When the redox balance remains undisturbed, oxidative stress plays a role in physiological adaptations and signal transduction. However, during the aging process, increased cellular senescence and reduced levels of endogenous antioxidants cause an oxidative imbalance in the cardiorenal system. Recent studies from our laboratory and others have indicated that these age-related cardiorenal diseases caused by oxidative stress are guided and controlled by a versatile network composed of diversified XBP1 pathways. In this review, we describe the mechanisms that link XBP1 and oxidative stress in a range of cardiorenal disorders, including mitochondrial instability, inflammation, and alterations in neurohumoral drive. Furthermore, we propose that differing degrees of XBP1 activation may cause beneficial or harmful effects in the cardiorenal system. Gaining a comprehensive understanding of how XBP1 exerts influence on the aging cardiorenal system by regulating oxidative stress will enhance our ability to provide new directions and strategies for cardiovascular and renal safety outcomes.
Collapse
Affiliation(s)
- Ji Zhang
- Anhui Province Key Laboratory of Genitourinary Diseases, Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Hefei 230022, China;
- Key Laboratory of Organ Transplantation of Ministry of Education, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, National Health Commission and Chinese Academy of Medical Sciences, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Yuanyuan Zhao
- Key Laboratory of Organ Transplantation of Ministry of Education, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, National Health Commission and Chinese Academy of Medical Sciences, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Nianqiao Gong
- Key Laboratory of Organ Transplantation of Ministry of Education, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, National Health Commission and Chinese Academy of Medical Sciences, Huazhong University of Science and Technology, Wuhan 430030, China;
| |
Collapse
|
9
|
Gui Y, Palanza Z, Fu H, Zhou D. Acute kidney injury in diabetes mellitus: Epidemiology, diagnostic, and therapeutic concepts. FASEB J 2023; 37:e22884. [PMID: 36943403 PMCID: PMC10602403 DOI: 10.1096/fj.202201340rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/16/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023]
Abstract
Acute kidney injury (AKI) and diabetes mellitus (DM) are public health problems that cause a high socioeconomic burden worldwide. In recent years, the landscape of AKI etiology has shifted: Emerging evidence has demonstrated that DM is an independent risk factor for the onset of AKI, while an alternative perspective considers AKI as a bona fide complication of DM. Therefore, it is necessary to systematically characterize the features of AKI in DM. In this review, we summarized the epidemiology of AKI in DM. While focusing on circulation- and tissue-specific microenvironment changes after DM, we described the active cellular and molecular mechanisms of increased kidney susceptibility to AKI under DM stress. We also reviewed the current diagnostic and therapeutic strategies for AKI in DM recommended in the clinic. Updated recognition of the epidemiology, pathophysiology, diagnosis, and medications of AKI in DM is believed to reveal a path to mitigate the frequency of AKI and DM comorbidity that will ultimately improve the quality of life in DM patients.
Collapse
Affiliation(s)
- Yuan Gui
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Zachary Palanza
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| |
Collapse
|
10
|
Zhang L, Zhang X, Guan L, Zhou D, Ge J. AMPK/mTOR-mediated therapeutic effect of metformin on myocardial ischaemia reperfusion injury in diabetic rat. Acta Cardiol 2023; 78:64-71. [PMID: 34994666 DOI: 10.1080/00015385.2021.2024701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND The autophagy associated signalling pathways such as AMPK/mTOR previously were suggested to play a crucial role in protecting from ischaemia-reperfusion injury (IRI). The objective of this study was to evaluate the effect of metformin (DMBG) on autophagy during myocardial IRI with diabetes mellitus (DM). METHODS The DM rat model was established using streptozocin, and further induced ischaemia model via transitory ligation of the left anterior coronary artery and following reperfusion. The model rats were treated with 400 mg/kg/day DMBG for 1 week. Autophagosomes were investigated using transmission electron microscopy. Autophagy-associated signalling pathways were detected by western blot. RESULTS The myocardial infarct size was shown to significantly increase in the DM rats exposed to IRI compared to negative control, but decrease in DMBG treated. The mature autophagosomes were elevated in infarction and marginal zones of DM + IRI + DMBG compared to DM + IRI. Furthermore, the increasing protein levels of LC3-II, BECLIN 1, autophagy related 5 (ATG5) and AMP-activated protein kinase suggested activated autophagy-associated intracellular signalling AMPK and mTOR pathways upon DMBG treated. CONCLUSIONS Taken together, the outcomes determinate a novel mechanism that DMBG could activate autophagy process to provide a cardio-protective effect against DM induced myocardial IRI.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Xiaochun Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Lihua Guan
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Daxin Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| |
Collapse
|
11
|
Wang F, Zhou CX, Zheng Z, Li DJ, Li W, Zhou Y. Metformin reduces myogenic contracture and myofibrosis induced by rat knee joint immobilization via AMPK-mediated inhibition of TGF-β1/Smad signaling pathway. Connect Tissue Res 2023; 64:26-39. [PMID: 35723580 DOI: 10.1080/03008207.2022.2088365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE The two structural components contributing to joint contracture formation are myogenic and arthrogenic contracture, and myofibrosis is an important part of myogenic contracture. Myofibrosis is a response to long-time immobilization and is described as a condition with excessive deposition of endomysial and perimysial connective tissue components in skeletal muscle. The purpose of this study was to confirm whether metformin can attenuate the formation of myogenic contracture and myofibrosis through the phosphorylation level of adenosine monophosphate-activated protein kinase (AMPK) and inhabitation of subsequent transforming growth factor beta (TGF-β) 1/Smad signaling pathway. MATERIALS AND METHODS An immobilized rat model was used to determine whether metformin could inhibit myogenic contracture and myofibrosis. The contents of myogenic contracture of knee joint was calculated by measuring instrument of range of motion (ROM), and myofibrosis of rectus femoris were determined by ultrasound shear wave elastography and Masson staining. Protein expression of AMPK and subsequent TGF-β1/Smad signaling pathway were determined by western blot. Subsequently, Compound C, a specific AMPK inhibitor, was used to further clarify the role of the AMPK-mediated inhibition of TGF-β1/Smad signaling pathway. RESULTS We revealed that the levels of myogenic contracture and myofibrosis were gradually increased during immobilization, and overexpression of TGF-β1-induced formation of myofibrosis by activating Smad2/3 phosphorylation. Activation of AMPK by metformin suppressed overexpression of TGF-β1 and TGF-β1-induced Smad2/3 phosphorylation, further reducing myogenic contracture and myofibrosis during immobilization. In contrast, inhibition of AMPK by Compound C partially counteracted the inhibitory effect of TGF-β1/Smad signaling pathway by metformin. CONCLUSION Notably, we first illustrated the therapeutic effect of metformin through AMPK-mediated inhibition of TGF-β1/Smad signaling pathway in myofibrosis, which may provide a new therapeutic strategy for myogenic contracture.
