1
|
Poddar K, Sarkar D, Sarkar A. Construction of bacterial consortium for efficient degradation of mixed pharmaceutical dyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25226-25238. [PMID: 35066834 DOI: 10.1007/s11356-021-18217-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Synthetic dyes are established colorants in the pharmaceutical industries for the coating and coloration of tablets, capsules, etc. to mark the specific formulation and dosage, improve the stability, and esthetic value. The pharmaceuticals manufacturing process releases large volumes of dye-containing wastewaters, contributing to eco-toxic concerns related to different health risks. In this study, biodegradation of amaranth, sunset yellow, tartrazine, indigo carmine, and quinoline yellow dyes was investigated in the mixed environment. Initially, 24 tolerant bacterial strains were isolated from pharmaceutical wastewater samples, among which 19 strains were found to be non-virulent. Five different consortia were constructed by considering the 19 strains among which C1 consisting of strains DY7, 10, 11, and 18 was found to be the most potential consortium with an overall efficiency of 96.65% dye degradation in the presence of glucose after 15 days. The strains DY7, 10, 11, and 18 were identified as members of the Klebsiella genus by 16S rRNA partial sequencing. The cell wall structure, carbohydrate utilization profile, and metabolic characterization were conducted on the selected strains of C1. Among the 25 different antibiotics, DY7 and DY11 exhibited the highest zone of growth inhibition in the presence of cefixime, and DY10 was restricted by chloramphenicol whereas DY18 was found sensitive to ceftazidime/tazobactam.
Collapse
Affiliation(s)
- Kasturi Poddar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Debapriya Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Angana Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India.
| |
Collapse
|
2
|
Pathogenic Potential and Control of Chryseobacterium Species from Clinical, Fish, Food and Environmental Sources. Microorganisms 2022; 10:microorganisms10050895. [PMID: 35630340 PMCID: PMC9144366 DOI: 10.3390/microorganisms10050895] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 11/17/2022] Open
Abstract
Chryseobacterium species are isolated and taxonomically evaluated from a wide range of sources. While C. gleum and C. indologenes have been implicated in human disease, the potential pathogenicity of numerous other species have not been investigated. The aims were therefore to evaluate 37 Chryseobacterium species and Elizabethkingia meningoseptica from environmental, food, fish, water and clinical sources for production of haemolysis, growth at 37 °C, and production of virulence enzymes. The control of these strains were investigated by determination of antimicrobial and disinfectant resistance. All the species produced α- or β-haemolysis. In terms of growth at 37 °C and production of virulence enzymes, C. soldanellicola (environmental), C. oranimense (food) and C. koreense (natural mineral water) could be potential human pathogens. Chryseobacterium piscium might be pathogenic to fish. Trimethoprim could be the most effective antimicrobial for the treatment of a Chryseobacterium species infection, while the disinfectants that contain poly-dimethyl ammonium chloride or benzalkonium chloride could be regarded as the most effective for decontamination of surfaces contaminated with Chryseobacterium species.
Collapse
|
3
|
Virulence potentials of Bacillus strains recovered from edible snails and survival during culinary preparation. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Curutiu C, Iordache F, Gurban P, Lazar V, Chifiriuc MC. Main Microbiological Pollutants of Bottled Waters and Beverages. BOTTLED AND PACKAGED WATER 2019. [PMCID: PMC7204880 DOI: 10.1016/b978-0-12-815272-0.00014-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although consumption of quality drinking water should be available to anyone, without any risk, in reality, for the people living in poor countries, safe water sources are often not an option. In order to eliminate the risk of disease, people prefer to use bottled water, or even bottle beverages, considering them uncontaminated, sterile products. However, the evidence showed that some microbial species belonging to autochthonous water microbiota or even pathogenic species may contaminate and could, in certain conditions, multiply beyond measure in the bottled products. Sometimes, although the bottled water or beverages meet the quality requirements, still, they could be responsible by some water- or food-borne diseases. This chapter presents the main microbial contaminants of these products and the associated risk for waterborne/food-borne diseases.
