1
|
Deval G, Boland S, Fournier T, Ferecatu I. On Placental Toxicology Studies and Cerium Dioxide Nanoparticles. Int J Mol Sci 2021; 22:ijms222212266. [PMID: 34830142 PMCID: PMC8624015 DOI: 10.3390/ijms222212266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/20/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022] Open
Abstract
The human placenta is a transient organ essential for pregnancy maintenance, fetal development and growth. It has several functions, including that of a selective barrier against pathogens and xenobiotics from maternal blood. However, some pollutants can accumulate in the placenta or pass through with possible repercussions on pregnancy outcomes. Cerium dioxide nanoparticles (CeO2 NPs), also termed nanoceria, are an emerging pollutant whose impact on pregnancy is starting to be defined. CeO2 NPs are already used in different fields for industrial and commercial applications and have even been proposed for some biomedical applications. Since 2010, nanoceria have been subject to priority monitoring by the Organization for Economic Co-operation and Development in order to assess their toxicity. This review aims to summarize the current methods and models used for toxicology studies on the placental barrier, from the basic ones to the very latest, as well as to overview the most recent knowledge of the impact of CeO2 NPs on human health, and more specifically during the sensitive window of pregnancy. Further research is needed to highlight the relationship between environmental exposure to CeO2 and placental dysfunction with its implications for pregnancy outcome.
Collapse
Affiliation(s)
- Gaëlle Deval
- Université de Paris, Inserm, UMR-S 1139, 3PHM, Faculté de Pharmacie, 75006 Paris, France; (G.D.); (T.F.)
| | - Sonja Boland
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France;
| | - Thierry Fournier
- Université de Paris, Inserm, UMR-S 1139, 3PHM, Faculté de Pharmacie, 75006 Paris, France; (G.D.); (T.F.)
| | - Ioana Ferecatu
- Université de Paris, Inserm, UMR-S 1139, 3PHM, Faculté de Pharmacie, 75006 Paris, France; (G.D.); (T.F.)
- Correspondence: ; Tel.: +33-1-5373-9605
| |
Collapse
|
2
|
Engin AB. Combined Toxicity of Metal Nanoparticles: Comparison of Individual and Mixture Particles Effect. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:165-193. [PMID: 33539016 DOI: 10.1007/978-3-030-49844-3_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Toxicity of metal nanoparticles (NPs) are closely associated with increasing intracellular reactive oxygen species (ROS) and the levels of pro-inflammatory mediators. However, NP interactions and surface complexation reactions alter the original toxicity of individual NPs. To date, toxicity studies on NPs have mostly been focused on individual NPs instead of the combination of several species. It is expected that the amount of industrial and highway-acquired NPs released into the environment will further increase in the near future. This raises the possibility that various types of NPs could be found in the same medium, thereby, the adverse effects of each NP either could be potentiated, inhibited or remain unaffected by the presence of the other NPs. After uptake of NPs into the human body from various routes, protein kinases pathways mediate their toxicities. In this context, family of mitogen-activated protein kinases (MAPKs) is mostly efficient. Despite each NP activates almost the same metabolic pathways, the toxicity induced by a single type of NP is different than the case of co-exposure to the combined NPs. The scantiness of toxicological data on NPs combinations displays difficulties to determine, if there is any risk associated with exposure to combined nanomaterials. Currently, in addition to mathematical analysis (Response surface methodology; RSM), the quantitative-structure-activity relationship (QSAR) is used to estimate the toxicity of various metal oxide NPs based on their physicochemical properties and levels applied. In this chapter, it is discussed whether the coexistence of multiple metal NPs alter the original toxicity of individual NP. Additionally, in the part of "Toxicity of diesel emission/exhaust particles (DEP)", the known individual toxicity of metal NPs within the DEP is compared with the data regarding toxicity of total DEP mixture.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| |
Collapse
|
3
|
Wahle T, Sofranko A, Dekkers S, Miller MR, Heusinkveld HJ, Albrecht C, Cassee FR, Schins RP. Evaluation of neurological effects of cerium dioxide nanoparticles doped with different amounts of zirconium following inhalation exposure in mouse models of Alzheimer's and vascular disease. Neurochem Int 2020; 138:104755. [PMID: 32422323 PMCID: PMC7397505 DOI: 10.1016/j.neuint.2020.104755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022]
Abstract