Collapse
Affiliation(s)
- Feng Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China.,Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Chen Xu Zhou
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Zhi Zheng
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Du Juan Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Wen Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Yun Zhou
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
12
|
Metformin Protects Against Cardiac and Renal Damage in Diabetic Cardiac Arrest Patients. Resuscitation 2022; 174:42-46. [PMID: 35331801 PMCID: PMC9050929 DOI: 10.1016/j.resuscitation.2022.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Metformin is a first-line diabetic therapy that improves survival in a wide number of ischemic pathologies. We tested the association of metformin with markers of cardiac and renal injury in diabetic post-arrest patients. METHODS We performed a retrospective analysis of clinical outcomes in diabetic cardiac arrest patients with and without metformin therapy at a single academic medical center. We used generalized linear models to test the independent association of metformin, insulin, and other hypoglycemic agents with peak 24-hour serum creatinine and peak 24-hour serum troponin. RESULTS Metformin prescription at the time of SCA was independently associated with lower 24-hour peak serum troponin and lower 24-hour peak serum creatinine when compared to non-metformin patients. CONCLUSION Metformin pretreatment may offer cardiac and renal protection for diabetic patients during sudden cardiac arrest.
Collapse
|
13
|
Targeting AMPK signaling in ischemic/reperfusion injury: From molecular mechanism to pharmacological interventions. Cell Signal 2022; 94:110323. [DOI: 10.1016/j.cellsig.2022.110323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/16/2022]
|
14
|
Dou M, Lu C, Rao W. Bioinspired materials and technology for advanced cryopreservation. Trends Biotechnol 2021; 40:93-106. [PMID: 34238601 DOI: 10.1016/j.tibtech.2021.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/25/2022]
Abstract
Cryopreservation can help to meet the demand for biosamples of high medical value. However, it remains difficult to effectively cryopreserve some sensitive cells, tissues, and reproductive organs. A coordinated effort from the perspective of the whole frozen biological system is necessary to advance cryopreservation technology. Animals that survive in cold temperatures, such as hibernators and cold-tolerant insects, offer excellent natural models. Their anti-cold strategies, such as programmed suppression of metabolism and the synthesis of cryoprotectants (CPAs), warrant systematic study. Furthermore, the discovery and synthesis of metabolism-regulating and cryoprotective biomaterials, combined with biotechnological breakthroughs, can also promote the development of cryopreservation. Further advances in the quality and duration of biosample storage inspired by nature will promote the application of cryopreserved biosamples in clinical therapy.
Collapse
Affiliation(s)
- Mengjia Dou
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China; Beijing Key Laboratory of Cryo-Biomedical Engineering, Beijing, 100190, China
| | - Chennan Lu
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; Beijing Key Laboratory of Cryo-Biomedical Engineering, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Rao
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; Beijing Key Laboratory of Cryo-Biomedical Engineering, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
15
|
Bao X, Liu X, Liu N, Zhuang S, Yang Q, Ren H, Zhao D, Bai J, Zhou X, Tang L. Inhibition of EZH2 prevents acute respiratory distress syndrome (ARDS)-associated pulmonary fibrosis by regulating the macrophage polarization phenotype. Respir Res 2021; 22:194. [PMID: 34217280 PMCID: PMC8255011 DOI: 10.1186/s12931-021-01785-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 06/27/2021] [Indexed: 12/13/2022] Open
Abstract
Background We recently reported histone methyltransferase enhancer of zeste homolog 2 (EZH2) as a key epigenetic regulator that contributes to the dysfunction of innate immune responses to sepsis and subsequent lung injury by mediating the imbalance of macrophage polarization. However, the role of EZH2 in acute respiratory distress syndrome (ARDS)-associated fibrosis remains poorly understood. Methods In this study, we investigated the role and mechanisms of EZH2 in pulmonary fibrosis in a murine model of LPS-induced ARDS and in ex-vivo cultured alveolar macrophages (MH-S) and mouse lung epithelial cell line (MLE-12) by using 3-deazaneplanocin A (3-DZNeP) and EZH2 the small interfering (si) RNA. Results We found that treatment with 3-DZNeP significantly ameliorated the LPS-induced direct lung injury and fibroproliferation by blocking EMT through TGF-β1/Smad signaling pathway and regulating shift of macrophage phenotypes. In the ex-vivo polarized alveolar macrophages cells, treatment with EZH2 siRNA or 3-DZNeP suppressed the M1 while promoted the M2 macrophage differentiation through modulating the STAT/SOCS signaling pathway and activating PPAR-γ. Moreover, we identified that blockade of EZH2 with 3-DZNeP suppressed the epithelial to mesenchymal transition (EMT) in co-cultured bronchoalveolar lavage fluid (BALF) and mouse lung epithelial cell line through down-regulation of TGF-β1, TGF-βR1, Smad2 while up-regulation of Smad7 expression. Conclusions These results indicate that EZH2 is involved in the pathological process of ARDS-associated pulmonary fibrosis. Targeting EZH2 may be a potential therapeutic strategy to prevent and treat pulmonary fibrosis post ARDS.
Collapse
Affiliation(s)
- Xiaowei Bao
- Department of Internal Emergency Medicine and Critical Care, Shanghai East Hospital, Tong Ji University, 1800, Yuntai Road, Shanghai, 200120, China
| | - Xiandong Liu
- Department of Internal Emergency Medicine and Critical Care, Shanghai East Hospital, Tong Ji University, 1800, Yuntai Road, Shanghai, 200120, China
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Qian Yang
- Department of Internal Emergency Medicine and Critical Care, Shanghai East Hospital, Tong Ji University, 1800, Yuntai Road, Shanghai, 200120, China
| | - Huijuan Ren
- Department of Internal Emergency Medicine and Critical Care, Shanghai East Hospital, Tong Ji University, 1800, Yuntai Road, Shanghai, 200120, China
| | - Dongyang Zhao
- Department of Internal Emergency Medicine and Critical Care, Shanghai East Hospital, Tong Ji University, 1800, Yuntai Road, Shanghai, 200120, China
| | - Jianwen Bai
- Department of Internal Emergency Medicine and Critical Care, Shanghai East Hospital, Tong Ji University, 1800, Yuntai Road, Shanghai, 200120, China
| | - Xiaohui Zhou
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University, 150, Jimo Road, Shanghai, 200120, China.
| | - Lunxian Tang
- Department of Internal Emergency Medicine and Critical Care, Shanghai East Hospital, Tong Ji University, 1800, Yuntai Road, Shanghai, 200120, China.