Collapse
Affiliation(s)
- Carmen Curutiu
- Faculty of Biology, University of Bucharest, Bucharest, Romania,Research Institute of the University of Bucharest (ICUB), Bucharest, Romania
| | - Florin Iordache
- Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania,Department of Biochemistry, University of Agronomic Sciences and Veterinary Medicine, Bucharest, Romania
| | - Petruta Gurban
- Stefan S. Nicolau Institute of Virology of Romanian Academy, Bucharest, Romania
| | - Veronica Lazar
- Faculty of Biology, University of Bucharest, Bucharest, Romania,Research Institute of the University of Bucharest (ICUB), Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Faculty of Biology, University of Bucharest, Bucharest, Romania,Research Institute of the University of Bucharest (ICUB), Bucharest, Romania
| |
Collapse
|
5
|
Wang R, Sun L, Wang Y, Deng Y, Fang Z, Liu Y, Deng Q, Sun D, Gooneratne R. Influence of food matrix type on extracellular products of Vibrio parahaemolyticus. BMC Microbiol 2018; 18:65. [PMID: 29976139 PMCID: PMC6034228 DOI: 10.1186/s12866-018-1207-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 06/22/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Two strains of Vibrio parahaemolyticus (ATCC 17802 and 33847) in shrimp, oyster, freshwater fish, pork, chicken and egg fried rice were evaluated for production of hemolysin and exoenzymes of potential importance to the pathogenicity of this bacterium. RESULTS The two strains of V. parahaemolyticus produced hemolysin, gelatinase, caseinase, phospholipase, urease, DNase and amylase in selected food matrices. Significantly higher (p < 0.05) hemolytic activity was produced by V. parahaemolyticus in egg fried rice > shrimp > freshwater fish > chicken > oyster > pork. But the exoenzyme activities were not consistent with the hemolytic activity profile, being significantly higher (p < 0.05) in shrimp > freshwater fish > chicken > oyster > pork > egg fried rice. Filtrates of V. parahaemolyticus from shrimp, freshwater fish and chicken given intraperitoneally to adult mice induced marked liver and kidney damage and were highly lethal compared with the filtrates of V. parahaemolyticus from oyster > egg fried rice > pork. CONCLUSION From in vitro and in vivo tests, it appears that the food matrix type has a significant impact on the activity of extracellular products and the pathogenicity of V. parahaemolyticus. From a food safety aspect, it is important to determine which food matrices can stimulate V. parahaemolyticus to produce additional extracellular factors. This is the first report of non-seafood including freshwater fish and chicken contaminated with V. parahaemolyticus to have been shown to be toxic to mice in vivo.
Collapse
Affiliation(s)
- Rundong Wang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Yaling Wang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Yijia Deng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhijia Fang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ying Liu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Qi Deng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Dongfang Sun
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ravi Gooneratne
- Centre for Food Research and Innovation, Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
| |
Collapse
|
6
|
Ejiofor OS, Ajunwa OM, Ezeudu CE, Emechebe GO, Okeke KN, Ifezulike CC, Ekejindu IM, Okoyeh JN, Osuala EO, Oli AN. The Bacteriology and Its Virulence Factors in Neonatal Infections: Threats to Child Survival Strategies. J Pathog 2018; 2018:4801247. [PMID: 30112215 PMCID: PMC6077539 DOI: 10.1155/2018/4801247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/23/2018] [Accepted: 05/19/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Neonatal infection refers to the infection of the newborn during the first twenty-eight days of life. It is one of the causes of infant morbidity and mortality worldwide. The aim of the study is to determine the relative contribution of the different pathogens to the overall disease burden. It will also determine the mechanisms of virulence of these pathogens that cause neonatal infections at Chukwuemeka Odumegwu Ojukwu University Teaching Hospital (COOUTH), Awka. METHODS Biological samples were collected from 30 neonates admitted at the special care baby unit (SCBU) of COOUTH and cultured using selective media and nutrient agar. The isolates were identified using microbiological and biochemical tests. The antibiogram study was determined using Kirby-Bauer disc diffusion method on Mueller Hinton Agar. Several methods previously reported in literature were used for the