Increasing evidence from toxicological and epidemiological studies indicates that the brain is an important target for ambient (ultrafine) particles. Disturbance of redox-homeostasis and inflammation in the brain are proposed as possible mechanisms that can contribute to neurotoxic and neurodegenerative effects. Whether and how engineered nanoparticles (NPs) may cause neurotoxicity and promote neurodegenerative diseases such as Alzheimer's disease (AD) is largely unstudied. We have assessed the neurological effects of subacute inhalation exposures (4 mg/m3 for 3 h/day, 5 days/week for 4 weeks) to cerium dioxide (CeO2) NPs doped with different amounts of zirconium (Zr, 0%, 27% and 78%), to address the influence of particle redox-activity in the 5xFAD transgenic mouse model of AD. Four weeks post-exposure, effects on behaviour were evaluated and brain tissues were analysed for amyloid-β plaque formation and reactive microglia (Iba-1 staining). Behaviour was also evaluated in concurrently exposed non-transgenic C57BL/6J littermates, as well as in Western diet-fed apolipoprotein E-deficient (ApoE-/-) mice as a model of vascular disease. Markers of inflammation and oxidative stress were evaluated in brain cortex. The brains of the NP-exposed 5xFAD mice revealed no accelerated amyloid-β plaque formation. No significant treatment-related behaviour impairments were observed in the healthy C57BL/6J mice. In the 5xFAD and ApoE-/- models, the NP inhalation exposures did not affect the alternation score in the X-maze indicating absence of spatial working memory deficits. However, following inhalation exposure to the 78% Zr-doped CeO2 NPs changes in forced motor performance (string suspension) and exploratory motor activity (X-maze) were observed in ApoE-/- and 5xFAD mice, respectively. Exposure to the 78% doped NPs also caused increased cortical expression of glial fibrillary acidic protein (GFAP) in the C57BL/6J mice. No significant treatment-related changes neuroinflammation and oxidative stress were observed in the 5xFAD and ApoE-/- mice. Our study findings reveal that subacute inhalation exposure to CeO2 NPs does not accelerate the AD-like phenotype of the 5xFAD model. Further investigation is warranted to unravel whether the redox-activity dependent effects on motor activity as observed in the mouse models of AD and vascular disease result from specific neurotoxic effects of these NPs.
Collapse
Affiliation(s)
- Tina Wahle
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Adriana Sofranko
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Susan Dekkers
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Mark R. Miller
- Centre for Cardiovascular Science & Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Harm J. Heusinkveld
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany,National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Catrin Albrecht
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Flemming R. Cassee
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands,Institute for Risk Assessment Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Roel P.F. Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany,Corresponding author. IUF-Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.
| |
Collapse
|
4
|
Budel RG, da Silva DA, Moreira MP, Dalcin AJF, da Silva AF, Nazario LR, Majolo JH, Lopes LQS, Santos RCV, Antunes Soares FA, da Silva RS, Gomes P, Boeck CR. Toxicological evaluation of naringin-loaded nanocapsules in vitro and in vivo. Colloids Surf B Biointerfaces 2020; 188:110754. [DOI: 10.1016/j.colsurfb.2019.110754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/27/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023]
|
5
|
Meldrum K, Robertson S, Römer I, Marczylo T, Gant TW, Smith R, Tetley TD, Leonard MO. Diesel exhaust particle and dust mite induced airway inflammation is modified by cerium dioxide nanoparticles. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 73:103273. [PMID: 31629203 DOI: 10.1016/j.etap.2019.103273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Cerium dioxide nanoparticles (CeO2NPs) have been used as diesel fuel-borne catalysts for improved efficiency and pollutant emissions. Concerns that such material may influence diesel exhaust particle (DEP) effects within the lung upon inhalation, prompted us to examine particle responses in mice in the presence and absence of the common allergen house dust mite (HDM). Repeated intranasal instillation of combined HDM and DEP increased airway mucin, eosinophils, lymphocytes, IL-5, IL-13, IL-17A and plasma IgE, which were further increased with CeO2NPs co-exposure. A single co-exposure of CeO2NPs and DEP after repeated HDM exposure increased macrophage and IL-17A levels above DEP induced levels. CeO2NPs exposure in the absence of HDM also resulted in increased levels of plasma IgE and airway mucin staining, changes not observed with repeated DEP exposure alone. These observations indicate that CeO2NPs can modify exhaust particulate and allergen induced inflammatory events in the lung with the potential to influence conditions such as allergic airway disease.
