1
|
Zou M, Song Q, Yin T, Xu H, Nie G. Vitamin D improves autoimmune diseases by inhibiting Wnt signaling pathway. Immun Inflamm Dis 2024; 12:e1192. [PMID: 38414312 PMCID: PMC10899798 DOI: 10.1002/iid3.1192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/09/2023] [Accepted: 02/02/2024] [Indexed: 02/29/2024] Open
Abstract
OBJECTIVE In this study, we investigated the development of the Wnt signaling pathway in vitamin D (VitD) to improve systemic lupus erythematosus in mice to breakthrough clinical treatment approaches. METHODS Body weight changes were recorded during rearing. Antinuclear antibodies (ANA), anti-dsDNA, and anti-snRNP were detected in the mouse serum using an enzyme-linked immunosorbent assay. Apoptosis of Th1 and Th2 immune cells in mice was detected using flow cytometry. Reverse transcription polymerase chain reaction was used to detect the expression of T-bet, GATA3, and Wnt3a mRNA in the spleens of each group. Western blot analysis was performed to detect the expression of Wnt1, p-β-catenin, β-catenin, glycogen synthase kinsase3β (GSK-3β), Wnt3a, c-myc, and cyclin D1 protein in mice spleens. β-catenin in mice spleen was visualized using immunohistochemistry. RESULTS VitD did not substantial reduce the body weight of MRL/LPR mice, whereas the inhibitor did. VitD notably decreased the concentrations of ANA, anti-double-stranded DNA, and anti-snRNP in the serum of MRL/LPR mice and alleviated apoptosis of Th1 and Th2 cells. VitD markedly increased the expression of T-bet and GATA mRNA in the spleen of MRL/LPR mice and consequently increased the levels of Wnt3a and β-catenin. Western blot analysis revealed that the levels of GSK-3β, p-β-catenin, Wnt1, Wnt3a, c-myc, and cyclin D1 could be reduced by VitD, compared with MRL/LPR. Immunohistochemistry demonstrated that the expression of β-catenin was the most pronounced in the spleen of MRL/LPR mice, and the expression level of β-catenin decreased substantially after VitD intervention. CONCLUSIONS VitD can further inhibit the nuclear translocation of β-catenin by downregulating the expression of Wnt ligands (Wnt1 and Wnt3a), which reduces the expression of the downstream target gene cyclin D1. Systemic lupus erythematosus in mice was improved by inhibiting the activation of Wnt/β-catenin signal pathway.
Collapse
Affiliation(s)
- Minshu Zou
- Department of PediatricsGeneral Hospital of Central Theater CommandWuhanChina
| | - Qiuju Song
- Department of Obstetrics and GynecologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Taiyong Yin
- Department of PediatricsGeneral Hospital of Central Theater CommandWuhanChina
| | - Hongtao Xu
- Department of PediatricsGeneral Hospital of Central Theater CommandWuhanChina
| | - Guoming Nie
- Department of PediatricsGeneral Hospital of Central Theater CommandWuhanChina
| |
Collapse
|
2
|
Mourtada J, Lony C, Nicol A, De Azevedo J, Bour C, Macabre C, Roncarati P, Ledrappier S, Schultz P, Borel C, Burgy M, Wasylyk B, Mellitzer G, Herfs M, Gaiddon C, Jung AC. A novel ΔNp63-dependent immune mechanism improves prognosis of HPV-related head and neck cancer. Front Immunol 2023; 14:1264093. [PMID: 38022675 PMCID: PMC10630910 DOI: 10.3389/fimmu.2023.1264093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/29/2023] [Indexed: 12/01/2023] Open
Abstract
Background Deconvoluting the heterogenous prognosis of Human Papillomavirus (HPV)-related oropharyngeal squamous cell carcinoma (OSCC) is crucial for enhancing patient care, given its rapidly increasing incidence in western countries and the adverse side effects of OSCC treatments. Methods Transcriptomic data from HPV-positive OSCC samples were analyzed using unsupervised hierarchical clustering, and clinical relevance was evaluated using Kaplan-Meier analysis. HPV-positive OSCC cell line models were used in functional analyses and phenotypic assays to assess cell migration and invasion, response to cisplatin, and phagocytosis by macrophages in vitro. Results We found, by transcriptomic analysis of HPV-positive OSCC samples, a ΔNp63 dependent molecular signature that is associated with patient prognosis. ΔNp63 was found to act as a tumor suppressor in HPV-positive OSCC at multiple levels. It inhibits cell migration and invasion, and favors response to chemotherapy. RNA-Seq analysis uncovered an unexpected regulation of genes, such as DKK3, which are involved in immune response-signalling pathways. In agreement with these observations, we found that ΔNp63 expression levels correlate with an enhanced anti-tumor immune environment in OSCC, and ΔNp63 promotes cancer cell phagocytosis by macrophages through a DKK3/NF-κB-dependent pathway. Conclusion Our findings are the first comprehensive identification of molecular mechanisms involved in the heterogeneous prognosis of HPV-positive OSCC, paving the way for much-needed biomarkers and targeted treatment.