characterization of the virulence factors. RESULTS From the 30 blood samples collected, Pseudomonas spp. (19.7%), Escherichia coli (23%), Salmonella spp. (24.6%), and Staphylococcus aureus (32.8%) were isolated. Male to female ratio of study population was 1.5: 1. The isolates were 100 % resistant to ticarcillin, cephalothin, ceftazidime, and cefuroxime but appreciably susceptible to only levofloxacin (88.85%). They were moderately susceptible to ceftriaxone/sulbactam (39.05%) and azithromycin (26.46%). Common virulence factors identified among the isolates (up to 90 %) were hemolysin, biofilm formation, and acid resistance. Less common virulence factors were proteases (50 %), deoxyribonucleases (50 %), enterotoxins (63%), and lipopolysaccharide (70%). The virulence factors were found mostly among the S. aureus isolates. CONCLUSIONS Pseudomonas spp., Escherichia coli, Salmonella spp., and Staphylococcus aureus were implicated in neonatal infections in the center and most of them were resistant to conventional antibiotics. The organisms showed marked virulence and multidrug resistance properties. Levofloxacin, a fluoroquinolone, had superior activity on the isolates compared to other antibiotics used in the study.
Collapse
Affiliation(s)
- Obiora Shedrach Ejiofor
- Department of Pediatrics, Chukwuemeka Odumegwu Ojukwu University, Awka, Anambra State, Nigeria
| | - Onyinye Mercy Ajunwa
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Agulu, Nnamdi Azikiwe University, Anambra State, Nigeria
| | - Chijioke Elias Ezeudu
- Department of Pediatrics, College of Health Sciences, Faculty of Medicine, Nnamdi Azikiwe University, Nnewi Campus, Anambra State, Nigeria
| | - George Ogonna Emechebe
- Department of Pediatrics, Chukwuemeka Odumegwu Ojukwu University, Awka, Anambra State, Nigeria
| | - Kenneth Nchekwube Okeke
- Department of Pediatrics, Chukwuemeka Odumegwu Ojukwu University, Awka, Anambra State, Nigeria
| | | | - Ifeoma Mercy Ekejindu
- Department of Medical Laboratory Science, Faculty of Health Science and Technology, Nnamdi Azikiwe University, Nnewi Campus, Anambra State, Nigeria
| | - Jude Nnaemeka Okoyeh
- Department of Clinical Laboratory Science, School of Health Sciences, Winston-Salem State University, Winston-Salem, NC, USA
| | - Eunice Ogonna Osuala
- Department of Nursing Sciences, Faculty of Health Science and Technology, Nnamdi Azikiwe University, Nnewi Campus, Nigeria
| | - Angus Nnamdi Oli
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Agulu, Nnamdi Azikiwe University, Anambra State, Nigeria
| |
Collapse
|
7
|
Zhang Y, Kitajima M, Whittle AJ, Liu WT. Benefits of Genomic Insights and CRISPR-Cas Signatures to Monitor Potential Pathogens across Drinking Water Production and Distribution Systems. Front Microbiol 2017; 8:2036. [PMID: 29097994 PMCID: PMC5654357 DOI: 10.3389/fmicb.2017.02036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/05/2017] [Indexed: 11/22/2022] Open
Abstract
The occurrence of pathogenic bacteria in drinking water distribution systems (DWDSs) is a major health concern, and our current understanding is mostly related to pathogenic species such as Legionella pneumophila and Mycobacterium avium but not to bacterial species closely related to them. In this study, genomic-based approaches were used to characterize pathogen-related species in relation to their abundance, diversity, potential pathogenicity, genetic exchange, and distribution across an urban drinking water system. Nine draft genomes recovered from 10 metagenomes were identified as Legionella (4 draft genomes), Mycobacterium (3 draft genomes), Parachlamydia (1 draft genome), and Leptospira (1 draft genome). The pathogenicity potential of these genomes was examined by the presence/absence of virulence machinery, including genes belonging to Type III, IV, and VII secretion systems and their effectors. Several virulence factors known to pathogenic species were detected with these retrieved draft genomes except the Leptospira-related genome. Identical clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins (CRISPR-Cas) genetic signatures were observed in two draft genomes recovered at different stages of the studied system, suggesting that the spacers in CRISPR-Cas could potentially be used as a biomarker in the monitoring of Legionella related strains at an evolutionary scale of several years across different drinking water production and distribution systems. Overall, metagenomics approach was an effective and complementary tool of culturing techniques to gain insights into the pathogenic characteristics and the CRISPR-Cas signatures of pathogen-related species in DWDSs.