Collapse
Affiliation(s)
- Kirsty Meldrum
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK; Lung Cell Biology, Airways Disease, National Heart & Lung Institute, Imperial College London, London, UK.
| | - Sarah Robertson
- Environmental Hazards and Emergencies Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK.
| | - Isabella Römer
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK.
| | - Tim Marczylo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK.
| | - Timothy W Gant
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK.
| | - Rachel Smith
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK.
| | - Teresa D Tetley
- Lung Cell Biology, Airways Disease, National Heart & Lung Institute, Imperial College London, London, UK.
| | - Martin O Leonard
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK.
| |
Collapse
|
6
|
Yokel RA, Hancock ML, Cherian B, Brooks AJ, Ensor ML, Vekaria HJ, Sullivan PG, Grulke EA. Simulated biological fluid exposure changes nanoceria's surface properties but not its biological response. Eur J Pharm Biopharm 2019; 144:252-265. [PMID: 31563633 DOI: 10.1016/j.ejpb.2019.09.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/26/2019] [Accepted: 09/26/2019] [Indexed: 01/16/2023]
Abstract
Nanoscale cerium dioxide (nanoceria) has industrial applications, capitalizing on its catalytic, abrasive, and energy storage properties. It auto-catalytically cycles between Ce3+ and Ce4+, giving it pro-and anti-oxidative properties. The latter mediates beneficial effects in models of diseases that have oxidative stress/inflammation components. Engineered nanoparticles become coated after body fluid exposure, creating a corona, which can greatly influence their fate and effects. Very little has been reported about nanoceria surface changes and biological effects after pulmonary or gastrointestinal fluid exposure. The study objective was to address the hypothesis that simulated biological fluid (SBF) exposure changes nanoceria's surface properties and biological activity. This was investigated by measuring the physicochemical properties of nanoceria with a citric acid coating (size; morphology; crystal structure; surface elemental composition, charge, and functional groups; and weight) before and after exposure to simulated lung, gastric, and intestinal fluids. SBF-exposed nanoceria biological effect was assessed as A549 or Caco-2 cell resazurin metabolism and mitochondrial oxygen consumption rate. SBF exposure resulted in loss or overcoating of nanoceria's surface citrate, greater nanoceria agglomeration, deposition of some SBF components on nanoceria's surface, and small changes in its zeta potential. The engineered nanoceria and SBF-exposed nanoceria produced no statistically significant changes in cell viability or cellular oxygen consumption rates.
Collapse
Affiliation(s)
- Robert A Yokel
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, United States.
| | - Matthew L Hancock
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506-0046, United States.
| | - Benjamin Cherian
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506-0046, United States.
| | - Alexandra J Brooks
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506-0046, United States.
| | - Marsha L Ensor
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, United States.
| | - Hemendra J Vekaria
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY 40536-0509, United States; Department of Neuroscience, University of Kentucky, Lexington, KY 40536-0509, United States.
| | - Patrick G Sullivan
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY 40536-0509, United States; Department of Neuroscience, University of Kentucky, Lexington, KY 40536-0509, United States.
| | - Eric A Grulke
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506-0046, United States.
| |
Collapse
|
7
|
Genchi GG, Degl'Innocenti A, Salgarella AR, Pezzini I, Marino A, Menciassi A, Piccirillo S, Balsamo M, Ciofani G. Modulation of gene expression in rat muscle cells following treatment with nanoceria in different gravity regimes. Nanomedicine (Lond) 2018; 13:2821-2833. [PMID: 30334476 DOI: 10.2217/nnm-2018-0316] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM Oxidative stress (OS) is strictly associated with senescence/pathogenesis of biological systems. As putative countermeasure to environmental OS, cerium oxide nanoparticles (nanoceria [NC]) were administered to muscle cells on ground and aboard the International Space Station. MATERIALS & METHODS Transcriptional analyses were conducted through microarray technology and hierarchical clustering. Venn diagram and gene ontology analyses were also performed on selected gene lists. RESULTS Adaptive responses to both NC administration and to permanence in real microgravity conditions occurred. Enrichment in the biological processes related to aging, body fat development and mesodermal tissue proliferation for NC-treated samples were found. CONCLUSION Nanotechnology antioxidants promise applications to pathological conditions governed by OS on Earth and in life-hostile environments (low Earth orbit and deep space).
