1
|
Long E, Rider CF, Carlsten C. Controlled human exposures: a review and comparison of the health effects of diesel exhaust and wood smoke. Part Fibre Toxicol 2024; 21:44. [PMID: 39444041 PMCID: PMC11515699 DOI: 10.1186/s12989-024-00603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
One of the most pressing issues in global health is air pollution. Emissions from traffic-related air pollution and biomass burning are two of the most common sources of air pollution. Diesel exhaust (DE) and wood smoke (WS) have been used as models of these pollutant sources in controlled human exposure (CHE) experiments. The aim of this review was to compare the health effects of DE and WS using results obtained from CHE studies. A total of 119 CHE-DE publications and 25 CHE-WS publications were identified for review. CHE studies of DE generally involved shorter exposure durations and lower particulate matter concentrations, and demonstrated more potent dysfunctional outcomes than CHE studies of WS. In the airways, DE induces neutrophilic inflammation and increases airway hyperresponsiveness, but the effects of WS are unclear. There is strong evidence that DE provokes systemic oxidative stress and inflammation, but less evidence exists for WS. Exposure to DE was more prothrombotic than WS. DE generally increased cardiovascular dysfunction, but limited evidence is available for WS. Substantial heterogeneity in experimental methodology limited the comparison between studies. In many areas, outcomes of WS exposures tended to trend in similar directions to those of DE, suggesting that the effects of DE exposure may be useful for inferring possible responses to WS. However, several gaps in the literature were identified, predominantly pertaining to elucidating the effects of WS exposure. Future studies should strongly consider performing head-to-head comparisons between DE and WS using a CHE design to determine the differential effects of these exposures.
Collapse
Affiliation(s)
- Erin Long
- Faculty of Medicine, University of British Columbia, 317 - 2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Christopher F Rider
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, 2775 Laurel Street 7th Floor, Vancouver, BC, V5Z 1M9, Canada
| | - Christopher Carlsten
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, 2775 Laurel Street 7th Floor, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
2
|
Landwehr KR, Hillas J, Mead-Hunter R, King A, O'Leary RA, Kicic A, Mullins BJ, Larcombe AN. Biodiesel feedstock determines exhaust toxicity in 20% biodiesel: 80% mineral diesel blends. CHEMOSPHERE 2023; 310:136873. [PMID: 36252896 DOI: 10.1016/j.chemosphere.2022.136873] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
To address climate change concerns, and reduce the carbon footprint caused by fossil fuel use, it is likely that blend ratios of renewable biodiesel with commercial mineral diesel fuel will steadily increase, resulting in biodiesel use becoming more widespread. Exhaust toxicity of unblended biodiesels changes depending on feedstock type, however the effect of feedstock on blended fuels is less well known. The aim of this study was to assess the impact of biodiesel feedstock on exhaust toxicity of 20% blended biodiesel fuels (B20). Primary human airway epithelial cells were exposed to exhaust diluted 1/15 with air from an engine running on conventional ultra-low sulfur diesel (ULSD) or 20% blends of soy, canola, waste cooking oil (WCO), tallow, palm or cottonseed biodiesel in diesel. Physico-chemical exhaust properties were compared between fuels and the post-exposure effect of exhaust on cellular viability and media release was assessed 24 h later. Exhaust properties changed significantly between all fuels with cottonseed B20 being the most different to both ULSD and its respective unblended biodiesel. Exposure to palm B20 resulted in significantly decreased cellular viability (96.3 ± 1.7%; p < 0.01) whereas exposure to soy B20 generated the greatest number of changes in mediator release (including IL-6, IL-8 and TNF-α, p < 0.05) when compared to air exposed controls, with palm B20 and tallow B20 closely following. In contrast, canola B20 and WCO B20 were the least toxic with only mediators G-CSF and TNF-α being significantly increased. Therefore, exposure to palm B20, soy B20 and tallow B20 were found to be the most toxic and exposure to canola B20 and WCO B20 the least. The top three most toxic and the bottom three least toxic B20 fuels are consistent with their unblended counterparts, suggesting that feedstock type greatly impacts exhaust toxicity, even when biodiesel only comprises 20% of the fuel.
Collapse
Affiliation(s)
- Katherine R Landwehr
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth, 6845, Western Australia, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, 6009, Western Australia, Australia.
| | - Jessica Hillas
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, 6009, Western Australia, Australia
| | - Ryan Mead-Hunter
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth, 6845, Western Australia, Australia
| | - Andrew King
- Fluid Dynamics Research Group, School of Civil and Mechanical Engineering, Curtin University, Perth, Western Australia, Australia
| | - Rebecca A O'Leary
- Department of Primary Industries and Regional Development, Perth, 6151, Western Australia, Australia
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth, 6845, Western Australia, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, 6009, Western Australia, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Perth, 6009, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth, 6009, Western Australia, Australia
| | - Benjamin J Mullins
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth, 6845, Western Australia, Australia
| | - Alexander N Larcombe
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth, 6845, Western Australia, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, 6009, Western Australia, Australia
| |
Collapse
|
3
|
Stockfelt L, Xu Y, Gudmundsson A, Rissler J, Isaxon C, Brunskog J, Pagels J, Nilsson PT, Berglund M, Barregard L, Bohgard M, Albin M, Hagerman I, Wierzbicka A. A controlled chamber study of effects of exposure to diesel exhaust particles and noise on heart rate variability and endothelial function. Inhal Toxicol 2022; 34:159-170. [PMID: 35475948 DOI: 10.1080/08958378.2022.2065388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Adverse cardiovascular effects are associated with both diesel exhaust and road traffic noise, but these exposures are hard to disentangle epidemiologically. We used an experimental setup to evaluate the impact of diesel exhaust particles and traffic noise, alone and combined, on intermediary outcomes related to the autonomic nervous system and increased cardiovascular risk. METHODS In a controlled chamber 18 healthy adults were exposed to four scenarios in a randomized cross-over fashion. Each exposure scenario consisted of either filtered (clean) air or diesel engine exhaust (particle mass concentrations around 300 µg/m3), and either low (46 dB(A)) or high (75 dB(A)) levels of traffic noise for 3 h at rest. ECG was recorded for 10-min periods before and during each exposure type, and frequency-domain heart rate variability (HRV) computed. Endothelial dysfunction and arterial stiffness were assessed after each exposure using EndoPAT 2000. RESULTS Compared to control exposure, HRV in the high frequency band decreased during exposure to diesel exhaust, both alone and combined with noise, but not during noise exposure only. These differences were more pronounced in women. We observed no synergistic effects of combined exposure, and no significant differences between exposure scenarios for other HRV indices, endothelial function or arterial stiffness. CONCLUSION Three-hour exposure to diesel exhaust, but not noise, was associated with decreased HRV in the high frequency band. This indicates activation of irritant receptor-mediated autonomic reflexes, a possible mechanism for the cardiovascular risks of diesel exposure. There was no effect on endothelial dysfunction or arterial stiffness after exposure.