Collapse
Affiliation(s)
- Ya Zhang
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Andrew J Whittle
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
8
|
Diduch M, Polkowska Ż, Namieśnik J. The role of heterotrophic plate count bacteria in bottled water quality assessment. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Williams AR, Bain RES, Fisher MB, Cronk R, Kelly ER, Bartram J. A Systematic Review and Meta-Analysis of Fecal Contamination and Inadequate Treatment of Packaged Water. PLoS One 2015; 10:e0140899. [PMID: 26505745 PMCID: PMC4624706 DOI: 10.1371/journal.pone.0140899] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 10/01/2015] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Packaged water products provide an increasingly important source of water for consumption. However, recent studies raise concerns over their safety. OBJECTIVES To assess the microbial safety of packaged water, examine differences between regions, country incomes, packaged water types, and compare packaged water with other water sources. METHODS We performed a systematic review and meta-analysis. Articles published in English, French, Portuguese, Spanish and Turkish, with no date restrictions were identified from online databases and two previous reviews. Studies published before April 2014 that assessed packaged water for the presence of Escherichia coli, thermotolerant or total coliforms were included provided they tested at least ten samples or brands. RESULTS A total of 170 studies were included in the review. The majority of studies did not detect fecal indicator bacteria in packaged water (78/141). Compared to packaged water from upper-middle and high-income countries, packaged water from low and lower-middle-income countries was 4.6 (95% CI: 2.6-8.1) and 13.6 (95% CI: 6.9-26.7) times more likely to contain fecal indicator bacteria and total coliforms, respectively. Compared to all other packaged water types, water from small bottles was less likely to be contaminated with fecal indicator bacteria (OR = 0.32, 95%CI: 0.17-0.58) and total coliforms (OR = 0.10, 95%CI: 0.05, 0.22). Packaged water was less likely to contain fecal indicator bacteria (OR = 0.35, 95%CI: 0.20, 0.62) compared to other water sources used for consumption. CONCLUSIONS Policymakers and regulators should recognize the potential benefits of packaged water in providing safer water for consumption at and away from home, especially for those who are otherwise unlikely to gain access to a reliable, safe water supply in the near future. To improve the quality of packaged water products they should be integrated into regulatory and monitoring frameworks.
