1
|
Hussain S, Jameel F, Arif A, Khan I, Mohiuddin OA, Salim A, Rehman MU. Enhanced wound healing effects of nanoscale lipid-diclofenac conjugates. J Drug Deliv Sci Technol 2024; 101:106223. [DOI: 10.1016/j.jddst.2024.106223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
|
2
|
Pant A, Sharma G, Saini S, Kaur G, Jain A, Thakur A, Singh B. QbD-driven development of phospholipid-embedded lipidic nanocarriers of raloxifene: extensive in vitro and in vivo evaluation studies. Drug Deliv Transl Res 2024; 14:730-756. [PMID: 37768530 DOI: 10.1007/s13346-023-01427-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Raloxifene (RLX) is popularly indicated in treatment of osteoporosis and prevention of breast cancer. Owing to its poor aqueous solubility, high pre-systemic metabolism, intestinal glucuronidation, and P-glycoprotein (P-gp) efflux, however, it demonstrates low (< 2%) and inconsistent oral bioavailability. The current work, Quality by Design (QbD)-driven development of phospholipid-embedded nanostructured lipidic carriers (NLCs) of RLX, accordingly, was undertaken to potentiate its lymphatic uptake, augment oral bioavailability, and possibly reduce drug dosage. Factor screening and failure mode effect analysis (FMEA) studies were performed to delineate high-risk factors using solid lipid (glyceryl monostearate), liquid lipid (vitamin E), and surfactant (Tween 80). Response surface optimization studies were performed employing the Box-Behnken design. Mathematical and graphical methods were adopted to embark upon the selection of optimized NLCs with various critical quality attributes (CQAs) of mean particle size as 186 nm, zeta potential of - 23.6 mV, entrapment efficiency of 80.09%, and cumulative drug release at 12 h of 83.87%. The DSC and FTIR studies, conducted on optimized NLCs, indicated successful entrapment of drug into the lipid matrix. In vitro drug release studies demonstrated Fickian diffusion mechanism. In vivo pharmacokinetic studies in rats construed significant improvement in AUC0-72 h (4.48-folds) and in Cmax (5.11-folds), unequivocally indicating markedly superior (p < 0.001) oral bioavailability of RLX-NLCs vis-à-vis marketed tablet formulation. Subsequently, level "A" in vitro/in vivo correlation (IVIVC) was also successfully attempted between the percentages of in vitro drug dissolved and of in vivo drug absorbed at the matching time points. In vitro cytotoxicity and cellular uptake studies also corroborated higher efficacy and successful localization of coumarin-6-loaded NLCs into MG-63 cells through microfluidic channels.
Collapse
Affiliation(s)
- Anjali Pant
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Sumant Saini
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Gurjeet Kaur
- Department of Renal Transplant Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Atul Jain
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Anil Thakur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India.
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
3
|
Plotniece A, Sobolev A, Supuran CT, Carta F, Björkling F, Franzyk H, Yli-Kauhaluoma J, Augustyns K, Cos P, De Vooght L, Govaerts M, Aizawa J, Tammela P, Žalubovskis R. Selected strategies to fight pathogenic bacteria. J Enzyme Inhib Med Chem 2023; 38:2155816. [PMID: 36629427 PMCID: PMC9848314 DOI: 10.1080/14756366.2022.2155816] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 01/12/2023] Open
Abstract
Natural products and analogues are a source of antibacterial drug discovery. Considering drug resistance levels emerging for antibiotics, identification of bacterial metalloenzymes and the synthesis of selective inhibitors are interesting for antibacterial agent development. Peptide nucleic acids are attractive antisense and antigene agents representing a novel strategy to target pathogens due to their unique mechanism of action. Antisense inhibition and development of antisense peptide nucleic acids is a new approach to antibacterial agents. Due to the increased resistance of biofilms to antibiotics, alternative therapeutic options are necessary. To develop antimicrobial strategies, optimised in vitro and in vivo models are needed. In vivo models to study biofilm-related respiratory infections, device-related infections: ventilator-associated pneumonia, tissue-related infections: chronic infection models based on alginate or agar beads, methods to battle biofilm-related infections are discussed. Drug delivery in case of antibacterials often is a serious issue therefore this review includes overview of drug delivery nanosystems.