Collapse
Affiliation(s)
- Leo Stockfelt
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Yiyi Xu
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anders Gudmundsson
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| | - Jenny Rissler
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden.,Bioeconomy and Health, RISE Research Institutes of Sweden, Lund, Sweden
| | - Christina Isaxon
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| | - Jonas Brunskog
- Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Joakim Pagels
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| | - Patrik T Nilsson
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| | - Margareta Berglund
- Department of Cardiology, Karolinska Institute, Karolinska University Hospital, Huddinge, Sweden
| | - Lars Barregard
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mats Bohgard
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| | - Maria Albin
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden.,Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Inger Hagerman
- Department of Cardiology, Karolinska Institute, Karolinska University Hospital, Huddinge, Sweden
| | - Aneta Wierzbicka
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Long E, Schwartz C, Carlsten C. Controlled human exposure to diesel exhaust: a method for understanding health effects of traffic-related air pollution. Part Fibre Toxicol 2022; 19:15. [PMID: 35216599 PMCID: PMC8876178 DOI: 10.1186/s12989-022-00454-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/03/2022] [Indexed: 12/17/2022] Open
Abstract
Diesel exhaust (DE) is a major component of air pollution in urban centers. Controlled human exposure (CHE) experiments are commonly used to investigate the acute effects of DE inhalation specifically and also as a paradigm for investigating responses to traffic-related air pollution (TRAP) more generally. Given the critical role this model plays in our understanding of TRAP's health effects mechanistically and in support of associated policy and regulation, we review the methodology of CHE to DE (CHE-DE) in detail to distill critical elements so that the results of these studies can be understood in context. From 104 eligible publications, we identified 79 CHE-DE studies and extracted information on DE generation, exposure session characteristics, pollutant and particulate composition of exposures, and participant demographics. Virtually all studies had a crossover design, and most studies involved a single DE exposure per participant. Exposure sessions were typically 1 or 2 h in duration, with participants alternating between exercise and rest. Most CHE-DE targeted a PM concentration of 300 μg/m3. There was a wide range in commonly measured co-pollutants including nitrogen oxides, carbon monoxide, and total organic compounds. Reporting of detailed parameters of aerosol composition, including particle diameter, was inconsistent between studies, and older studies from a given lab were often cited in lieu of repeating measurements for new experiments. There was a male predominance in participants, and over half of studies involved healthy participants only. Other populations studied include those with asthma, atopy, or metabolic syndrome. Standardization in reporting exposure conditions, potentially using current versions of engines with modern emissions control technology, will allow for more valid comparisons between studies of CHE-DE, while recognizing that diesel engines in much of the world remain old and heterogeneous. Inclusion of female participants as well as populations more susceptible to TRAP will broaden the applicability of results from CHE-DE studies.
Collapse
Affiliation(s)
- Erin Long
- Faculty of Medicine, University of British Columbia, 317 - 2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Carley Schwartz
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, 2775 Laurel Street 7th Floor, Vancouver, BC, V5Z 1M9, Canada
| | - Christopher Carlsten
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, 2775 Laurel Street 7th Floor, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
5
|
Long E, Carlsten C. Controlled human exposure to diesel exhaust: results illuminate health effects of traffic-related air pollution and inform future directions. Part Fibre Toxicol 2022; 19:11. [PMID: 35139881 PMCID: PMC8827176 DOI: 10.1186/s12989-022-00450-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/31/2022] [Indexed: 12/03/2022] Open
Abstract
Air pollution is an issue of increasing interest due to its globally relevant impacts on morbidity and mortality. Controlled human exposure (CHE) studies are often employed to investigate the impacts of pollution on human health, with diesel exhaust (DE) commonly used as a surrogate of traffic related air pollution (TRAP). This paper will review the results derived from 104 publications of CHE to DE (CHE-DE) with respect to health outcomes. CHE-DE studies have provided mechanistic evidence supporting TRAP’s detrimental effects on related to the cardiovascular system (e.g., vasomotor dysfunction, inhibition of fibrinolysis, and impaired cardiac function) and respiratory system (e.g., airway inflammation, increased airway responsiveness, and clinical symptoms of asthma). Oxidative stress is thought to be the primary mechanism of TRAP-induced effects and has been supported by several CHE-DE studies. A historical limitation of some air pollution research is consideration of TRAP (or its components) in isolation, limiting insight into the interactions between TRAP and other environmental factors often encountered in tandem. CHE-DE studies can help to shed light on complex conditions, and several have included co-exposure to common elements such as allergens, ozone, and activity level. The ability of filters to mitigate the adverse effects of DE, by limiting exposure to the particulate fraction of polluted aerosols, has also been examined. While various biomarkers of DE exposure have been evaluated in CHE-DE studies, a definitive such endpoint has yet to be identified. In spite of the above advantages, this paradigm for TRAP is constrained to acute exposures and can only be indirectly applied to chronic exposures, despite the critical real-world impact of living long-term with TRAP. Those with significant medical conditions are often excluded from CHE-DE studies and so results derived from healthy individuals may not apply to more susceptible populations whose further study is needed to avoid potentially misleading conclusions. In spite of limitations, the contributions of CHE-DE studies have greatly advanced current understanding of the health impacts associated with TRAP exposure, especially regarding mechanisms therein, with important implications for regulation and policy.