Collapse
Affiliation(s)
- Ashley R. Williams
- The Water Institute, University of North Carolina, Chapel Hill, NC, United States of America
| | - Robert E. S. Bain
- The Water Institute, University of North Carolina, Chapel Hill, NC, United States of America
- UNICEF, New York, NY, United States of America
| | - Michael B. Fisher
- The Water Institute, University of North Carolina, Chapel Hill, NC, United States of America
| | - Ryan Cronk
- The Water Institute, University of North Carolina, Chapel Hill, NC, United States of America
| | - Emma R. Kelly
- The Water Institute, University of North Carolina, Chapel Hill, NC, United States of America
| | - Jamie Bartram
- The Water Institute, University of North Carolina, Chapel Hill, NC, United States of America
| |
Collapse
|
10
|
Thomas R, Hamat RA, Neela V. Extracellular enzyme profiling of Stenotrophomonas maltophilia clinical isolates. Virulence 2014; 5:326-30. [PMID: 24448556 DOI: 10.4161/viru.27724] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Renjan Thomas
- Department of Medical Microbiology and Parasitology; Faculty of Medicine and Health Sciences; Universiti Putra Malaysia; Serdang, Malaysia
| | - Rukman Awang Hamat
- Department of Medical Microbiology and Parasitology; Faculty of Medicine and Health Sciences; Universiti Putra Malaysia; Serdang, Malaysia
| | - Vasanthakumari Neela
- Department of Medical Microbiology and Parasitology; Faculty of Medicine and Health Sciences; Universiti Putra Malaysia; Serdang, Malaysia
| |
Collapse
|
11
|
Liguori G, Di Onofrio V, Gallè F, Liguori R, Nastro RA, Guida M. Occurrence of Legionella spp. in thermal environments: Virulence factors and biofilm formation in isolates from a spa. Microchem J 2014. [DOI: 10.1016/j.microc.2013.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Unc A, Zurek L, Peterson G, Narayanan S, Springthorpe SV, Sattar SA. Microarray assessment of virulence, antibiotic, and heavy metal resistance in an agricultural watershed creek. JOURNAL OF ENVIRONMENTAL QUALITY 2012; 41:534-543. [PMID: 22370416 DOI: 10.2134/jeq2011.0172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Potential risks associated with impaired surface water quality have commonly been evaluated by indirect description of potential sources using various fecal microbial indicators and derived source-tracking methods. These approaches are valuable for assessing and monitoring the impacts of land-use changes and changes in management practices at the source of contamination. A more detailed evaluation of putative etiologically significant genetic determinants can add value to these assessments. We evaluated the utility of using a microarray that integrates virulence genes with antibiotic and heavy metal resistance genes to describe and discriminate among spatially and seasonally distinct water samples from an agricultural watershed creek in Eastern Ontario. Because microarray signals may be analyzed as binomial distributions, the significance of ambiguous signals can be easily evaluated by using available off-the-shelf software. The FAMD software was used to evaluate uncertainties in the signal data. Analysis of multilocus fingerprinting data sets containing missing data has shown that, for the tested system, any variability in microarray signals had a marginal effect on data interpretation. For the tested watershed, results suggest that in general the wet fall season increased the downstream detection of virulence and resistance genes. Thus, the tested microarray technique has the potential to rapidly describe the quality of surface waters and thus to provide a qualitative tool to augment quantitative microbial risk assessments.
Collapse
Affiliation(s)
- Adrian Unc
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, USA.
| | | | | | | | | | | |
Collapse
|
13
|
van der Wielen PWJJ, van der Kooij D. Effect of water composition, distance and season on the adenosine triphosphate concentration in unchlorinated drinking water in the Netherlands. WATER RESEARCH 2010; 44:4860-4867. [PMID: 20673946 DOI: 10.1016/j.watres.2010.07.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 06/17/2010] [Accepted: 07/08/2010] [Indexed: 05/29/2023]
Abstract
The objective of our study was to determine whether water composition, distance to the treatment plant and season significantly affect the adenosine triphosphate (ATP) concentration in distributed drinking water, in order to resolve the suitability of ATP as an indicator parameter for microbial regrowth. Results demonstrated that the ATP concentration in distributed water averaged between 0.8 and 12.1 ng ATP L(-1) in the Netherlands. Treatment plants with elevated biofilm formation rates in treated water, showed significantly higher ATP concentrations in distributed drinking water and ATP content was significantly higher in the summer/autumn compared to the winter period at these plants. Furthermore, transport of drinking water in a large-sized distribution system resulted in significantly lower ATP concentrations in water from the distal than the proximal part of the distribution system. Finally, modifications in the treatment significantly affected ATP concentrations in the distributed drinking water. Overall, the results from our study demonstrate that ATP is a suitable indicator parameter to easily, rapidly and quantitatively determine the total microbial activity in distributed drinking water.