Collapse
Affiliation(s)
- Giada Graziana Genchi
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy
| | - Andrea Degl'Innocenti
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy
| | - Alice Rita Salgarella
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy
| | - Ilaria Pezzini
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy
| | - Attilio Marino
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy
| | - Arianna Menciassi
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy
| | - Sara Piccirillo
- Agenzia Spaziale Italiana, Via del Politecnico snc, Roma 00133, Italy
| | - Michele Balsamo
- Kayser Italia S.r.l., Via di Popogna 501, Livorno 57128, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy.,Politecnico di Torino, Department of Aerospace & Mechanical Engineering, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| |
Collapse
|
8
|
Bugarski AD, Hummer JA, Vanderslice SE. Effects of FAME biodiesel and HVORD on emissions from an older-technology diesel engine. ACTA ACUST UNITED AC 2018; 69:43-49. [PMID: 29348698 DOI: 10.19150/me.7918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The results of laboratory evaluations were used to compare the potential of two alternative, biomass-derived fuels as a control strategy to reduce the exposure of underground miners to aerosols and gases emitted by diesel-powered equipment. The effects of fatty acid methyl ester (FAME) biodiesel and hydrotreated vegetable oil renewable diesel (HVORD) on criteria aerosol and gaseous emissions from an older-technology, naturally aspirated, mechanically controlled engine equipped with a diesel oxidation catalytic converter were compared with those of widely used petroleum-derived, ultralow-sulfur diesels (ULSDs). The emissions were characterized for four selected steady-state conditions. When fueled with FAME biodiesel and HVORD, the engine emitted less aerosols by total particulate mass, total carbon mass, elemental carbon mass and total number than when it was fueled with ULSDs. Compared with ULSDs, FAME biodiesel and HVORD produced aerosols that were characterized by single modal distributions, smaller count median diameters, and lower total and peak concentrations. For the majority of test cases, FAME biodiesel and HVORD favorably affected nitric oxide (NO) and adversely affected nitrogen dioxide (NO2) generation. Therefore, the use of these alternative fuels appears to be a viable tool for the underground mining industry to address the issues related to emissions from diesel engines, and to transition toward more universal solutions provided by advanced engines with integrated exhaust after treatment technologies.
Collapse
Affiliation(s)
- A D Bugarski
- A.D. Bugarski, member SME, J.A. Hummer and S.E. Vanderslice are senior research engineer, engineering technician and engineering technician, respectively, at the National Institute for Occupational Safety and Health (NIOSH), Pittsburgh Mining Research Division (PMRD), Pittsburgh, PA, USA
| | - J A Hummer
- A.D. Bugarski, member SME, J.A. Hummer and S.E. Vanderslice are senior research engineer, engineering technician and engineering technician, respectively, at the National Institute for Occupational Safety and Health (NIOSH), Pittsburgh Mining Research Division (PMRD), Pittsburgh, PA, USA
| | - S E Vanderslice
- A.D. Bugarski, member SME, J.A. Hummer and S.E. Vanderslice are senior research engineer, engineering technician and engineering technician, respectively, at the National Institute for Occupational Safety and Health (NIOSH), Pittsburgh Mining Research Division (PMRD), Pittsburgh, PA, USA
| |
Collapse
|
9
|
Bencsik A, Lestaevel P, Guseva Canu I. Nano- and neurotoxicology: An emerging discipline. Prog Neurobiol 2018; 160:45-63. [DOI: 10.1016/j.pneurobio.2017.10.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 09/10/2017] [Accepted: 10/20/2017] [Indexed: 12/12/2022]
|
10
|
Popov A, Zaichkina SI, Popova NR, Rozanova OM, Romanchenko SP, Ivanova OS, Smirnov AA, Mironova EV, Selezneva II, Ivanov VK. Radioprotective effects of ultra-small citrate-stabilized cerium oxide nanoparticles in vitro and in vivo. RSC Adv 2016. [DOI: 10.1039/c6ra18566e] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Different radioprotective action mechanisms of CeO2 nanoparticles in vitro and in vivo are demonstrated and discussed.