Collapse
Affiliation(s)
- Erin Long
- Faculty of Medicine, University of British Columbia, 317 - 2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Christopher Carlsten
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, 2775 Laurel Street 7th Floor, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
6
|
The cardiovascular effects of air pollution: Prevention and reversal by pharmacological agents. Pharmacol Ther 2021; 232:107996. [PMID: 34571110 PMCID: PMC8941724 DOI: 10.1016/j.pharmthera.2021.107996] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022]
Abstract
Air pollution is associated with staggering levels of cardiovascular morbidity and mortality. Airborne particulate matter (PM), in particular, has been associated with a wide range of detrimental cardiovascular effects, including impaired vascular function, raised blood pressure, alterations in cardiac rhythm, blood clotting disorders, coronary artery disease, and stroke. Considerable headway has been made in elucidating the biological processes underlying these associations, revealing a labyrinth of multiple interacting mechanistic pathways. Several studies have used pharmacological agents to prevent or reverse the cardiovascular effects of PM; an approach that not only has the advantages of elucidating mechanisms, but also potentially revealing therapeutic agents that could benefit individuals that are especially susceptible to the effects of air pollution. This review gathers investigations with pharmacological agents, offering insight into the biology of how PM, and other air pollutants, may cause cardiovascular morbidity.
Collapse
|
7
|
Deary ME, Griffiths SD. A novel approach to the development of 1-hour threshold concentrations for exposure to particulate matter during episodic air pollution events. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126334. [PMID: 34329015 DOI: 10.1016/j.jhazmat.2021.126334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/22/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Episodic air pollution events that occur because of wildfires, dust storms and industrial incidents can expose populations to particulate matter (PM) concentrations in the thousands of µg m-3. Such events have increased in frequency and duration over recent years, with this trend predicted to continue in the short to medium term because of climate warming. The human health cost of episodic PM events can be significant, and inflammatory responses are measurable even after only a few hours of exposure. Consequently, advice for the protection of public health should be available as quickly as possible, yet the shortest averaging period for which PM exposure guideline values (GVs) are available is 24-h. To address this problem, we have developed a novel approach, based on Receiver Operating Characteristic (ROC) statistical analysis, that derives 1-h threshold concentrations that have a probabilistic relationship with 24-h GVs. The ROC analysis was carried out on PM10 and PM2.5 monitoring data from across the US for the period 2014-2019. Validation of the model against US Air Quality Index (AQI) 24-h breakpoint concentrations for PM showed that the maximum-observed 1-h PM concentration in any rolling 24-h averaging period is an excellent predictor of exceedances of 24-h GVs.
Collapse
Affiliation(s)
- Michael E Deary
- Faculty of Engineering and Environment, Department of Geography and Environmental Sciences, University of Northumbria, Ellison Building, Newcastle upon Tyne NE1 8ST, UK.
| | - Simon D Griffiths
- Faculty of Engineering and Environment, Department of Geography and Environmental Sciences, University of Northumbria, Ellison Building, Newcastle upon Tyne NE1 8ST, UK
| |
Collapse
|
8
|
Orach J, Rider CF, Carlsten C. Concentration-dependent health effects of air pollution in controlled human exposures. ENVIRONMENT INTERNATIONAL 2021; 150:106424. [PMID: 33596522 DOI: 10.1016/j.envint.2021.106424] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Air pollution is a leading contributor to premature mortality worldwide and is often represented by particulate matter (PM), a key contributor to its harmful health effects. Concentration-response relationships are useful for quantifying the effects of air pollution in relevant populations and in considering potential effect thresholds. Controlled human exposures can provide data on acute effects and concentration-response relationships that complement epidemiological studies. OBJECTIVES We examined PM concentration-responses after controlled human air pollution exposures to examine exposure-response markers, assess effect modifiers, and identify potential effect thresholds. METHODS We reviewed primary research from published controlled human exposure studies where responses were reported at multiple target PM concentrations or summarized per unit change in PM to identify concentration-dependent effects. RESULTS Of the 191 publications identified through PubMed and supplementary searches, 31 were eligible. Eligible studies collectively represented four pollutant models: concentrated ambient particles, engineered carbon nanoparticles, diesel exhaust, and woodsmoke. We identified concentration-dependent effects on oxidative stress markers, inflammation, and cardiovascular function that overlapped across different pollutants. Metabolic syndrome and glutathione s-transferase mu 1 genotype were identified as potential effect modifiers. DISCUSSION Improved understanding of concentration-response relationships is integral to biomonitoring and mitigation of health effects through impact assessment and policy. Although we identified potential concentration-response markers, thresholds, and modifiers, our conclusions on these relationships were limited by a dearth of eligible publications, considerable variability in methodology, and inconsistent reporting standards between studies. More research is required to validate these observations. We recommend that future studies harmonize estimate reporting to facilitate the identification of robust response markers across research and applied settings.
Collapse
Affiliation(s)
- Juma Orach
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher F Rider
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher Carlsten
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
9
|
Wyatt LH, Devlin RB, Rappold AG, Case MW, Diaz-Sanchez D. Low levels of fine particulate matter increase vascular damage and reduce pulmonary function in young healthy adults. Part Fibre Toxicol 2020; 17:58. [PMID: 33198760 PMCID: PMC7670817 DOI: 10.1186/s12989-020-00389-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Fine particulate matter (PM2.5) related mild inflammation, altered autonomic control of cardiovascular function, and changes to cell function have been observed in controlled human exposure studies. METHODS To measure the systemic and cardiopulmonary impacts of low-level PM exposure, we exposed 20 healthy, young volunteers to PM2.5, in the form of concentrated ambient particles (mean: 37.8 μg/m3, SD 6.5), and filtered air (mean: 2.1 μg/m3, SD 2.6). In this double-blind, crossover study the exposure order was randomized. During the 4 h exposure, volunteers (7 females and 13 males) underwent light intensity exercise to regulate ventilation rate. We measured pulmonary, cardiac, and hematologic end points before exposure, 1 h after exposure, and again 20 h after exposure. RESULTS Low-level PM2.5 resulted in both pulmonary and extra-pulmonary changes characterized by alterations in systematic inflammation markers, cardiac repolarization, and decreased pulmonary function. A mean increase in PM2.5 concentration (37.8 μg/m3) significantly increased serum amyloid A (SAA), C-reactive protein (CRP), soluble intercellular adhesion molecule-1 (sICAM-1), and soluble vascular cell adhesion molecule-1 (sVCAM-1), 1 h after exposure by 8.7, 9.1, 10.7, and 6.6%, respectively, relative to the filtered air control. SAA remained significantly elevated (34.6%) 20 h after PM2.5 exposure which was accompanied by a 5.7% decrease in percent neutrophils. Decreased pulmonary function was observed 1 h after exposure through a 0.8 and 1.2% decrease in forced expiratory volume in 1 s (FEV1) and FEV1/ forced vital capacity (FEV1/FVC) respectively. Additionally, sex specific changes were observed in repolarization outcomes following PM2.5 exposure. In males, P-wave and QRS complex were increased by 15.4 and 5.4% 1 h after exposure. CONCLUSIONS This study is the first controlled human exposure study to demonstrate biological effects in response to exposure to concentrated ambient air PM2.5 particles at levels near the PM2.5 US NAAQS standard. CLINICAL TRIAL REGISTRATION INFORMATION clinicaltrials.gov ; Identifier: NCT03232086 . The study was registered retrospectively on July 25, 2017, prior to final data collection on October 25, 2017 and data analysis.