Collapse
|
14
|
Sartory DP, Gu H, Chen CM. Comparison of a novel MPN method against the yeast extract agar (YEA) pour plate method for the enumeration of heterotrophic bacteria from drinking water. WATER RESEARCH 2008; 42:3489-3497. [PMID: 18534656 DOI: 10.1016/j.watres.2008.04.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 04/18/2008] [Accepted: 04/22/2008] [Indexed: 05/26/2023]
Abstract
This study compared the Quanti-Disc most probable number (MPN) test for heterotrophic bacteria from drinking water with the widely used yeast extract agar (YEA) pour plate method. The Quanti-Disc test module contains 50 reaction wells in which a medium has been pre-deposited. The medium contains a suite of three fluorogenic enzyme substrates selected for the detection of enzymes expressed widely by heterotrophic bacteria. The MPN of heterotrophic bacteria is calculated from the number of fluorescing reaction wells after incubation of a sample. Quanti-Disc and the YEA pour plate method were compared according to guidance on comparing methods given in United Kingdom national guidance and ISO 17994:2004. The two methods were also challenged with reference strains and isolates of heterotrophic bacteria from drinking water. This indicated that heterotrophic bacteria commonly encountered in drinking water are detected by both the YEA pour plate method and Quanti-Disc. Analysis of data from split water samples (723 for 37 degrees C tests and 872 for 22 degrees C tests) from nine geographically diverse laboratories in England and Wales demonstrated that the Quanti-Disc method is equivalent to the YEA pour plate method for the analysis of heterotrophic bacteria from drinking and similar waters at 37 degrees C, and superior to YEA for the analysis at 22 degrees C. The Quanti-Disc method is a simple and efficient alternative method for the enumeration of heterotrophic bacteria from drinking water.
Collapse
|
15
|
Scoaris DDO, Colacite J, Nakamura CV, Ueda-Nakamura T, de Abreu Filho BA, Dias Filho BP. Virulence and antibiotic susceptibility of Aeromonas spp. isolated from drinking water. Antonie van Leeuwenhoek 2007; 93:111-22. [PMID: 17636377 DOI: 10.1007/s10482-007-9185-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 06/18/2007] [Indexed: 11/25/2022]
Abstract
Aeromonas isolates from tap water, mineral water, and artesian well water were investigated for their ability to produce different potential virulence factors or markers such as hemolysins, cytotoxins, phospholipase, DNase, hydrophobicity and their ability to adhere to epithelial cells and to abiotic surfaces. The susceptibility to antibiotics of Aeromonas isolates was also examined. Majority of the isolates displayed hemolytic activity against sheep erythrocytes, while only 7 of the 23 Aeromonas strains displayed DNase activity and 4 of the 23 Aeromonas strains tested were regarded as positive for phospholipase production. Most of the isolates showed cytotoxic activities in culture filtrate dilutions at titer of 1/8 or lower. No general relation between the strain isolated and the ability to interact with epithelial cells could be established. Using the bacterial adherence to hydrocarbons method, most of the strains were classified as highly hydrophilic. All five Aeromonas jandaei strains isolates, 9 of the 12 Aeromonas sp strains and four of the five Aeromonas hydrophila were multidrug resistant. The most active antimicrobial was ciprofloxacin (susceptible in 100% of the isolates), and the least active antibiotic was ampicillin (resistance in 92% of the isolates). The majority of the isolates tested were not killed by chlorine at 1.2 mg/l. Whether the high tolerance to chlorine of Aeromonas isolates can be linked to greater virulence is not know.
Collapse
Affiliation(s)
- Denise de Oliveira Scoaris
- Programa de Pós-graduação em Microbiologia, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Pr 445 Km 380, Cx. Postal 6001, 86051-990, Londrina, PR, Brazil
| | | | | | | | | | | |
Collapse
|
16
|
Edberg SC, Allen MJ. Virulence and risk from drinking water of heterotrophic plate count bacteria in human population groups. Int J Food Microbiol 2004; 92:255-63. [PMID: 15145584 DOI: 10.1016/j.ijfoodmicro.2003.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Bacteria are natural inhabitants of all aqueous environments. The heterotrophic plate count is a means of assessing the concentration of these bacteria in foods, water, and water filtration systems. Methods vary, but are designed to enumerate bacteria that have evolved an environmental lifestyle. Most commonly, low nutrient, low ionic strength culture media are employed. The group of environmental bacteria enumerated depends on the media formulation and incubation conditions but are commonly known as heterotrophic plate count (HPC) bacteria; in Europe, this group is also referred to as autochthonous flora. While HPC inhabit an environmental niche, there has been concern that at some concentration they may be a human health risk. A review of the literature, including animal and human feeding studies, analysis of virulence factors, and outbreaks demonstrates that HPC bacteria as enumerated on HPC culture media have not been established as a human health threat at any concentration in drinking water or foods.