Collapse
Affiliation(s)
- Jana Mourtada
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
| | - Christelle Lony
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
| | - Anaïs Nicol
- Laboratoire de Radiobiologie, Institut de cancérologie Strasbourg Europe, Strasbourg, France
| | - Justine De Azevedo
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
| | - Cyril Bour
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
| | - Christine Macabre
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
- Tumorothèque du Centre Paul Strauss, Centre Paul Strauss, Strasbourg, France
| | - Patrick Roncarati
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Sonia Ledrappier
- Tumorothèque du Centre Paul Strauss, Centre Paul Strauss, Strasbourg, France
| | - Philippe Schultz
- Hôpitaux Universitaires de Strasbourg, Department of Otorhinolaryngology and Head and Neck Surgery, Strasbourg, France
| | - Christian Borel
- Department of Medical Oncology, Institut de cancérologie Strasbourg Europe, Strasbourg, France
| | - Mickaël Burgy
- Department of Medical Oncology, Institut de cancérologie Strasbourg Europe, Strasbourg, France
| | - Bohdan Wasylyk
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 1258, Illkirch-Graffenstaden, France
- Centre Nationale de la Recherche Scientifique (CNRS) UMR 7104, Illkirch-Graffenstaden, France
- Université de Strasbourg, Strasbourg, France
| | - Georg Mellitzer
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
| | - Michaël Herfs
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Christian Gaiddon
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
| | - Alain C. Jung
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
- Tumorothèque du Centre Paul Strauss, Centre Paul Strauss, Strasbourg, France
| |
Collapse
|
3
|
Chen X, Hu J, Wang Y, Lee Y, Zhao X, Lu H, Zhu G, Wang H, Jiang Y, Liu F, Chen Y, Kim BS, Zhou Q, Liu X, Wang X, Chang SH, Dong C. The FoxO4/DKK3 axis represses IFN-γ expression by Th1 cells and limits antimicrobial immunity. J Clin Invest 2022; 132:147566. [PMID: 36106640 PMCID: PMC9479610 DOI: 10.1172/jci147566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/21/2022] [Indexed: 01/10/2023] Open
Abstract
Forkhead box O transcriptional factors, especially FoxO1 and FoxO3a, play critical roles in physiologic and pathologic immune responses. However, the function of FoxO4, another main member of the FoxO family, in lymphoid cells is still poorly understood. Here, we showed that loss of FoxO4 in T cells augmented IFN-γ production of Th1 cells in vitro. Correspondingly, conditional deletion of FoxO4 in CD4+ T cells enhanced T cell–specific responses to Listeria monocytogenes infection in vivo. Genome-wide occupancy and transcriptomic analyses identified Dkk3 (encoding the Dickkopf-3 protein) as a direct transcriptional target of FoxO4. Consistent with the FoxO4-DKK3 relationship, recombinant DKK3 protein restored normal levels of IFN-γ production in FoxO4-deficient Th1 cells through the downregulation of lymphoid enhancer–binding factor 1 (Lef1) expression. Together, our data suggest a potential FoxO4/DKK3 axis in Th1 cell differentiation, providing what we believe to be an important insight and supplement for FoxO family proteins in T lymphocyte biology and revealing a promising target for the treatment of immune-related diseases.