| |
Collapse
|
16
|
Song A, Zhang C, Meng X. Mechanism and application of metformin in kidney diseases: An update. Biomed Pharmacother 2021; 138:111454. [PMID: 33714781 DOI: 10.1016/j.biopha.2021.111454] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 01/08/2023] Open
Abstract
Metformin is an oral antihyperglycemic drug widely used to treat type 2 diabetes mellitus (T2DM), acting via indirect activation of 5' Adenosine monophosphate-activated Protein Kinase (AMPK). Beyond the anti-diabetic effect, accumulative pieces of evidence have revealed that metformin also everts a beneficial effect in diverse kidney diseases. In various acute kidney diseases (AKI) animal models, metformin protects renal tubular cells from inflammation, apoptosis, reactive oxygen stress (ROS), endoplasmic reticulum (ER) stress, epithelial-mesenchymal transition (EMT) via AMPK activation. In diabetic kidney disease (DKD), metformin also alleviates podocyte loss, mesangial cells apoptosis, and tubular cells senescence through AMPK-mediated signaling pathways. Besides, metformin inhibits cystic fibrosis transmembrane conductance regulator (CFTR)-mediated fluids secretion and the mammalian target of rapamycin (mTOR)-involved cyst formation negatively regulated by AMPK in autosomal dominant polycystic kidney disease (APDKD). Furthermore, metformin also contributes to the alleviation of urolithiasis and renal cell carcinoma (RCC). As the common pathway for chronic kidney disease (CKD) progressing towards end-stage renal disease (ESRD), renal fibrosis is ameliorated by metformin, to a great extent dependent on AMPK activation. However, clinical data are not always consistent with preclinical data, some clinical investigations showed the unmeaningful even detrimental effect of metformin on T2DM patients with kidney diseases. Most importantly, metformin-associated lactic acidosis (MALA) is a vital issue restricting the application of metformin. Thus, we conclude the application of metformin in kidney diseases and uncover the underlying molecular mechanisms in this review.
Collapse
Affiliation(s)
- Anni Song
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xianfang Meng
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
17
|
Song Z, Wu T, Sun J, Wang H, Hua F, Nicolas YSM, Kc R, Chen K, Jin Z, Liu J, Zhang M. Metformin attenuates post-epidural fibrosis by inhibiting the TGF-β1/Smad3 and HMGB1/TLR4 signaling pathways. J Cell Mol Med 2021; 25:3272-3283. [PMID: 33611840 PMCID: PMC8034438 DOI: 10.1111/jcmm.16398] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Excessive post‐epidural fibrosis is a common cause of recurrent back pain after spinal surgery. Though various treatment methods have been conducted, the safe and effective drug for alleviating post‐epidural fibrosis remains largely unknown. Metformin, a medicine used in the treatment of type 2 diabetes, has been noted to relieve fibrosis in various organs. In the present study, we aimed to explore the roles and mechanisms of metformin in scar formation in a mouse model of laminectomy. Post‐epidural fibrosis developed in a mouse model of laminectomy by spinous process and the T12‐L2 vertebral plate with a rongeur. With the administration of metformin, post‐epidural fibrosis was reduced, accompanied with decreased collagen and fibronectin in the scar tissues. Mechanistically, metformin decreased fibronectin and collagen deposition in fibroblast cells, and this effect was dependent on the HMGB1/TLR4 and TGF‐β1/Smad3 signalling pathways. In addition, metformin influenced the metabolomics of the fibroblast cells. Taken together, our study suggests that metformin may be a potential option to mitigate epidural fibrosis after laminectomy.
Collapse
Affiliation(s)
- Zeyuan Song
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Emergence Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Tao Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinpeng Sun
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haoran Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Hua
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yap San Min Nicolas
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rupesh Kc
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kun Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhen Jin
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mingshun Zhang
- NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Sun M, Zhou W, Yao F, Song J, Xu Y, Deng Z, Diao H, Li S. MicroRNA-302b mitigates renal fibrosis via inhibiting TGF-β/Smad pathway activation. ACTA ACUST UNITED AC 2021; 54:e9206. [PMID: 33503202 PMCID: PMC7836400 DOI: 10.1590/1414-431x20209206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
Renal fibrosis is one of the most significant pathological changes after ureteral
obstruction. Transforming growth factor-β (TGF-β) signaling pathway plays
essential roles in kidney fibrosis regulation. The aims of the present study
were to investigate effects of microRNA-302b (miR-302b) on renal fibrosis, and
interaction between miR-302b and TGF-β signaling pathway in murine unilateral
ureteral obstruction (UUO) model. Microarray dataset GSE42716 was downloaded by
retrieving Gene Expression Omnibus database. In accordance with bioinformatics
analysis results, miR-302b was significantly down-regulated in UUO mouse kidney
tissue and TGF-β1-treated HK-2 cells. Masson's trichrome staining showed that
miR-302b mimics decreased renal fibrosis induced by UUO. The increased mRNA
expression of collagen I and α-smooth muscle actin (α-SMA) and decreased
expression of E-cadherin were reversed by miR-302b mimics. In addition, miR-302b
up-regulation also inhibited TGF-β1-induced epithelial mesenchymal transition
(EMT) of HK-2 cells by restoring E-cadherin expression and decreasing α-SMA
expression. miR-302b mimics suppressed both luciferase activity and protein
expression of TGF-βR2. However, miR-302b inhibitor increased TGF-βR2 luciferase
activity and protein expression. Meanwhile, miR-302b mimics inhibited TGF-βR2
mRNA expression and decreased Smad2 and Smad3 phosphorylation in
vivo and in vitro. Furthermore, over-expression of
TGF-βR2 restored the miR-302b-induced decrease of collagen I and α-SMA
expression. In conclusion, this study demonstrated that miR-302b attenuated
renal fibrosis by targeting TGF-βR2 to suppress TGF-β/Smad signaling activation.
Our findings showed that elevating renal miR-302b levels may be a novel
therapeutic strategy for preventing renal fibrosis.