Collapse
Affiliation(s)
- Stephen C Edberg
- Department of Laboratory Medicine, Yale University School of Medicine, PO Box 208035, 333 Cedar Street, New Haven, CT 06510, USA.
| | | |
Collapse
|
17
|
Allen MJ, Edberg SC, Reasoner DJ. Heterotrophic plate count bacteria—what is their significance in drinking water? Int J Food Microbiol 2004; 92:265-74. [PMID: 15145585 DOI: 10.1016/j.ijfoodmicro.2003.08.017] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
While the literature documents the universal occurrence of heterotrophic plate count (HPC) bacteria in soils, foods, air, and all sources of water, there is a lingering question as to whether this group of organisms may signal an increased health risk when elevated populations are present in drinking water. This paper reviews the relevant literature on HPC bacteria in drinking water, the lack of clinical evidence that elevated populations or specific genera within the HPC flora pose an increased health risk to any segment of the population, and the appropriate uses of HPC data as a tool to monitor drinking water quality changes following treatment. It finds no evidence to support health-based regulations of HPC concentrations.
Collapse
Affiliation(s)
- Martin J Allen
- Awwa Research Foundation, 6666 W. Quincy Avenue, Denver, CO 80235, USA
| | | | | |
Collapse
|
18
|
Pavlov D, de Wet CME, Grabow WOK, Ehlers MM. Potentially pathogenic features of heterotrophic plate count bacteria isolated from treated and untreated drinking water. Int J Food Microbiol 2004; 92:275-87. [PMID: 15145586 DOI: 10.1016/j.ijfoodmicro.2003.08.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heterotrophic plate counts (HPCs) are commonly used to assess the general microbiological quality of drinking water. Drinking water quality specifications worldwide recommend HPC limits from 100 to 500 cfu ml(-1). A number of recent studies revealed evidence that these bacteria may not be as harmless as generally accepted. It appears that immuno-compromised individuals are particularly at risk. This would include the very young and very old patients with diseases such as AIDS and patients on therapy for purposes such as organ transplantation and cancer treatment. In this study, 339 bacterial colonies were isolated at random from selected treated and untreated drinking water in South Africa using routine heterotrophic plate count tests. In a first step to screen for potentially pathogenic properties, 188 (55.5%) of the isolates showed alpha- or beta-haemolysis on human- and horse-blood agar media. Subsequent analysis of the haemolytic isolates for enzymatic properties associated with pathogenicity revealed the presence of chondroitinase in 5.3% of the isolates, coagulase in 16.0%, DNase in 60.6%, elastase in 33.0%, fibrinolysin in 53.7%, gelatinase in 62.2%, hyaluronidase in 21.3%, lecithinase in 47.9%, lipase in 54.8% and proteinase in 64.4%. Fluorescein and pyocyanin were not produced by any of the isolates. Among the haemolytic isolates, 77.7% were resistant to oxacillin 1 microg, 59.6% to penicillin G 2 units, 47.3% to penicillin G 10 units, 54.3% to ampicillin 10 microg and 43.1% to ampicillin 25 microg. Cell culture studies revealed that 96% of haemolytic isolates were cytotoxic to HEp-2 cells, and 98.9% of the 181 cytotoxic isolates adhered to HEp-2 or Caco-2 cells. HEp-2 cells were invaded by 43.6%, and Caco-2 cells by 49.7%, of the 181 cytotoxic isolates. The invasion index on HEp-2 cells ranged from 1.9 x 10(-1) to 8.9 x 10(-6), whereas the invasion index on Caco-2 cells varied between 7.7 x 10(-2) and 8.3 x 10(-6). The most commonly isolated genera with these potentially pathogenic features were Aeromonas, Acinetobacter, Aureobacterium, Bacillus, Chryseobacterium, Corynebacterium, Klebsiella, Moraxella, Pseudomonas, Staphylococcus, Tsukamurella and Vibrio. The results obtained in this study support earlier findings on potentially pathogenic features of bacteria detected by routine HPCs on drinking water. These findings are in agreement with some epidemiological studies, which indicated an association between HPCs in drinking water and the incidence of gastroenteritis in consumers. However, the extent of the health risk concerned needs to be defined in more detail for meaningful revision of quality guidelines for HPCs in drinking water.
