1
|
Liang W, Yang H, Lei H, Xiang Z, Duan Y, Xin H, Han T, Su J. Phytochemistry and health functions of Zanthoxylum bungeanum Maxim and Zanthoxylum schinifolium Sieb. et Zucc as pharma-foods: A systematic review. Trends Food Sci Technol 2024; 143:104225. [DOI: 10.1016/j.tifs.2023.104225] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Chai T, Qiang Y. Two new coumarins from branches of Zanthoxylum schinifolium. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:820-826. [PMID: 34662216 DOI: 10.1080/10286020.2021.1992391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Two new coumarins (1-2) have been isolated from a methanol extract of Zanthoxylum schinifolium branches. The structures of compounds 1 and 2 have been elucidated as 6-isopentenyl -7-benzoyl-coumarin and 3-isopentenyl-7-benzoyl-coumarin based on extensive spectroscopic analysis, including IR, NMR, and MS. The inhibitory activity of compounds 1 and 2 against HeLa and HepG2 cell lines has been described.
Collapse
Affiliation(s)
- Tian Chai
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yin Qiang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Park C, Choi EO, Hwangbo H, Lee H, Jeong JW, Han MH, Moon SK, Yun SJ, Kim WJ, Kim GY, Hwang HJ, Choi YH. Induction of apoptotic cell death in human bladder cancer cells by ethanol extract of Zanthoxylum schinifolium leaf, through ROS-dependent inactivation of the PI3K/Akt signaling pathway. Nutr Res Pract 2022; 16:330-343. [PMID: 35663445 PMCID: PMC9149322 DOI: 10.4162/nrp.2022.16.3.330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/09/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND/OBJECTIVES Zanthoxylum schinifolium is traditionally used as a spice for cooking in East Asian countries. This study was undertaken to evaluate the anti-proliferative potential of ethanol extracts of Z. schinifolium leaves (EEZS) against human bladder cancer T24 cells. MATERIALS/METHODS Subsequent to measuring the cytotoxicity of EEZS, the anti-cancer activity was measured by assessing apoptosis induction, reactive oxygen species (ROS) generation, and mitochondrial membrane potential (MMP). In addition, we determined the underlying mechanism of EEZS-induced apoptosis through various assays, including Western blot analysis. RESULTS EEZS treatment concentration-dependently inhibited T24 cell survival, which is associated with apoptosis induction. Exposure to EEZS induced the expression of Fas and Fas-ligand, activated caspases, and subsequently resulted to cleavage of poly (ADP-ribose) polymerase. EEZS also enhanced the expression of cytochrome c in the cytoplasm by suppressing MMP, following increase in the ratio of Bax:Bcl-2 expression and truncation of Bid. However, EEZS-mediated growth inhibition and apoptosis were significantly diminished by a pan-caspase inhibitor. Moreover, EEZS inhibited activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway, and the apoptosis-inducing potential of EEZS was promoted in the presence of PI3K/Akt inhibitor. In addition, EEZS enhanced the production of ROS, whereas N-acetyl cysteine (NAC), a ROS scavenger, markedly suppressed growth inhibition and inactivation of the PI3K/Akt signaling pathway induced by EEZS. Furthermore, NAC significantly attenuated the EEZS-induced apoptosis and reduction of cell viability. CONCLUSIONS Taken together, our results indicate that exposure to EEZS exhibits anti-cancer activity in T24 bladder cancer cells through ROS-dependent induction of apoptosis and inactivation of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan 47340, Korea
| | - Eun Ok Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
- Korea Nanobiotechnology Center, Pusan National University, Busan 46241, Korea
| | - Hyesook Lee
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Korea
| | - Jin-Woo Jeong
- Nakdonggang National Institute of Biological Resources, Sangju 17104, Korea