Collapse
Affiliation(s)
- Lauren H Wyatt
- Public Health and Integrated Toxicology Division, Human Studies Facility, United States Environmental Protection Agency (USEPA), Research Triangle Park, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA.
| | - Robert B Devlin
- Public Health and Integrated Toxicology Division, Human Studies Facility, United States Environmental Protection Agency (USEPA), Research Triangle Park, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA
| | - Ana G Rappold
- Public Health and Integrated Toxicology Division, Human Studies Facility, United States Environmental Protection Agency (USEPA), Research Triangle Park, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA
| | - Martin W Case
- Public Health and Integrated Toxicology Division, Human Studies Facility, United States Environmental Protection Agency (USEPA), Research Triangle Park, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA
| | - David Diaz-Sanchez
- Public Health and Integrated Toxicology Division, Human Studies Facility, United States Environmental Protection Agency (USEPA), Research Triangle Park, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA
| |
Collapse
|
10
|
Tong H, Zavala J, McIntosh-Kastrinsky R, Sexton KG. Cardiovascular effects of diesel exhaust inhalation: photochemically altered versus freshly emitted in mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:944-955. [PMID: 31566091 PMCID: PMC7308149 DOI: 10.1080/15287394.2019.1671278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This study was designed to compare the cardiovascular effects of inhaled photochemically altered diesel exhaust (aged DE) to freshly emitted DE (fresh DE) in female C57Bl/6 mice. Mice were exposed to either fresh DE, aged DE, or filtered air (FA) for 4 hr using an environmental irradiation chamber. Cardiac responses were assessed 8 hr after exposure utilizing Langendorff preparation with a protocol consisting of 20 min of perfusion and 20 min of ischemia followed by 2 hr of reperfusion. Cardiac function was measured by indices of left-ventricular-developed pressure (LVDP) and contractility (dP/dt) prior to ischemia. Recovery of post-ischemic LVDP was examined on reperfusion following ischemia. Fresh DE contained 460 µg/m3 of particulate matter (PM), 0.29 ppm of nitrogen dioxide (NO2) and no ozone (O3), while aged DE consisted of 330 µg/m3 of PM, 0.23 ppm O3 and no NO2. Fresh DE significantly decreased LVDP, dP/dtmax, and dP/dtmin compared to FA. Aged DE also significantly reduced LVDP and dP/dtmax. Data demonstrated that acute inhalation to either fresh or aged DE lowered LVDP and dP/dt, with a greater fall noted with fresh DE, suggesting that the composition of DE may play a key role in DE-induced adverse cardiovascular effects in female C57Bl/6 mice.
Collapse
Affiliation(s)
- Haiyan Tong
- Environmental Public Health Division, NHEERL, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Jose Zavala
- Department of Environmental Sciences and Engineering, Gilling’s School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rachel McIntosh-Kastrinsky
- Department of Environmental Sciences and Engineering, Gilling’s School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kenneth G. Sexton
- Department of Environmental Sciences and Engineering, Gilling’s School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
11
|
Andersen MHG, Frederiksen M, Saber AT, Wils RS, Fonseca AS, Koponen IK, Johannesson S, Roursgaard M, Loft S, Møller P, Vogel U. Health effects of exposure to diesel exhaust in diesel-powered trains. Part Fibre Toxicol 2019; 16:21. [PMID: 31182122 PMCID: PMC6558821 DOI: 10.1186/s12989-019-0306-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/16/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Short-term controlled exposure to diesel exhaust (DE) in chamber studies have shown mixed results on lung and systemic effects. There is a paucity of studies on well-characterized real-life DE exposure in humans. In the present study, 29 healthy volunteers were exposed to DE while sitting as passengers in diesel-powered trains. Exposure in electric trains was used as control scenario. Each train scenario consisted of three consecutive days (6 h/day) ending with biomarker samplings. RESULTS Combustion-derived air pollutants were considerably higher in the passenger carriages of diesel trains compared with electric trains. The concentrations of black carbon and ultrafine particles were 8.5 μg/m3 and 1.2-1.8 × 105 particles/cm3 higher, respectively, in diesel as compared to electric trains. Net increases of NOx and NO2 concentrations were 317 μg/m3 and 36 μg/m3. Exposure to DE was associated with reduced lung function and increased levels of DNA strand breaks in peripheral blood mononuclear cells (PBMCs), whereas there were unaltered levels of oxidatively damaged DNA, soluble cell adhesion molecules, acute phase proteins in blood and urinary excretion of metabolites of polycyclic aromatic hydrocarbons. Also the microvascular function was unaltered. An increase in the low frequency of heart rate variability measures was observed, whereas time-domain measures were unaltered. CONCLUSION Exposure to DE inside diesel-powered trains for 3 days was associated with reduced lung function and systemic effects in terms of altered heart rate variability and increased levels of DNA strand breaks in PBMCs compared with electric trains. TRIAL REGISTRATION ClinicalTrials.Gov ( NCT03104387 ). Registered on March 23rd 2017.