Collapse
Affiliation(s)
- Mengkui Sun
- Department of Urology, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China.,Laboratory of Pelvic Floor Muscle Function, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Wei Zhou
- Department of Urology, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China.,Laboratory of Pelvic Floor Muscle Function, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Fei Yao
- Department of Urology, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China.,Laboratory of Pelvic Floor Muscle Function, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Jianming Song
- Department of Pathology, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Yanan Xu
- Department of Urology, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China.,Laboratory of Pelvic Floor Muscle Function, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Zhimei Deng
- Department of Urology, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China.,Laboratory of Pelvic Floor Muscle Function, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Hongwang Diao
- Department of Urology, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China.,Laboratory of Pelvic Floor Muscle Function, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Shoulin Li
- Department of Urology, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China.,Laboratory of Pelvic Floor Muscle Function, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|
19
|
Yin X, Ma F, Fan X, Zhao Q, Liu X, Yang Y. Knockdown of AMPKα2 impairs epithelial‑mesenchymal transition in rat renal tubular epithelial cells by downregulating ETS1 and RPS6KA1. Mol Med Rep 2020; 22:4619-4628. [PMID: 33173986 PMCID: PMC7646838 DOI: 10.3892/mmr.2020.11556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/25/2020] [Indexed: 11/07/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) serves an important regulatory role in obstructive nephropathy and renal fibrosis. As an intracellular energy sensor, AMP-activated protein kinase (AMPK) is essential in the process of EMT. The aim of the present study was to elucidate changes in the expression levels of AMPKα2 and which AMPKα2 genes play a role during EMT. TGF-β1 was used to induce EMT in normal rat renal tubular epithelial (NRK-52E) cells. The short hairpin AMPKα2 lentivirus was used to interfere with AMPKα2 expression levels in EMT-derived NRK-52E cells and AMPKα2 expression levels and EMT were detected. Differential gene expression levels following AMPKα2 knockdown in EMT-derived NRK-52E cells were assessed via gene microarray. Potential regulatory pathways were analyzed using ingenuity pathway analysis (IPA) and differentially expressed genes were partially verified by reverse transcription-quantitative PCR (RT-qPCR) and western blotting. AMPKα2 was upregulated in TGF-β1-induced EMT-derived NRK-52E cells. EMT progression was significantly inhibited following downregulation of expression levels of AMPKα2 by shAMPKα2 lentivirus. A total of 1,588 differentially expressed genes were detected following AMPKα2 knockdown in NRK-52E cells in which EMT occurred. The ERK/MAPK pathway was significantly impaired following AMPKα2 knockdown, as indicated by IPA analysis. Furthermore, RT-qPCR and western blot results demonstrated that the expression levels of AMPKα2, v-ets erythroblastosis virus E26 oncogene homolog-1 (ETS1) and ribosomal protein S6 kinase A1 (RPS6KA1) were upregulated following EMT in NRK-52E cells, whereas the expression levels of ETS1 and RPS6KA1 were downregulated following AMPKα2 knockdown. It was concluded that AMPKα2 plays a key role in the regulation of rat renal tubular EMT, which may be achieved by modulating ETS1 and RPS6KA1 in the ERK/MAPK pathway.
Collapse
Affiliation(s)
- Xiaoming Yin
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Fujiang Ma
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xu Fan
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Qi Zhao
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xin Liu
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yi Yang
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
20
|
Metformin attenuates TGF-β1-induced pulmonary fibrosis through inhibition of transglutaminase 2 and subsequent TGF-β pathways. 3 Biotech 2020; 10:287. [PMID: 32550106 DOI: 10.1007/s13205-020-02278-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/25/2020] [Indexed: 01/07/2023] Open
Abstract
The purpose of this study was to confirm whether metformin can attenuate TGF-β1-induced pulmonary fibrosis through inhibition of transglutaminase 2 (TG2) and subsequent TGF-β pathways. In vitro, MTT assay and Annexin V-FITC/PI staining assay were performed to determine the effect of metformin on the proliferation and apoptosis of human fetal lung fibroblasts (HFL-1 cell). Protein expression of TG2, Collagen I (Col I) and α-smooth muscle actin (α-SMA) were determined by western blot. To further confirm the relationship between TG2 and the anti-fibrotic effect of metformin, TG2 siRNA and TG2 overexpression plasmid were used to interfere the expression of TG2. A bleomycin-induced pulmonary fibrosis model was employed to determine the in vivo inhibitory effect of metformin. The concentrations of TG2, both in supernatants of cells and serum of rats, were determined by ELISA assay. Our results showed that metformin concentration-dependently inhibited the proliferation and promoted the apoptosis of TGF-β1-stimulated HFL-1 cells. The protein expressions of TG2, Col I and α-SMA stimulated by TGF-β1 were decreased after metformin intervention, which was confirmed in both siRNAs and plasmids treatment conditions. In vivo, metformin attenuated bleomycin-induced pulmonary fibrosis as demonstrated by H&E and Masson staining, as well as the protein expressions of Col I and α-SMA. Besides, phosphorylated SMAD2, phosphorylated SMAD3, phosphorylated Akt and phosphorylated ERK1/2 were all significantly increased after bleomycin treatment and decreased to normal levels after metformin intervention. Taken together, our results demonstrated that metformin can attenuate TGF-β1-induced pulmonary fibrosis, at least partly, through inhibition of TG2 and subsequent TGF-β pathways.
Collapse
|
21
|
|
22
|
Salvatore T, Pafundi PC, Marfella R, Sardu C, Rinaldi L, Monaco L, Ricozzi C, Imbriani S, Nevola R, Adinolfi LE, Sasso FC. Metformin lactic acidosis: Should we still be afraid? Diabetes Res Clin Pract 2019; 157:107879. [PMID: 31618624 DOI: 10.1016/j.diabres.2019.107879] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/27/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022]
Abstract
Metformin, the first choice drug for type 2 diabetes treatment in all stages of therapy, and one of the most widely prescribed anti-hyperglycemic agents worldwide, represents a rare example of an old drug which continues to display new beneficial effects in various fields. However, lactic acidosis (LA) persists as a serious adverse effect. LA incidence is low and is not necessarily determined by the administration of metformin. Unfortunately, the concern for this complication has negatively affected the drug use, particularly in chronic kidney disease, which may impair drug excretion, and in congestive heart failure and chronic liver disease, which may promote lactate accumulation. This review describes how not only these historical contraindications have been considerably scaled back, though rather a recent large body of evidence supports a protective effect of biguanide on kidney, heart and liver and, maybe, against lactic acidosis itself. It is worthy to slow down both contraindications and precautions to metformin use, not to deprive a significant number of diabetic patients, as those with kidney, heart and liver comorbidities, from its potential benefits, and not to hamper in the near future the putative advantages in a wide spectrum of conditions outside of diabetes.