| | - Min Ho Han
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Ansung 17546, Korea
| | - Seok Joong Yun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea
| | - Hye-Jin Hwang
- Department of Food and Nutrition, College of Nursing, Healthcare Sciences & Human Ecology, Dong-eui University, Busan 47340, Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Korea
| |
Collapse
|
4
|
Comparative Study of Bioactivity and Safety Evaluation of Ethanolic Extracts of Zanthoxylum schinifolium Fruit and Pericarp. Molecules 2021; 26:molecules26195919. [PMID: 34641463 PMCID: PMC8512002 DOI: 10.3390/molecules26195919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 01/14/2023] Open
Abstract
The fruit and pericarp of Zanthoxylum schinifolium (ZS) have been used in traditional medicine; however, few studies have characterized ZS fruit and pericarp. Therefore, in the present study, we evaluated the safety of ZS fruit (ZSF) and pericarp (ZSP) extracts and compared their bioactivity. To evaluate the safety of ZSF and ZSP, mutagenicity, cytotoxicity, and oxidative stress assays were performed and nontoxic concentration ranges were obtained. ZSP was found to be superior to ZSF in terms of its antimutagenic, antioxidant, and anti-inflammatory activities. In the S9 mix, the mutation inhibition rate of ZSP was close to 100% at concentrations exceeding 625 µg·plate−1 for both the TA98 and TA100 strains. ZSP exhibited efficient DPPH (IC50 = 75.6 ± 6.1 µg·mL−1) and ABTS (IC50 = 57.4 ± 6 µg·mL−1) scavenging activities. ZSP inhibited the release of cytokines, involved in IL-1β (IC50 = 134.4 ± 7.8), IL-6 (IC50 = 262.8 ± 11.2), and TNF-α (IC50 = 223.8 ± 5.8). These results indicate that ZSP contains a higher amount of biochemicals than ZSF, or that ZSP contains unique biochemicals. In conclusion, for certain physiological activities, the use of ZSP alone may be more beneficial than the combined use of ZSF and ZSP.
Collapse
|
5
|
Kim SY, An SY, Lee JS, Heo JS. Zanthoxylum schinifolium enhances the osteogenic potential of periodontal ligament stem cells. In Vitro Cell Dev Biol Anim 2015; 51:165-73. [PMID: 25303944 DOI: 10.1007/s11626-014-9824-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/16/2014] [Indexed: 01/09/2023]
Abstract
The present study demonstrates the osteogenic effect of Zanthoxylum schinifolium on periodontal ligament stem cells (PDLSCs). The dried herb of Z. schinifolium was first extracted with 70% ethanol and subsequently fractionated into five parts: n-hexane, methylene chloride (MC), ethyl acetate (EA), n-butanol (BuOH), and water fractions. The proliferation of PDLSCs was first assessed and increased by hexane, EA, or BuOH fraction of Z. schinifolium. We evaluated the osteogenic differentiation of PDLSCs by alkaline phosphatase (ALP) activity, messenger RNA (mRNA) expression of runt-related transcription factor 2 (RUNX2), osterix (OSX), FOSB, and FRA-1 as osteogenic transcription factors, and protein levels of osteopontin (OPN) and RUNX2 in response to each hexane, MC, EA, BuOH, or water fraction of Z. schinifolium. The significant ALP activity appeared in PDLSCs treated with hexane, EA, or BuOH fraction. The mRNA expression of osteogenic transcription factors was also increased by hexane, EA, or BuOH fraction with doses of 5, 10, 25, and 50 μg/ml compared to control group. We further assessed immunofluorescence staining with OPN and RUNX2 confirmed that the treatment of hexane, EA, or BuOH fraction enhances PDLSC osteogenic differentiation. In conclusion, these data suggest that fractions from Z. schinifolium differentially regulate PDLSC function. Among them, proliferation and osteogenic potential of PDLSCs were enhanced by hexane, EA, or BuOH fraction.
Collapse
Affiliation(s)
- So Yeon Kim
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul, 130-701, South Korea
| | | | | | | |
Collapse
|