Collapse
Affiliation(s)
- Maria Helena Guerra Andersen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark. .,The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Copenhagen Ø, Denmark.
| | - Marie Frederiksen
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Copenhagen Ø, Denmark
| | - Anne Thoustrup Saber
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Copenhagen Ø, Denmark
| | - Regitze Sølling Wils
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark.,The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Copenhagen Ø, Denmark
| | - Ana Sofia Fonseca
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Copenhagen Ø, Denmark
| | - Ismo K Koponen
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Copenhagen Ø, Denmark
| | - Sandra Johannesson
- Department of Occupational and Environmental Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark
| | - Steffen Loft
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark
| | - Ulla Vogel
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Copenhagen Ø, Denmark.,DTU Health Tech., Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| |
Collapse
|
12
|
Griffiths SD, Chappell P, Entwistle JA, Kelly FJ, Deary ME. A study of particulate emissions during 23 major industrial fires: Implications for human health. ENVIRONMENT INTERNATIONAL 2018; 112:310-323. [PMID: 29554638 DOI: 10.1016/j.envint.2017.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/01/2017] [Accepted: 12/12/2017] [Indexed: 06/08/2023]
Abstract
Public exposure to significantly elevated levels of particulate matter (PM) as a result of major fires at industrial sites is a worldwide problem. Our paper describes how the United Kingdom developed its Air Quality in Major Incidents (AQinMI) service to provide fire emission plume concentration data for use by managers at the time of the incident and to allow an informed public health response. It is one of the first civilian services of its type anywhere in the world. Based on the involvement of several of the authors in the AQinMI service, we describe the service's function, detail the nature of fires covered by the service, and report for the first time on the concentration ranges of PM to which populations may be exposed in major incident fires. We also consider the human health impacts of short-term exposure to significantly elevated PM concentrations and reflect on the appropriateness of current short-term guideline values in providing public health advice. We have analysed monitoring data for airborne PM (≤10μm, PM10;≤2.5μm, PM2.5 and ≤1.0μm, PM1) collected by AQinMI teams using an Osiris laser light scattering monitor, the UK Environment Agency's 'indicative standard' equipment, during deployment to 23 major incident industrial fires. In this context, 'indicative' is applied to monitoring equipment that provides confirmation of the presence of particulates and indicates a measured mass concentration value. Incident-averaged concentrations ranged from 38 to 1450μgm-3 for PM10 and 7 to 258μgm-3 for PM2.5. Of concern was that, for several incidents, 15-min averaged concentrations reached >6500μgm-3 for PM10 and 650μgm-3 for PM2.5, though such excursions tended to be of relatively short duration. In the absence of accepted very short-term (15-min to 1-h) guideline values for PM10 and PM2.5, we have analysed the relationship between the 1-h and 24-h threshold values and whether the former can be used as a predictor of longer-term exposure. Based on this analysis, for PM10, our tentative 1-h threshold value for use in deciding whether to close public buildings or to evacuate areas is 510μgm-3. For PM2.5, 1-h concentrations exceeding 350μgm-3 might indicate longer-term exposure problems. We conclude that whilst services such as AQinMI are a positive development, there is a need to consider further the accuracy of the data provided and for the development of very short-term guideline values (i.e. minutes to hours) that responders can use to determine the appropriate public health response.
Collapse
Affiliation(s)
- Simon D Griffiths
- Faculty of Engineering and Environment, Department of Geography and Environmental Sciences, University of Northumbria, Ellison Building, Newcastle upon Tyne NE1 8ST, UK
| | - Philip Chappell
- National Incident Management, Incident Management and Resilience Services, Environment Agency, Lateral, 8 City Walk, Leeds LS11 9AT, UK
| | - Jane A Entwistle
- Faculty of Engineering and Environment, Department of Geography and Environmental Sciences, University of Northumbria, Ellison Building, Newcastle upon Tyne NE1 8ST, UK
| | - Frank J Kelly
- NIHR Health Impact of Environmental Hazards Health Protection Research Unit, Facility of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Michael E Deary
- Faculty of Engineering and Environment, Department of Geography and Environmental Sciences, University of Northumbria, Ellison Building, Newcastle upon Tyne NE1 8ST, UK.
| |
Collapse
|
13
|
Andersen MHG, Saber AT, Pedersen PB, Loft S, Hansen ÅM, Koponen IK, Pedersen JE, Ebbehøj N, Nørskov EC, Clausen PA, Garde AH, Vogel U, Møller P. Cardiovascular health effects following exposure of human volunteers during fire extinction exercises. Environ Health 2017; 16:96. [PMID: 28877717 PMCID: PMC5588677 DOI: 10.1186/s12940-017-0303-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/25/2017] [Indexed: 05/27/2023]
Abstract
BACKGROUND Firefighters have increased risk of cardiovascular disease and of sudden death from coronary heart disease on duty while suppressing fires. This study investigated the effect of firefighting activities, using appropriate personal protective equipment (PPE), on biomarkers of cardiovascular effects in young conscripts training to become firefighters. METHODS Healthy conscripts (n = 43) who participated in a rescue educational course for firefighting were enrolled in the study. The exposure period consisted of a three-day training course where the conscripts participated in various firefighting exercises in a constructed firehouse and flashover container. The subjects were instructed to extinguish fires of either wood or wood with electrical cords and mattresses. The exposure to particulate matter (PM) was assessed at various locations and personal exposure was assessed by portable PM samplers and urinary excretion of 1-hydroxypyrene. Cardiovascular measurements included microvascular function and heart rate variability (HRV). RESULTS The subjects were primarily exposed to PM in bystander positions, whereas self-contained breathing apparatus effectively abolished pulmonary exposure. Firefighting training was associated with elevated urinary excretion of 1-hydroxypyrene (105%, 95% CI: 52; 157%), increased body temperature, decreased microvascular function (-18%, 95% CI: -26; -9%) and altered HRV. There was no difference in cardiovascular measurements for the two types of fires. CONCLUSION Observations from this fire extinction training show that PM exposure mainly occurs in situations where firefighters removed the self-contained breathing apparatus. Altered cardiovascular disease endpoints after the firefighting exercise period were most likely due to complex effects from PM exposure, physical exhaustion and increased core body temperature.