Collapse
Affiliation(s)
- A. L. Popov
- Institute of Theoretical and Experimental Biophysics
- Russian Academy of Sciences
- Moscow region
- 142290 Russia
| | - S. I. Zaichkina
- Institute of Theoretical and Experimental Biophysics
- Russian Academy of Sciences
- Moscow region
- 142290 Russia
| | - N. R. Popova
- Institute of Theoretical and Experimental Biophysics
- Russian Academy of Sciences
- Moscow region
- 142290 Russia
| | - O. M. Rozanova
- Institute of Theoretical and Experimental Biophysics
- Russian Academy of Sciences
- Moscow region
- 142290 Russia
| | - S. P. Romanchenko
- Institute of Theoretical and Experimental Biophysics
- Russian Academy of Sciences
- Moscow region
- 142290 Russia
| | - O. S. Ivanova
- Kurnakov Institute of General and Inorganic Chemistry
- Russian Academy of Sciences
- Moscow
- Russia
| | - A. A. Smirnov
- Institute of Theoretical and Experimental Biophysics
- Russian Academy of Sciences
- Moscow region
- 142290 Russia
| | - E. V. Mironova
- Institute of Theoretical and Experimental Biophysics
- Russian Academy of Sciences
- Moscow region
- 142290 Russia
| | - I. I. Selezneva
- Institute of Theoretical and Experimental Biophysics
- Russian Academy of Sciences
- Moscow region
- 142290 Russia
- Pushchino State Institute of Natural Sciences
| | - V. K. Ivanov
- Kurnakov Institute of General and Inorganic Chemistry
- Russian Academy of Sciences
- Moscow
- Russia
- National Research Tomsk State University
| |
Collapse
|
11
|
Bugarski AD, Hummer JA, Vanderslice S. Effects of hydrotreated vegetable oil on emissions of aerosols and gases from light-duty and medium-duty older technology engines. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2016; 13:293-302. [PMID: 26588029 PMCID: PMC5481996 DOI: 10.1080/15459624.2015.1116695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study was conducted to assess the potential of hydrotreated vegetable oil renewable diesel (HVORD) as a control strategy to reduce exposure of workers to diesel aerosols and gases. The effects of HVORD on criteria aerosol and gaseous emissions were compared with those of ultralow sulfur diesel (ULSD). The results of comprehensive testing at four steady-state conditions and one transient cycle were used to characterize the aerosol and gaseous emissions from two older technology engines: (1) a naturally aspirated mechanically controlled and (2) a turbocharged electronically controlled engine. Both engines were equipped with diesel oxidation catalytic converters (DOCs). For all test conditions, both engines emitted measurably lower total mass concentrations of diesel aerosols, total carbon, and elemental carbon when HVORD was used in place of ULSD. For all test conditions, the reductions in total mass concentrations were more substantial for the naturally aspirated than for the turbocharged engine. In the case of the naturally aspirated engine, HVORD also favorably affected total surface area of aerosols deposited in the alveolar region of human lungs (TSAADAR) and the total number concentrations of aerosols. In the case of the turbocharged electronically controlled engine, for some of the test conditions HVORD adversely affected the TSAADAR and total number concentrations of aerosols. In the majority of the test cases involving the naturally aspirated mechanically controlled engine, HVORD favorably affected carbon dioxide (CO2), nitrogen oxides (NOX), and nitric oxide (NO) concentrations, but adversely affected NO2 and total hydrocarbon concentrations, while the effects of the fuels on carbon monoxide (CO) concentrations were masked by the effects of DOC. In the case of the turbocharged electronically controlled engine, the CO2, CO, NOX, NO, and total hydrocarbon concentrations were generally lower when HVORD was used in place of ULSD. The effects of the fuels on NO2 concentrations were masked by the more prominent effects of DOC.
Collapse
Affiliation(s)
- Aleksandar D Bugarski
- a National Institute for Occupational Safety and Health, Office of Mine Safety and Health Research , Pittsburgh , Pennsylvania
| | - Jon A Hummer
- a National Institute for Occupational Safety and Health, Office of Mine Safety and Health Research , Pittsburgh , Pennsylvania
| | - Shawn Vanderslice
- a National Institute for Occupational Safety and Health, Office of Mine Safety and Health Research , Pittsburgh , Pennsylvania
| |
Collapse
|
12
|
Shcherbakov AB, Zholobak NM, Spivak NY, Ivanov VK. Advances and prospects of using nanocrystalline ceria in prolongation of lifespan and healthy aging. RUSS J INORG CHEM+ 2015. [DOI: 10.1134/s0036023615130057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
13
|
Nano-antioxidants: An emerging strategy for intervention against neurodegenerative conditions. Neurochem Int 2015; 89:209-26. [PMID: 26315960 DOI: 10.1016/j.neuint.2015.08.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/08/2015] [Accepted: 08/15/2015] [Indexed: 02/08/2023]
Abstract
Oxidative stress has for long been linked to the neuronal cell death in many neurodegenerative conditions. Conventional antioxidant therapies have been less effective in preventing neuronal damage caused by oxidative stress due to their inability to cross the blood brain barrier. Nanoparticle antioxidants constitute a new wave of antioxidant therapies for prevention and treatment of diseases involving oxidative stress. It is believed that nanoparticle antioxidants have strong and persistent interactions with biomolecules and would be more effective against free radical induced damage. Nanoantioxidants include inorganic nanoparticles possessing intrinsic antioxidant properties, nanoparticles functionalized with antioxidants or antioxidant enzymes to function as an antioxidant delivery system. Nanoparticles containing antioxidants have shown promise as high-performance therapeutic nanomedicine in attenuating oxidative stress with potential applications in treating and preventing neurodegenerative conditions. However, to realize the full potential of nanoantioxidants, negative aspects associated with the use of nanoparticles need to be overcome to validate their long term applications.
Collapse
|