Collapse
Affiliation(s)
- D Pavlov
- Department of Medical Virology, University of Pretoria, P.O. Box 2034, Pretoria 0001, South Africa.
| | | | | | | |
Collapse
|
19
|
Stelma GN, Lye DJ, Smith BG, Messer JW, Payment P. Rare occurrence of heterotrophic bacteria with pathogenic potential in potable water. Int J Food Microbiol 2004; 92:249-54. [PMID: 15145583 DOI: 10.1016/j.ijfoodmicro.2003.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Since the discovery of Legionella pneumophila, an opportunistic pathogen that is indigenous to water, microbiologists have speculated that there may be other opportunistic pathogens among the numerous heterotrophic bacteria found in potable water. The US Environmental Protection Agency (USEPA) developed a series of rapid in vitro assays to assess the virulence potential of large numbers of bacteria from potable water to possibly identify currently unknown pathogens. Results of surveys of potable water from several distribution systems using these tests showed that only 50 of the approximately 10,000 bacterial colonies expressed one or more virulence characteristics. In another study, 45 potable water isolates that expressed multiple virulence factors were tested for pathogenicity in immunocompromised mice. None of the isolates infected mice that were compromised either by treatment with carrageenan (CG), to induce susceptibility to facultative intracellular pathogens, or by cyclophosphamide (CY), to induce susceptibility to extracellular pathogens. These results indicate that there are very few potential pathogens in potable water and that the currently developed in vitro virulence screening tests give an overestimation of the numbers of heterotrophic bacteria that may be pathogens. Current efforts are focused on using the animal models to screen concentrated samples of waters known to contain large numbers of heterotrophic bacteria and newly discovered Legionella-like organisms that parasitize amoebae.
Collapse
Affiliation(s)
- Gerard N Stelma
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH 45268, USA.
| | | | | | | | | |
Collapse
|
20
|
|
21
|
Abstract
Pseudomonas aeruginosa is an ubiquitous environmental bacterium. It can be recovered, often in high numbers, in common food, especially vegetables. Moreover, it can be recovered in low numbers in drinking water. A small percentage of clones of P. aeruginosa possesses the required number of virulence factors to cause infection. However, P. aeruginosa will not proliferate on normal tissue but requires previously organs. Further narrowing the risk to human health is that only certain specific hosts are at risk, including patients with profound neutropenia, cystic fibrosis, severe burns, and those subject to foreign device installation. Other than these very well-defined groups, the general population is refractory to infection with P. aeruginosa. Because of its ubiquitous nature, it is not only not practical to eliminate P. aeruginosa from our food and drinking water, but attempts to do so would produce disinfection byproducts more hazardous than the species itself. Moreover, because there is no readily available sensitive and specific means to detect and identify P. aeruginosa available in the field, any potential regulation governing its control would not have a defined laboratory test measure of outcome. Accordingly, attempts to regulate P. aeruginosa in drinking water would not yield public health protection benefits and could, in fact, be counterproductive in this regard.
Collapse
Affiliation(s)
- C Hardalo
- Clinical Microbiology Laboratory, Yale-New Haven Hospital, CT, USA
| | | |
Collapse
|