Collapse
Affiliation(s)
- Maria Helena Guerra Andersen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100 Copenhagen Ø, Denmark
| | - Anne Thoustrup Saber
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100 Copenhagen Ø, Denmark
| | - Peter Bøgh Pedersen
- Danish Technological Institute, Teknologiparken, Kongsvang Allé 29, DK-8000 Aarhus C, Denmark
| | - Steffen Loft
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Åse Marie Hansen
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100 Copenhagen Ø, Denmark
- Department of Public Health, Section of Social Medicine, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Ismo Kalevi Koponen
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100 Copenhagen Ø, Denmark
| | - Julie Elbæk Pedersen
- Department of Occupational and Environmental Medicine, Bispebjerg Hospital, Bispebjerg Bakke 23, DK-2400 Copenhagen, NV Denmark
| | - Niels Ebbehøj
- Department of Occupational and Environmental Medicine, Bispebjerg Hospital, Bispebjerg Bakke 23, DK-2400 Copenhagen, NV Denmark
| | - Eva-Carina Nørskov
- Danish Technological Institute, Teknologiparken, Kongsvang Allé 29, DK-8000 Aarhus C, Denmark
| | - Per Axel Clausen
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100 Copenhagen Ø, Denmark
| | - Anne Helene Garde
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100 Copenhagen Ø, Denmark
- Department of Public Health, Section of Social Medicine, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Ulla Vogel
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100 Copenhagen Ø, Denmark
- Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| |
Collapse
|
14
|
Taxell P, Santonen T. Diesel Engine Exhaust: Basis for Occupational Exposure Limit Value. Toxicol Sci 2017. [DOI: 10.1093/toxsci/kfx110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
15
|
Steiner S, Bisig C, Petri-Fink A, Rothen-Rutishauser B. Diesel exhaust: current knowledge of adverse effects and underlying cellular mechanisms. Arch Toxicol 2016; 90:1541-53. [PMID: 27165416 PMCID: PMC4894930 DOI: 10.1007/s00204-016-1736-5] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 04/28/2016] [Indexed: 12/03/2022]
Abstract
Diesel engine emissions are among the most prevalent anthropogenic pollutants worldwide, and with the growing popularity of diesel-fueled engines in the private transportation sector, they are becoming increasingly widespread in densely populated urban regions. However, a large number of toxicological studies clearly show that diesel engine emissions profoundly affect human health. Thus the interest in the molecular and cellular mechanisms underlying these effects is large, especially concerning the nature of the components of diesel exhaust responsible for the effects and how they could be eliminated from the exhaust. This review describes the fundamental properties of diesel exhaust as well as the human respiratory tract and concludes that adverse health effects of diesel exhaust not only emerge from its chemical composition, but also from the interplay between its physical properties, the physiological and cellular properties, and function of the human respiratory tract. Furthermore, the primary molecular and cellular mechanisms triggered by diesel exhaust exposure, as well as the fundamentals of the methods for toxicological testing of diesel exhaust toxicity, are described. The key aspects of adverse effects induced by diesel exhaust exposure described herein will be important for regulators to support or ban certain technologies or to legitimate incentives for the development of promising new technologies such as catalytic diesel particle filters.
Collapse
Affiliation(s)
- Sandro Steiner
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Christoph Bisig
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | | |
Collapse
|
16
|
Sack CS, Jansen KL, Cosselman KE, Trenga CA, Stapleton PL, Allen J, Peretz A, Olives C, Kaufman JD. Pretreatment with Antioxidants Augments the Acute Arterial Vasoconstriction Caused by Diesel Exhaust Inhalation. Am J Respir Crit Care Med 2016; 193:1000-7. [PMID: 26599707 PMCID: PMC4872652 DOI: 10.1164/rccm.201506-1247oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/24/2015] [Indexed: 01/12/2023] Open
Abstract
RATIONALE Diesel exhaust inhalation, which is the model traffic-related air pollutant exposure, is associated with vascular dysfunction. OBJECTIVES To determine whether healthy subjects exposed to diesel exhaust exhibit acute vasoconstriction and whether this effect could be modified by the use of antioxidants or by common variants in the angiotensin II type 1 receptor (AGTR1) and other candidate genes. METHODS In a genotype-stratified, double-blind, four-way crossover study, 21 healthy adult subjects were exposed at rest in a randomized, balanced order to diesel exhaust (200 μg/m(3) particulate matter with an aerodynamic diameter ≤ 2.5 μm [PM2.5]) and filtered air, and to pretreatment with antioxidants (N-acetylcysteine and ascorbate) and placebo. Before and after each exposure, brachial artery diameter (BAd) was assessed using ultrasound. Changes in BAd were compared across pretreatment and exposure sessions. Gene-exposure interactions were evaluated in the AGTR1 A1166C polymorphism, on which recruitment was stratified, and other candidate genes, including TRPV1 and GSTM1. MEASUREMENTS AND MAIN RESULTS Compared with filtered air, exposure to diesel exhaust resulted in a significant reduction in BAd (mean, -0.09 mm, 95% confidence interval [CI], -0.01 to -0.17; P = 0.03). Pretreatment with antioxidants augmented diesel exhaust-related vasoconstriction with a mean change in BAd of -0.18 mm (95% CI, -0.28 to -0.07 mm; P = 0.001). Diesel exhaust-related vasoconstriction was primarily observed in the variant alleles of AGTR1 and TRPV1. No association was found between diesel exhaust inhalation and flow-mediated dilation. CONCLUSIONS We confirmed that short-term exposure to diesel exhaust in healthy subjects is associated with acute vasoconstriction in a conductance artery and found suggestive evidence of involvement of nociception and renin-angiotensin systems in this effect. Pretreatment with an antioxidant regimen increased vasoconstriction.