Collapse
Affiliation(s)
- Teresa Salvatore
- Unit of Internal Medicine, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Pia Clara Pafundi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Lucio Monaco
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Carmen Ricozzi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Simona Imbriani
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Riccardo Nevola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Luigi Elio Adinolfi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138 Naples, Italy.
| |
Collapse
|
23
|
Soo E, Welch A, Marsh C, McKay DB. Molecular strategies used by hibernators: Potential therapeutic directions for ischemia reperfusion injury and preservation of human donor organs. Transplant Rev (Orlando) 2019; 34:100512. [PMID: 31648853 DOI: 10.1016/j.trre.2019.100512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022]
Affiliation(s)
- E Soo
- Scripps Research, Department of Immunology and Molecular Biology, 10550 North Torrey Pines Rd, La Jolla, CA, United States of America; Scripps Clinic and Green Hospital, Department of Medicine and Surgery, 10660 North Torrey Pines Rd, La Jolla, CA, United States of America
| | - A Welch
- Scripps Research, Department of Immunology and Molecular Biology, 10550 North Torrey Pines Rd, La Jolla, CA, United States of America
| | - C Marsh
- Scripps Clinic and Green Hospital, Department of Medicine and Surgery, 10660 North Torrey Pines Rd, La Jolla, CA, United States of America
| | - D B McKay
- Scripps Research, Department of Immunology and Molecular Biology, 10550 North Torrey Pines Rd, La Jolla, CA, United States of America; Scripps Clinic and Green Hospital, Department of Medicine and Surgery, 10660 North Torrey Pines Rd, La Jolla, CA, United States of America.
| |
Collapse
|
24
|
McCloskey CW, Cook DP, Kelly BS, Azzi F, Allen CH, Forsyth A, Upham J, Rayner KJ, Gray DA, Boyd RW, Murugkar S, Lo B, Trudel D, Senterman MK, Vanderhyden BC. Metformin Abrogates Age-Associated Ovarian Fibrosis. Clin Cancer Res 2019; 26:632-642. [PMID: 31597663 DOI: 10.1158/1078-0432.ccr-19-0603] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/02/2019] [Accepted: 10/04/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE The ovarian cancer risk factors of age and ovulation are curious because ovarian cancer incidence increases in postmenopausal women, long after ovulations have ceased. To determine how age and ovulation underlie ovarian cancer risk, we assessed the effects of these risk factors on the ovarian microenvironment. EXPERIMENTAL DESIGN Aged C57/lcrfa mice (0-33 months old) were generated to assess the aged ovarian microenvironment. To expand our findings into human aging, we assembled a cohort of normal human ovaries (n = 18, 21-71 years old). To validate our findings, an independent cohort of normal human ovaries was assembled (n = 9, 41-82 years old). RESULTS We first validated the presence of age-associated murine ovarian fibrosis. Using interdisciplinary methodologies, we provide novel evidence that ovarian fibrosis also develops in human postmenopausal ovaries across two independent cohorts (n = 27). Fibrotic ovaries have an increased CD206+:CD68+ cell ratio, CD8+ T-cell infiltration, and profibrotic DPP4+αSMA+ fibroblasts. Metformin use was associated with attenuated CD8+ T-cell infiltration and reduced CD206+:CD68+ cell ratio. CONCLUSIONS These data support a novel hypothesis that unifies the primary nonhereditary ovarian cancer risk factors through the development of ovarian fibrosis and the formation of a premetastatic niche, and suggests a potential use for metformin in ovarian cancer prophylaxis.See related commentary by Madariaga et al., p. 523.
Collapse
Affiliation(s)
- Curtis W McCloskey
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - David P Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Brendan S Kelly
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Feryel Azzi
- Institut du Cancer de Montréal and Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal, Quebec, Canada.,Department of Pathology and Cellular Biology, Université de Montréal, Montréal, Quebec, Canada
| | | | - Amanda Forsyth
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jeremy Upham
- Department of Physics and School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada
| | - Katey J Rayner
- University of Ottawa Heart Institute, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa, Ontario, Canada
| | - Douglas A Gray
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada
| | - Robert W Boyd
- Department of Physics and School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada
| | | | - Bryan Lo
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada.,Molecular Oncology Diagnostics Laboratory, Division of Anatomical Pathology, The Ottawa Hospital, Ottawa, Ontario, Canada.,Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Dominique Trudel
- Institut du Cancer de Montréal and Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal, Quebec, Canada.,Department of Pathology and Cellular Biology, Université de Montréal, Montréal, Quebec, Canada
| | - Mary K Senterman
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, Ontario, Canada.,Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
25
|
|
26
|
Liang D, Song Z, Liang W, Li Y, Liu S. Metformin inhibits TGF-beta 1-induced MCP-1 expression through BAMBI-mediated suppression of MEK/ERK1/2 signalling. Nephrology (Carlton) 2019; 24:481-488. [PMID: 29934960 DOI: 10.1111/nep.13430] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
Abstract
AIMS Metformin is a biguanide derivative widely used for the treatment of type 2 diabetes mellitus. Recent evidence demonstrates that this anti-hyperglycaemic drug exerts renal protective effects, yet the mechanisms remain poorly understood. monocyte chemoattractant protein 1 (MCP-1) has been recognized as a key mediator of renal fibrosis in chronic kidney diseases, including diabetic nephropathy. This study aimed to investigate the effects of metformin on transforming growth factor beta 1 (TGF-β1)-induced MCP-1 expression and the underlying mechanisms in rat renal tubular epithelial cells. METHODS Rat renal tubular epithelial cell line NRK-52E cells were stimulated with TGF-β1 and/or metformin. The messenger RNA (mRNA) of MCP-1 and bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) was evaluated by real-time quantitative polymerase chain reaction. MCP-1 protein was measured by enzyme linked immunosorbent assay (ELISA). Total and phosphorylated extracellular signal-regulated kinases 1/2 (ERK1/2) was evaluated by western blot. Down- and upregulation of BAMBI were achieved by RNA interference targeting BAMBI and lentiviral vector-mediated overexpression of the BAMBI gene, respectively. Cell viability was analysed using Cell Counting Kit 8 (CCK-8) reagents. RESULTS Stimulation with TGF-β1 resulted in the increased expression of MCP-1 and decreased expression of BAMBI in NRK-52E cells. Metformin inhibited the expression of MCP-1 in NRK-52E cells. Pretreatment with metformin suppressed upregulation of MCP-1 and downregulation of BAMBI, as well as phosphorylation of ERK1/2 induced by TGF-β1. U0126, a specific inhibitor for mitogen-activated and extracellular signal-regulated kinase kinases 1/2 (MEK-1/2), completely blocked TGF-β1-induced MCP-1 expression. Knockdown of the BAMBI gene promoted phosphorylation of ERK1/2 and TGF-β1-induced expression of MCP-1. Overexpression of BAMBI inhibited phosphorylation of ERK1/2 and TGF-β1-induced upregulation of MCP-1. CONCLUSION In rat renal tubular epithelial cells, metformin prevents TGF-β1-induced MCP-1 expression, in which BAMBI-mediated inhibition of MEK/ERK1/2 might be involved.