Collapse
Affiliation(s)
- Xiang Chen
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jia Hu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Systems Biology, and
| | - Yunfei Wang
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Younghee Lee
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaohong Zhao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Huiping Lu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
- Annoroad Gene Technology Co. Ltd., Beijing, China
| | - Gengzhen Zhu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Hui Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu Jiang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Fan Liu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yongzhen Chen
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Byung-Seok Kim
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qinghua Zhou
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xindong Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaohu Wang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Seon Hee Chang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
| |
Collapse
|
4
|
Park MH, Shin JH, Bothwell AL, Chae WJ. Dickkopf proteins in pathological inflammatory diseases. J Leukoc Biol 2022; 111:893-901. [PMID: 34890067 PMCID: PMC9889104 DOI: 10.1002/jlb.3ri0721-385r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/01/2021] [Accepted: 11/17/2021] [Indexed: 02/02/2023] Open
Abstract
The human body encounters various challenges. Tissue repair and regeneration processes are augmented after tissue injury to reinstate tissue homeostasis. The Wnt pathway plays a crucial role in tissue repair since it induces target genes required for cell proliferation and differentiation. Since tissue injury causes inflammatory immune responses, it has become increasingly clear that the Wnt ligands can function as immunomodulators while critical for tissue homeostasis. The Wnt pathway and Wnt ligands have been studied extensively in cancer biology and developmental biology. While the Wnt ligands are being studied actively, how the Wnt antagonists and their regulatory mechanisms can modulate immune responses during chronic pathological inflammation remain elusive. This review summarizes DKK family proteins as immunomodulators, aiming to provide an overarching picture for tissue injury and repair. To this end, we first review the Wnt pathway components and DKK family proteins. Next, we will review DKK family proteins (DKK1, 2, and 3) as a new class of immunomodulatory protein in cancer and other chronic inflammatory diseases. Taken together, DKK family proteins and their immunomodulatory functions in chronic inflammatory disorders provide novel insights to understand immune diseases and make them attractive molecular targets for therapeutic intervention.
Collapse
Affiliation(s)
- Min Hee Park
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, 401 College Street., Richmond, VA 23298
- Massey Cancer Center, Virginia Commonwealth University School of Medicine, 401 College Street., Richmond, VA 23298
| | - Jae Hun Shin
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520
| | - Alfred L.M. Bothwell
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520
| | - Wook-Jin Chae
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, 401 College Street., Richmond, VA 23298
- Massey Cancer Center, Virginia Commonwealth University School of Medicine, 401 College Street., Richmond, VA 23298
| |
Collapse
|
5
|
Ljungberg JK, Kling JC, Tran TT, Blumenthal A. Functions of the WNT Signaling Network in Shaping Host Responses to Infection. Front Immunol 2019; 10:2521. [PMID: 31781093 PMCID: PMC6857519 DOI: 10.3389/fimmu.2019.02521] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
It is well-established that aberrant WNT expression and signaling is associated with developmental defects, malignant transformation and carcinogenesis. More recently, WNT ligands have emerged as integral components of host responses to infection but their functions in the context of immune responses are incompletely understood. Roles in the modulation of inflammatory cytokine production, host cell intrinsic innate defense mechanisms, as well as the bridging of innate and adaptive immunity have been described. To what degree WNT responses are defined by the nature of the invading pathogen or are specific for subsets of host cells is currently not well-understood. Here we provide an overview of WNT responses during infection with phylogenetically diverse pathogens and highlight functions of WNT ligands in the host defense against infection. Detailed understanding of how the WNT network orchestrates immune cell functions will not only improve our understanding of the fundamental principles underlying complex immune response, but also help identify therapeutic opportunities or potential risks associated with the pharmacological targeting of the WNT network, as currently pursued for novel therapeutics in cancer and bone disorders.
Collapse
Affiliation(s)
- Johanna K Ljungberg
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jessica C Kling
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Thao Thanh Tran
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Antje Blumenthal
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Zhang Y, Zhang G, Liu Y, Chen R, Zhao D, McAlister V, Mele T, Liu K, Zheng X. GDF15 Regulates Malat-1 Circular RNA and Inactivates NFκB Signaling Leading to Immune Tolerogenic DCs for Preventing Alloimmune Rejection in Heart Transplantation. Front Immunol 2018; 9:2407. [PMID: 30425709 PMCID: PMC6218625 DOI: 10.3389/fimmu.2018.02407] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/28/2018] [Indexed: 12/21/2022] Open
Abstract
Recombinant human growth differentiation factor 15 (rhGDF15) affects dendritic cell (DC) maturation. However, whether GDF15 is expressed in DCs and its roles and signaling in DCs remain largely unknown. It is unclear whether GDF15-DCs can induce immune tolerance in heart transplantation (HT). This study aims to understand the impact of endogenous GDF15 on DC's development, function, underlying molecular mechanism including circular RNA (circRNA). This study will also explore GDF15-DC-mediated immune modulation in HT. Bone marrow (BM) derived DCs were cultured and treated to up- or down regulate GDF15 expression. Phenotype and function of DCs were detected. Expression of genes and circRNAs was determined by qRT-PCR. The signaling pathways activated by GDF15 were examined. The impact of GDF15 treated DCs on preventing allograft immune rejection was assessed in a MHC full mismatch mouse HT model. Our results showed that GDF15 was expressed in DCs. Knockout of GDF15 promoted DC maturation, enhanced immune responsive functions, up-regulated malat-1 circular RNA (circ_Malat 1), and activated the nuclear factor kappa B (NFκB) pathway. Overexpression of GDF15 in DCs increased immunosuppressive/inhibitory molecules, enhanced DCs to induce T cell exhaustion, and promoted Treg generation through IDO signaling. GDF15 utilized transforming growth factor (TGF) β receptors I and II, not GFAL. Administration of GDF15 treated DCs prevented allograft rejection and induced immune tolerance in transplantation. In conclusion, GDF15 induces tolerogenic DCs (Tol-DCs) through inhibition of circ_Malat-1 and the NFκB signaling pathway and up-regulation of IDO. GDF15-DCs can prevent alloimmune rejection in HT.