Collapse
Affiliation(s)
- Cora S. Sack
- Department of Environmental and Occupational Health, University of Washington, Seattle, Washington; and
| | - Karen L. Jansen
- Department of Environmental and Occupational Health, University of Washington, Seattle, Washington; and
| | - Kristen E. Cosselman
- Department of Environmental and Occupational Health, University of Washington, Seattle, Washington; and
| | - Carol A. Trenga
- Department of Environmental and Occupational Health, University of Washington, Seattle, Washington; and
| | - Pat L. Stapleton
- Department of Environmental and Occupational Health, University of Washington, Seattle, Washington; and
| | - Jason Allen
- Department of Environmental and Occupational Health, University of Washington, Seattle, Washington; and
| | - Alon Peretz
- Rabin Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Casey Olives
- Department of Environmental and Occupational Health, University of Washington, Seattle, Washington; and
| | - Joel D. Kaufman
- Department of Environmental and Occupational Health, University of Washington, Seattle, Washington; and
| |
Collapse
|
17
|
Diesel Exhaust Worsens Cardiac Conduction Instability in Dobutamine-Challenged Wistar–Kyoto and Spontaneously Hypertensive Rats. Cardiovasc Toxicol 2016; 17:120-129. [DOI: 10.1007/s12012-016-9363-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Nayeb Yazdi M, Delavarrafiee M, Arhami M. Evaluating near highway air pollutant levels and estimating emission factors: Case study of Tehran, Iran. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 538:375-84. [PMID: 26318222 DOI: 10.1016/j.scitotenv.2015.07.141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 07/02/2015] [Accepted: 07/28/2015] [Indexed: 05/16/2023]
Abstract
A field sampling campaign was implemented to evaluate the variation in air pollutants levels near a highway in Tehran, Iran (Hemmat highway). The field measurements were used to estimate road link-based emission factors for average vehicle fleet. These factors were compared with results of an in tunnel measurement campaign (in Resalat tunnel). Roadside and in-tunnel measurements of carbon monoxide (CO) and size-fractionated particulate matter (PM) were conducted during the field campaign. The concentration gradient diagrams showed exponential decay, which represented a substantial decay, more than 50-80%, in air pollutants level in a distance between 100 and 150meters (m) of the highway. The changes in particle size distribution by distancing from highway were also captured and evaluated. The results showed particle size distribution shifted to larger size particles by distancing from highway. The empirical emission factors were obtained by using the roadside and in tunnel measurements with a hypothetical box model, floating machine model, CALINE4, CT-EMFAC or COPERT. Average CO emission factors were estimated to be in a range of 4 to 12g/km, and those of PM10 were 0.1 to 0.2g/km, depending on traffic conditions. Variations of these emission factors under real working condition with speeds were determined.
Collapse
Affiliation(s)
- Mohammad Nayeb Yazdi
- Department of Civil Engineering, Sharif University of Technology, Azadi Ave, P.O. Box 11155-9313, Tehran, Iran
| | - Maryam Delavarrafiee
- Department of Civil Engineering, Sharif University of Technology, Azadi Ave, P.O. Box 11155-9313, Tehran, Iran
| | - Mohammad Arhami
- Department of Civil Engineering, Sharif University of Technology, Azadi Ave, P.O. Box 11155-9313, Tehran, Iran.
| |
Collapse
|
19
|
Wages PA, Lavrich KS, Zhang Z, Cheng WY, Corteselli E, Gold A, Bromberg P, Simmons SO, Samet JM. Protein Sulfenylation: A Novel Readout of Environmental Oxidant Stress. Chem Res Toxicol 2015; 28:2411-8. [PMID: 26605980 DOI: 10.1021/acs.chemrestox.5b00424] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxidative stress is a commonly cited mechanism of toxicity of environmental agents. Ubiquitous environmental chemicals such as the diesel exhaust component 1,2-naphthoquinone (1,2-NQ) induce oxidative stress by redox cycling, which generates hydrogen peroxide (H2O2). Cysteinyl thiolate residues on regulatory proteins are subjected to oxidative modification by H2O2 in physiological contexts and are also toxicological targets of oxidant stress induced by environmental contaminants. We investigated whether exposure to environmentally relevant concentrations of 1,2-NQ can induce H2O2-dependent oxidation of cysteinyl thiols in regulatory proteins as a readout of oxidant stress in human airway epithelial cells. BEAS-2B cells were exposed to 0-1000 μM 1,2-NQ for 0-30 min, and levels of H2O2 were measured by ratiometric spectrofluorometry of HyPer. H2O2-dependent protein sulfenylation was measured using immunohistochemistry, immunoblotting, and isotopic mass spectrometry. Catalase overexpression was used to investigate the relationship between H2O2 generation and protein sulfenylation in cells exposed to 1,2-NQ. Multiple experimental approaches showed that exposure to 1,2-NQ at concentrations as low as 3 μM induces H2O2-dependent protein sulfenylation in BEAS-2B cells. Moreover, the time of onset and duration of 1,2-NQ-induced sulfenylation of the regulatory proteins GAPDH and PTP1B showed significant differences. Oxidative modification of regulatory cysteinyl thiols in human lung cells exposed to relevant concentrations of an ambient air contaminant represents a novel marker of oxidative environmental stress.
Collapse
Affiliation(s)
- Phillip A Wages
- Curriculum in Toxicology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7310, United States
| | - Katelyn S Lavrich
- Curriculum in Toxicology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7310, United States
| | - Zhenfa Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7400, United States
| | - Wan-Yun Cheng
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - Elizabeth Corteselli
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7400, United States
| | - Avram Gold
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7400, United States
| | - Philip Bromberg
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7310, United States
| | - Steven O Simmons
- National Center for Computational Toxicology, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - James M Samet
- Curriculum in Toxicology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7310, United States.,Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Chapel Hill, North Carolina 27711, United States
| |
Collapse
|
20
|
Wauters A, Vicenzi M, De Becker B, Riga JP, Esmaeilzadeh F, Faoro V, Vachiéry JL, van de Borne P, Argacha JF. At high cardiac output, diesel exhaust exposure increases pulmonary vascular resistance and decreases distensibility of pulmonary resistive vessels. Am J Physiol Heart Circ Physiol 2015; 309:H2137-44. [PMID: 26497960 DOI: 10.1152/ajpheart.00149.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 10/19/2015] [Indexed: 12/19/2022]
Abstract
Air pollution has recently been associated with the development of acute decompensated heart failure, but the underlying biological mechanisms remain unclear. A pulmonary vasoconstrictor effect of air pollution, combined with its systemic effects, may precipitate decompensated heart failure. The aim of the present study was to investigate the effects of acute exposure to diesel exhaust (DE) on pulmonary vascular resistance (PVR) under resting and stress conditions but also to determine whether air pollution may potentiate acquired pulmonary hypertension. Eighteen healthy male volunteers were exposed to ambient air (AA) or dilute DE with a particulate matter of <2.5 μm concentration of 300 μg/m(3) for 2 h in a randomized, crossover study design. The effects of DE on PVR, on the coefficient of distensibilty of pulmonary vessels (α), and on right and left ventricular function were evaluated at rest (n = 18), during dobutamine stress echocardiography (n = 10), and during exercise stress echocardiography performed in hypoxia (n = 8). Serum endothelin-1 and fractional exhaled nitric oxide were also measured. At rest, exposure to DE did not affect PVR. During dobutamine stress, the slope of the mean pulmonary artery pressure-cardiac output relationship increased from 2.8 ± 0.5 mmHg · min · l (-1) in AA to 3.9 ± 0.5 mmHg · min · l (-1) in DE (P < 0.05) and the α coefficient decreased from 0.96 ± 0.15 to 0.64 ± 0.12%/mmHg (P < 0.01). DE did not further enhance the hypoxia-related upper shift of the mean pulmonary artery pressure-cardiac output relationship. Exposure to DE did not affect serum endothelin-1 concentration or fractional exhaled nitric oxide. In conclusion, acute exposure to DE increased pulmonary vasomotor tone by decreasing the distensibility of pulmonary resistive vessels at high cardiac output.