Collapse
Affiliation(s)
- Diefei Liang
- Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zijiao Song
- Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weiwen Liang
- Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yan Li
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shanying Liu
- Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
27
|
Lee MC, Lee CH, Chang LY, Chang CH, Zhang JF, Lee MR, Wang JY, Chen SM. Association of Metformin Use With End-Stage Renal Disease in Patients With Type 2 Diabetes Mellitus: A Nationwide Cohort Study Under the Pay-for-Performance Program. J Clin Pharmacol 2019; 59:1443-1452. [PMID: 31163098 DOI: 10.1002/jcph.1452] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/16/2019] [Indexed: 12/25/2022]
Abstract
Animal studies have demonstrated that metformin exerts a renoprotective effect. Human studies of patients with diabetes mellitus (DM) regarding the association of metformin use with end-stage renal disease (ESRD) are lacking. Patients with type 2 DM and without a history of kidney disease who were enrolled under the pay-for-performance program of the National Health Insurance in Taiwan were identified. Those who received ≥90 cumulative defined daily doses of metformin within 1 year were selected (metformin users) and compared with a 1:1 propensity score-matched metformin nonuser cohort. Primary and secondary outcomes were development of ESRD and chronic kidney disease (CKD), respectively. Independent predictors were investigated using Cox regression analysis. A total of 24 158 pairs of metformin users and nonusers were enrolled, with an incidence of ESRD of 1908 and 1723 and CKD of 1095 and 1056 cases per 100 000 person-years, respectively. Metformin use was independently associated with increased risks of ESRD (adjusted hazard ratio, 1.22; 95% confidence interval, 1.12-1.32) and CKD (adjusted hazard ratio, 1.25; 95% confidence interval, 1.12-1.40) in a dose-response relationship. Patients with hypertension plus nonuse of angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers potentiated kidney damage by metformin. In patients with DM, use of metformin may increase the risk of ESRD and CKD. Health care professionals should be alert and closely monitor renal function when prescribing metformin.
Collapse
Affiliation(s)
- Ming-Chia Lee
- Department of Pharmacy, New Taipei City Hospital, New Taipei City, Taiwan.,School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hsin Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Lih-Yu Chang
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Chia-Hao Chang
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Jun-Fu Zhang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Meng-Rui Lee
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jann-Yuan Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Ming Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
28
|
Corremans R, Vervaet BA, D'Haese PC, Neven E, Verhulst A. Metformin: A Candidate Drug for Renal Diseases. Int J Mol Sci 2018; 20:E42. [PMID: 30583483 PMCID: PMC6337137 DOI: 10.3390/ijms20010042] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/12/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
Over the past decades metformin has been the optimal first-line treatment for type 2 diabetes mellitus (T2DM). Only in the last few years, it has become increasingly clear that metformin exerts benign pleiotropic actions beyond its prescribed use and ongoing investigations focus on a putative beneficial impact of metformin on the kidney. Both acute kidney injury (AKI) and chronic kidney disease (CKD), two major renal health issues, often result in the need for renal replacement therapy (dialysis or transplantation) with a high socio-economic impact for the patients. Unfortunately, to date, effective treatment directly targeting the kidney is lacking. Metformin has been shown to exert beneficial effects on the kidney in various clinical trials and experimental studies performed in divergent rodent models representing different types of renal diseases going from AKI to CKD. Despite growing evidence on metformin as a candidate drug for renal diseases, in-depth research is imperative to unravel the molecular signaling pathways responsible for metformin's renoprotective actions. This review will discuss the current state-of-the-art literature on clinical and preclinical data, and put forward potential cellular mechanisms and molecular pathways by which metformin ameliorates AKI/CKD.
Collapse
Affiliation(s)
- Raphaëlle Corremans
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium.
| | - Benjamin A Vervaet
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium.
| | - Patrick C D'Haese
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium.
| | - Ellen Neven
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium.
| | - Anja Verhulst
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium.
| |
Collapse
|
29
|
Huang YS, Wang SH, Chen SM, Lee JA. Metabolic profiling of metformin treatment for low-level Pb-induced nephrotoxicity in rat urine. Sci Rep 2018; 8:14587. [PMID: 30275489 PMCID: PMC6167321 DOI: 10.1038/s41598-018-32501-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease is a worldwide problem, and Pb contamination is a potential risk factor. Since current biomarkers are not sensitive for the diagnosis of Pb-induced nephrotoxicity, novel biomarkers are needed. Metformin has both hypoglycaemic effects and reno-protection ability. However, its mechanism of action is unknown. We aimed to discover the early biomarkers for the diagnosis of low-level Pb-induced nephrotoxicity and understand the mechanism of reno-protection of metformin. Male Wistar rats were randomly divided into control, Pb, Pb + ML, Pb + MH and MH groups. Pb (250 ppm) was given daily via drinking water. Metformin (50 or 100 mg/kg/d) was orally administered. Urine was analysed by nuclear magnetic resonance (NMR)-based metabolomics coupled with multivariate statistical analysis, and potential biomarkers were subsequently quantified. The results showed that Pb-induced nephrotoxicity was closely correlated with the elevation of 5-aminolevulinic acid, D-lactate and guanidinoacetic acid in urine. After co-treatment with metformin, 5-aminolevulinic acid and D-lactate were decreased. This is the first demonstration that urinary 5-aminolevulinic acid, D-lactate and guanidinoacetic acid could be early biomarkers of low-level Pb-induced nephrotoxicity in rats. The reno-protection of metformin might be attributable to the reduction of D-lactate excretion.
Collapse
Affiliation(s)
- Yu-Shen Huang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing St., Taipei, Taiwan
| | - Shwu-Huey Wang
- Core Facility Center, Department of Research Development, Taipei Medical University, 250 Wuxing St., Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, 250 Wuxing St., Taipei, Taiwan
| | - Shih-Ming Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing St., Taipei, Taiwan.
| | - Jen-Ai Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing St., Taipei, Taiwan.
| |
Collapse
|
30
|
Cury MFR, Olivares EQ, Garcias RC, Toledo GQ, Anselmo NA, Paskakulis LC, Botelho FFR, Carvalho NZ, Silva AAD, Agren C, Carlos CP. Inflammation and kidney injury attenuated by prior intake of Brazil nuts in the process of ischemia and reperfusion. ACTA ACUST UNITED AC 2018; 40:312-318. [PMID: 30118536 PMCID: PMC6533994 DOI: 10.1590/2175-8239-jbn-2018-0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022]
Abstract
Introduction: Ischemia and reperfusion (IR) is a process inherent to the procedures
involved in the transplantation of organs that causes inflammation, cell
death and cell injury, and may lead to rejection of the graft. It is
possible that the anti-inflammatory properties of the Brazil nuts (BN) can
mitigate the renal injury caused by IR. Objective: To investigate whether the previous intake of BN reduces the expression of
markers of inflammation, injury, and cell death after renal IR. Methods: Male Wistar rats were distributed into six groups (N = 6/group): SHAM
(control), SHAM treated with 75 or 150 mg of BN, IR, and IR treated with 75
or 150 mg of BN. The IR procedure consisted of right nephrectomy and
occlusion of the left renal artery with a non-traumatic vascular clamp for
30 min. BN was given daily from day 1 to 7 before surgery (SHAM or IR), and
maintained until sacrifice (48 h after surgery). Inflammation was evaluated
by renal expression of COX-2 and TGF-β, injury by the expression of
vimentin, and cell death by apoptosis through caspase-3 expression
(immunohistochemistry). Results: Pretreatment with 75 mg of BN reduced renal expression of the COX-2, TGF-β,
vimentin, and caspase-3. The dose of 150 mg caused increased expression of
COX-2. Conclusion: In experimental IR, the damage can be minimized with a prior low-dose intake
of BN, improving inflammation, injury, and cell death.