Collapse
Affiliation(s)
- Yixin Zhang
- Departments of Cardiovascular Surgery, Jilin University, Changchun, China.,Department of Pathology, Western University, London, ON, Canada
| | - Guangfeng Zhang
- Department of Rheumatology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, China
| | - Yanling Liu
- Department of Pathology, Western University, London, ON, Canada
| | - Renqi Chen
- Department of Pathology, Western University, London, ON, Canada
| | - Duo Zhao
- Departments of Cardiovascular Surgery, Jilin University, Changchun, China.,Department of Pathology, Western University, London, ON, Canada
| | - Vivian McAlister
- Division of General Surgery, Department of Surgery, Western University, London, ON, Canada
| | - Tina Mele
- Division of General Surgery, Department of Surgery, Western University, London, ON, Canada
| | - Kexiang Liu
- Departments of Cardiovascular Surgery, Jilin University, Changchun, China
| | - Xiufen Zheng
- Departments of Cardiovascular Surgery, Jilin University, Changchun, China.,Department of Oncology, Western University, London, ON, Canada.,Lawson Health Research Institute, London, ON, Canada.,London Health Sciences Centre, London, ON, Canada
| |
Collapse
|
7
|
Xu WD, Wang J, Yuan TL, Li YH, Yang H, Liu Y, Zhao Y, Herrmann M. Interactions between canonical Wnt signaling pathway and MAPK pathway regulate differentiation, maturation and function of dendritic cells. Cell Immunol 2016; 310:170-177. [PMID: 27641635 DOI: 10.1016/j.cellimm.2016.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/16/2016] [Accepted: 09/07/2016] [Indexed: 02/05/2023]
Abstract
Antigen-presenting dendritic cells interpret environmental signals to orchestrate local and systemic immune responses. In this study, the roles of Wnt proteins and their signaling pathway members in the maturation and function of monocyte-derived DCs were investigated. The present study showed higher expression of β-catenin, as well as pGSK-3β in DCs than those in monocytes. Wnt3a, Wnt5a and inhibition of GSK-3β promoted differentiation of DCs, but inhibited maturation of DCs. GSK-3β induced DCs maturation with unconventional phenotypes. Together with β-catenin silence, these treatment lead to reduced secretion of cytokines and chemokines except for IL-10 in comparison with LPS treatment, and significantly promoted proliferation of T cells. Wnt3a and inhibition of GSK-3β increased expression of MAPK signalings (p-ERK, p-p38, p-JNK). However, inhibition of MAPK signalings in turn differently regulated Wnt signaling proteins expression. These data suggest that Wnt pathway regulates DCs differentiation, maturation and function with interaction of MAPK signaling pathways.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 37 Guoxue Xiang, Chengdu, Sichuan 610041, China
| | - Jia Wang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 37 Guoxue Xiang, Chengdu, Sichuan 610041, China; Department of General Medicine Center, Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan Province, China
| | - Tong-Ling Yuan
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 37 Guoxue Xiang, Chengdu, Sichuan 610041, China
| | - Yan-Hong Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 37 Guoxue Xiang, Chengdu, Sichuan 610041, China
| | - Hang Yang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 37 Guoxue Xiang, Chengdu, Sichuan 610041, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 37 Guoxue Xiang, Chengdu, Sichuan 610041, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 37 Guoxue Xiang, Chengdu, Sichuan 610041, China.
| | - Martin Herrmann
- Institute for Clinical Immunology and Rheumatology, Department of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen 91052, Germany
| |
Collapse
|