Collapse
Affiliation(s)
- Aurélien Wauters
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium;
| | - Marco Vicenzi
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium; Laboratory of Physiology and Physiopathology, Université Libre de Bruxellesm, Brussels, Belgium; and
| | - Benjamin De Becker
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Philippe Riga
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Fatemeh Esmaeilzadeh
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Vitalie Faoro
- Laboratory of Physiology and Physiopathology, Université Libre de Bruxellesm, Brussels, Belgium; and
| | - Jean-Luc Vachiéry
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Philippe van de Borne
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-François Argacha
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium; Department of Cardiology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
21
|
Madden MC. Comparative toxicity and mutagenicity of soy-biodiesel and petroleum-diesel emissions: overview of studies from the U.S. EPA, Research Triangle Park, NC. Inhal Toxicol 2015; 27:511-4. [PMID: 26514779 DOI: 10.3109/08958378.2015.1107153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/08/2015] [Indexed: 01/08/2023]
Abstract
Biodiesel use as a fuel is increasing globally as an alternate to petroleum sources. To comprehensively assess the effects of the use of biodiesel as an energy source, end stage uses of biodiesel such as the effects of inhalation of combusted products on human health must be incorporated. To date, few reports concerning the toxicological effects of the emissions of combusted biodiesel or blends of biodiesel on surrogates of health effects have been published. The relative toxicity of the combusted biodiesel emissions compared to petroleum diesel emissions with short term exposures is also not well known. To address the paucity of findings on the toxicity of combusted biodiesel emissions, studies were undertaken at the U.S. Environmental Protection Agency laboratories in Research Triangle Park, North Carolina. The studies used a variety of approaches with nonhuman animal models to examine biological responses of the lung and cardiovascular systems induced by acute and repeated exposures to pure biodiesel and biodiesel blended with petroleum diesel. Effects of the emissions on induction of mutations in bacterial test strains and mammalian DNA adducts were also characterized and normalized to engine work load. The emissions were characterized as to the physicochemical composition in order to determine the magnitude of the differences among the emissions utilized in the studies. This article summarizes the major finding of these studies which are contained within this special issue of Inhalation Toxicology. The findings provided in these articles provide information about the toxicity of biodiesel emissions relative to petroleum diesel emissions and which can be utilized in a life cycle analyses of the effects of increased biodiesel usage.
Collapse
Affiliation(s)
- Michael C Madden
- a National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| |
Collapse
|
22
|
Grahame TJ, Klemm R, Schlesinger RB. Public health and components of particulate matter: the changing assessment of black carbon. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2014; 64:620-60. [PMID: 25039199 DOI: 10.1080/10962247.2014.912692] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
UNLABELLED In 2012, the WHO classified diesel emissions as carcinogenic, and its European branch suggested creating a public health standard for airborne black carbon (BC). In 2011, EU researchers found that life expectancy could be extended four to nine times by reducing a unit of BC, vs reducing a unit of PM2.5. Only recently could such determinations be made. Steady improvements in research methodologies now enable such judgments. In this Critical Review, we survey epidemiological and toxicological literature regarding carbonaceous combustion emissions, as research methodologies improved over time. Initially, we focus on studies of BC, diesel, and traffic emissions in the Western countries (where daily urban BC emissions are mainly from diesels). We examine effects of other carbonaceous emissions, e.g., residential burning of biomass and coal without controls, mainly in developing countries. Throughout the 1990s, air pollution epidemiology studies rarely included species not routinely monitored. As additional PM2.5. chemical species, including carbonaceous species, became more widely available after 1999, they were gradually included in epidemiological studies. Pollutant species concentrations which more accurately reflected subject exposure also improved models. Natural "interventions"--reductions in emissions concurrent with fuel changes or increased combustion efficiency; introduction of ventilation in highway tunnels; implementation of electronic toll payment systems--demonstrated health benefits of reducing specific carbon emissions. Toxicology studies provided plausible biological mechanisms by which different PM species, e.g, carbonaceous species, may cause harm, aiding interpretation of epidemiological studies. Our review finds that BC from various sources appears to be causally involved in all-cause, lung cancer and cardiovascular mortality, morbidity, and perhaps adverse birth and nervous system effects. We recommend that the US. EPA rubric for judging possible causality of PM25. mass concentrations, be used to assess which PM2.5. species are most harmful to public health. IMPLICATIONS Black carbon (BC) and correlated co-emissions appear causally related with all-cause, cardiovascular, and lung cancer mortality, and perhaps with adverse birth outcomes and central nervous system effects. Such findings are recent, since widespread monitoring for BC is also recent. Helpful epidemiological advances (using many health relevant PM2.5 species in models; using better measurements of subject exposure) have also occurred. "Natural intervention" studies also demonstrate harm from partly combusted carbonaceous emissions. Toxicology studies consistently find biological mechanisms explaining how such emissions can cause these adverse outcomes. A consistent mechanism for judging causality for different PM2.5 species is suggested.
Collapse
|