Collapse
Affiliation(s)
| | - Estéfany Queiroz Olivares
- Laboratório de Pesquisa Experimental, FACERES Faculdade de Medicina, São José do Rio Preto, SP, Brasil
| | - Renata Correia Garcias
- Laboratório de Pesquisa Experimental, FACERES Faculdade de Medicina, São José do Rio Preto, SP, Brasil
| | - Giovana Queda Toledo
- Laboratório de Pesquisa Experimental, FACERES Faculdade de Medicina, São José do Rio Preto, SP, Brasil
| | - Natassia Alberici Anselmo
- Laboratório de Pesquisa Experimental, FACERES Faculdade de Medicina, São José do Rio Preto, SP, Brasil
| | | | | | - Natiele Zanardo Carvalho
- Laboratório de Pesquisa Experimental, FACERES Faculdade de Medicina, São José do Rio Preto, SP, Brasil
| | - Analice Andreoli da Silva
- Laboratório de Pesquisa Experimental, FACERES Faculdade de Medicina, São José do Rio Preto, SP, Brasil
| | - Camila Agren
- Laboratório de Pesquisa Experimental, FACERES Faculdade de Medicina, São José do Rio Preto, SP, Brasil
| | - Carla Patrícia Carlos
- Laboratório de Pesquisa Experimental, FACERES Faculdade de Medicina, São José do Rio Preto, SP, Brasil
| |
Collapse
|
31
|
De Broe M, Kajbaf F, Lalau JD. Renoprotective Effects of Metformin. Nephron Clin Pract 2017; 138:261-274. [DOI: 10.1159/000481951] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/03/2017] [Indexed: 12/18/2022] Open
|
32
|
Dayangan Sayan C, Karaca G, Sema Ozkan Z, Tulmac OB, Ceylan Isik A, Devrim T, Aydin G, Yeral I. What is the protective effect of metformin on rat ovary against ischemia-reperfusion injury? J Obstet Gynaecol Res 2017; 44:278-285. [DOI: 10.1111/jog.13524] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/17/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Cemile Dayangan Sayan
- Department of Obstetrics and Gynecology; Kırıkkale University Faculty of Medicine; Kırıkkale Turkey
| | - Gokhan Karaca
- Department of General Surgery; Kırıkkale University Faculty of Medicine; Kırıkkale Turkey
| | - Zehra Sema Ozkan
- Department of Obstetrics and Gynecology; Kırıkkale University Faculty of Medicine; Kırıkkale Turkey
| | - Ozlem B. Tulmac
- Department of Obstetrics and Gynecology; Kırıkkale University Faculty of Medicine; Kırıkkale Turkey
| | - Aslı Ceylan Isik
- Department of Pharmacology; Kırıkkale University Faculty of Medicine; Kırıkkale Turkey
| | - Tuba Devrim
- Department of Pathology; Kırıkkale University Faculty of Medicine; Kırıkkale Turkey
| | - Gülcin Aydin
- Department of Anesthesiology and Reanimation; Kırıkkale University Faculty of Medicine; Kırıkkale Turkey
| | - Ilkin Yeral
- Department of Obstetrics and Gynecology; Kırıkkale University Faculty of Medicine; Kırıkkale Turkey
| |
Collapse
|
33
|
Jiang S, Li T, Yang Z, Yi W, Di S, Sun Y, Wang D, Yang Y. AMPK orchestrates an elaborate cascade protecting tissue from fibrosis and aging. Ageing Res Rev 2017; 38:18-27. [PMID: 28709692 DOI: 10.1016/j.arr.2017.07.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 01/10/2023]
Abstract
Fibrosis is a common process characterized by excessive extracellular matrix (ECM) accumulation after inflammatory injury, which is also a crucial cause of aging. The process of fibrosis is involved in the pathogenesis of most diseases of the heart, liver, kidney, lung, and other organs/tissues. However, there are no effective therapies for this pathological alteration. Annually, fibrosis represents a huge financial burden for the USA and the world. 5'-AMP-activated protein kinase (AMPK) is a pivotal energy sensor that alleviates or delays the process of fibrogenesis. In this review, we first present basic background information on AMPK and fibrogenesis and describe the protective roles of AMPK in three fibrogenic phases. Second, we analyze the protective action of AMPK during fibrosis in myocardial, hepatic, renal, pulmonary, and other organs/tissues. Third, we present a comprehensive discussion of AMPK during fibrosis and draw a conclusion. This review highlights recent advances, vital for basic research and clinical drug design, in the regulation of AMPK during fibrosis.
Collapse
Affiliation(s)
- Shuai Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhi Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Yang Sun
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China.
| |
Collapse
|
34
|
Lioudaki E, Whyte M, Androulakis ES, Stylianou KG, Daphnis EK, Ganotakis ES. Renal Effects of SGLT-2 Inhibitors and Other Anti-diabetic Drugs: Clinical Relevance and Potential Risks. Clin Pharmacol Ther 2017; 102:470-480. [DOI: 10.1002/cpt.731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 12/11/2022]
Affiliation(s)
- E Lioudaki
- Renal Unit; Epsom and St Helier University Hospitals NHS Trust; London UK
- Department of Nephrology; University Hospital of Heraklion; Greece
| | - M Whyte
- Department of Clinical & Experimental Medicine; University of Surrey; Department of Medicine King's College Hospital
| | - ES Androulakis
- Cardiology Department; St George's University Hospital NHS; London UK
| | - KG Stylianou
- Department of Nephrology; University Hospital of Heraklion; Greece
| | - EK Daphnis
- Department of Nephrology; University Hospital of Heraklion; Greece
| | - ES Ganotakis
- Department of Internal Medicine; University Hospital of Heraklion; Greece
| |
Collapse
|
35
|
Fan K, Wu K, Lin L, Ge P, Dai J, He X, Hu K, Zhang L. Metformin mitigates carbon tetrachloride-induced TGF-β1/Smad3 signaling and liver fibrosis in mice. Biomed Pharmacother 2017; 90:421-426. [DOI: 10.1016/j.biopha.2017.03.079] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/24/2017] [Accepted: 03/26/2017] [Indexed: 02/06/2023] Open
|
36
|
Kast RE, Skuli N, Karpel-Massler G, Frosina G, Ryken T, Halatsch ME. Blocking epithelial-to-mesenchymal transition in glioblastoma with a sextet of repurposed drugs: the EIS regimen. Oncotarget 2017; 8:60727-60749. [PMID: 28977822 PMCID: PMC5617382 DOI: 10.18632/oncotarget.18337] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/12/2017] [Indexed: 12/11/2022] Open
Abstract
This paper outlines a treatment protocol to run alongside of standard current treatment of glioblastoma- resection, temozolomide and radiation. The epithelial to mesenchymal transition (EMT) inhibiting sextet, EIS Regimen, uses the ancillary attributes of six older medicines to impede EMT during glioblastoma. EMT is an actively motile, therapy-resisting, low proliferation, transient state that is an integral feature of cancers’ lethality generally and of glioblastoma specifically. It is believed to be during the EMT state that glioblastoma’s centrifugal migration occurs. EMT is also a feature of untreated glioblastoma but is enhanced by chemotherapy, by radiation and by surgical trauma. EIS Regimen uses the antifungal drug itraconazole to block Hedgehog signaling, the antidiabetes drug metformin to block AMP kinase (AMPK), the analgesic drug naproxen to block Rac1, the anti-fibrosis drug pirfenidone to block transforming growth factor-beta (TGF-beta), the psychiatric drug quetiapine to block receptor activator NFkB ligand (RANKL) and the antibiotic rifampin to block Wnt- all by their previously established ancillary attributes. All these systems have been identified as triggers of EMT and worthy targets to inhibit. The EIS Regimen drugs have a good safety profile when used individually. They are not expected to have any new side effects when combined. Further studies of the EIS Regimen are needed.
Collapse
Affiliation(s)
| | - Nicolas Skuli
- INSERM, Centre de Recherches en Cancérologie de Toulouse, CRCT, Inserm/Université Toulouse III, Paul Sabatier, Hubert Curien, Toulouse, France
| | - Georg Karpel-Massler
- Department of Neurosurgery, Ulm University Hospital, Albert-Einstein-Allee, Ulm, Germany
| | - Guido Frosina
- Mutagenesis & Cancer Prevention Unit, IRCCS Azienda Ospedaliera Universitaria San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, Largo Rosanna Benzi, Genoa, Italy
| | - Timothy Ryken
- Department of Neurosurgery, University of Kansas, Lawrence, KS, USA
| | - Marc-Eric Halatsch
- Department of Neurosurgery, Ulm University Hospital, Albert-Einstein-Allee, Ulm, Germany
| |
Collapse
|
37
|
Feng Y, Wang S, Zhang Y, Xiao H. Metformin attenuates renal fibrosis in both AMPKα2-dependent and independent manners. Clin Exp Pharmacol Physiol 2017; 44:648-655. [PMID: 28273365 DOI: 10.1111/1440-1681.12748] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Yenan Feng
- Institute of Vascular Medicine; Peking University Third Hospital; Beijing China
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Ministry of Health; Beijing China
- Key Laboratory of Molecular Cardiovascular Sciences; Ministry of Education; Beijing China
- Beijing Key Laboratory of Cardiovascular Receptors Research; Beijing China
| | - Shuaixing Wang
- Institute of Vascular Medicine; Peking University Third Hospital; Beijing China
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Ministry of Health; Beijing China
- Key Laboratory of Molecular Cardiovascular Sciences; Ministry of Education; Beijing China
- Beijing Key Laboratory of Cardiovascular Receptors Research; Beijing China
| | - Youyi Zhang
- Institute of Vascular Medicine; Peking University Third Hospital; Beijing China
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Ministry of Health; Beijing China
- Key Laboratory of Molecular Cardiovascular Sciences; Ministry of Education; Beijing China
- Beijing Key Laboratory of Cardiovascular Receptors Research; Beijing China
| | - Han Xiao
- Institute of Vascular Medicine; Peking University Third Hospital; Beijing China
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Ministry of Health; Beijing China
- Key Laboratory of Molecular Cardiovascular Sciences; Ministry of Education; Beijing China
- Beijing Key Laboratory of Cardiovascular Receptors Research; Beijing China
| |
Collapse
|
38
|
Tao L, Cao J, Wei W, Xie H, Zhang M, Zhang C. Protective role of rhapontin in experimental pulmonary fibrosis in vitro and in vivo. Int Immunopharmacol 2017; 47:38-46. [PMID: 28364627 DOI: 10.1016/j.intimp.2017.03.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/10/2017] [Accepted: 03/22/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pulmonary fibrosis is a scaring process related to chronic lung injury of all causes. The treatment options for pulmonary fibrosis are very limited. Rhapontin has anti-inflammatory effect and anti-proliferative activity which is widely distributed in the medicinal plants of Rheum genus in China. However, the anti-fibrotic activities of rhapontin have not been previously investigated. METHODS The effect of rhapontin on TGF-β1-mediated extracellular matrix (ECM) deposition in primary lung fibroblast (PLF) cells, on TGF-β1 secretion in LPS-stimulated human THP-1 derived macrophages in vitro, and on bleomycin (BLM)-induced pulmonary fibrosis was investigated in vivo. Fibrotic mice were induced by intratracheal instillation of bleomycin, and then treated with rhapontin (25, 50, or 100mg/kg/day) or prednisone (6.5mg/kg/day, positive drug) for 2weeks. RESULTS In TGF-β1 stimulated PLFs, treatment with rhapontin resulted in a reduction of ECM with a decrease in Lox2 and p-Smad2/3. In LPS activated macrophages, treatment with rhapontin reduced TGF-β1 production. However, in vitro the attenuated ECM deposition and inflammatory response by rhapontin were closely associated with AMPK activation, and these suppression of rhapontin were significantly abolished by the AMPK inhibitor. Treatment with rhapontin for 2weeks resulted in an amelioration of the BLM-induced pulmonary fibrosis in rats with a lower Lox2, whereas a higher AMPK expression, with reductions of the pathological score, collagen deposition, TGF-β1, α-SMA, Lox2, and HIF-1α expressions in lung tissues at fibrotic stage at 100mg/kg. CONCLUSION In summary, rhapontin reversed ECM, as well as Lox2 proliferation in vitro and prevented pulmonary fibrosis in vivo by modulating AMPK activation and suppressing the TGF-β/Smad pathway.
Collapse
Affiliation(s)
- Lijun Tao
- Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Juan Cao
- Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Wencheng Wei
- Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Haifeng Xie
- Chengdu biopurity phytochemicals Ltd., Chengdu 611131, People's Republic of China
| | - Mian Zhang
- Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Chaofeng Zhang
- Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing 211198, People's Republic of China.
| |
Collapse
|