Collapse
Affiliation(s)
- Aiva Plotniece
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Riga Stradiņš University, Riga, Latvia
| | | | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Fabrizio Carta
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, University of Copenhagen, Copenhagen East, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, University of Copenhagen, Copenhagen East, Denmark
| | - Jari Yli-Kauhaluoma
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Koen Augustyns
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Paul Cos
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Linda De Vooght
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Matthias Govaerts
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Juliana Aizawa
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Päivi Tammela
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
| |
Collapse
|
4
|
Kumar M, Virmani T, Kumar G, Deshmukh R, Sharma A, Duarte S, Brandão P, Fonte P. Nanocarriers in Tuberculosis Treatment: Challenges and Delivery Strategies. Pharmaceuticals (Basel) 2023; 16:1360. [PMID: 37895831 PMCID: PMC10609727 DOI: 10.3390/ph16101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
The World Health Organization identifies tuberculosis (TB), caused by Mycobacterium tuberculosis, as a leading infectious killer. Although conventional treatments for TB exist, they come with challenges such as a heavy pill regimen, prolonged treatment duration, and a strict schedule, leading to multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains. The rise of MDR strains endangers future TB control. Despite these concerns, the hunt for an efficient treatment continues. One breakthrough has been the use of nanotechnology in medicines, presenting a novel approach for TB treatment. Nanocarriers, such as lipid nanoparticles, nanosuspensions, liposomes, and polymeric micelles, facilitate targeted delivery of anti-TB drugs. The benefits of nanocarriers include reduced drug doses, fewer side effects, improved drug solubility, better bioavailability, and improved patient compliance, speeding up recovery. Additionally, nanocarriers can be made even more targeted by linking them with ligands such as mannose or hyaluronic acid. This review explores these innovative TB treatments, including studies on nanocarriers containing anti-TB drugs and related patents.
Collapse
Affiliation(s)
- Mahesh Kumar
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (M.K.); (G.K.); (A.S.)
| | - Tarun Virmani
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (M.K.); (G.K.); (A.S.)
| | - Girish Kumar
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (M.K.); (G.K.); (A.S.)
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India;
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (M.K.); (G.K.); (A.S.)
| | - Sofia Duarte
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisbon, Portugal; (S.D.); (P.B.)
- Associate Laboratory i4HB—Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Pedro Brandão
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisbon, Portugal; (S.D.); (P.B.)
- Associate Laboratory i4HB—Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Pedro Fonte
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisbon, Portugal; (S.D.); (P.B.)
- Associate Laboratory i4HB—Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| |
Collapse
|
5
|
Yeo S, Lee TH, Kim MJ, Shim YK, Yoon I, Song YK, Lee WK. Improved anticancer efficacy of methyl pyropheophorbide-a-incorporated solid lipid nanoparticles in photodynamic therapy. Sci Rep 2023; 13:7391. [PMID: 37149617 PMCID: PMC10164167 DOI: 10.1038/s41598-023-34265-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023] Open
Abstract
Photodynamic therapy (PDT) is a promising anticancer treatment because it is patient-friendly and non-invasive. Methyl pyropheophorbide-a (MPPa), one of the chlorin class photosensitizers, is a drug with poor aqueous solubility. The purpose of this study was to synthesize MPPa and develop MPPa-loaded solid lipid nanoparticles (SLNs) with improved solubility and PDT efficacy. The synthesized MPPa was confirmed 1H nuclear magnetic resonance (1H-NMR) spectroscopy and UV-Vis spectroscopy. MPPa was encapsulated in SLN via a hot homogenization with sonication. Particle characterization was performed using particle size and zeta potential measurements. The pharmacological effect of MPPa was evaluated using the 1,3-diphenylisobenzofuran (DPBF) assay and anti-cancer effect against HeLa and A549 cell lines. The particle size and zeta potential ranged from 231.37 to 424.07 nm and - 17.37 to - 24.20 mV, respectively. MPPa showed sustained release from MPPa-loaded SLNs. All formulations improved the photostability of MPPa. The DPBF assay showed that SLNs enhanced the 1O2 generation from MPPa. In the photocytotoxicity analysis, MPPa-loaded SLNs demonstrated cytotoxicity upon photoirradiation but not in the dark. The PDT efficacy of MPPa improved following its entrapment in SLNs. This observation suggests that MPPa-loaded SLNs are suitable for the enhanced permeability and retention effect. Together, these results demonstrate that the developed MPPa-loaded SLNs are promising candidates for cancer treatment using PDT.
Collapse
Grants
- No.5199991614715 Fostering Outstanding Universities for Research
- NRF-2020R1I1A1A01060632 National Research Foundation of Korea
- S3248094 Collabo R&D between Industry, University, and Research Institute funded by Korea Ministry of SMEs and Startups
- S3248094 Collabo R&D between Industry, University, and Research Institute funded by Korea Ministry of SMEs and Startups
- S3248094 Collabo R&D between Industry, University, and Research Institute funded by Korea Ministry of SMEs and Startups
- S3248094 Collabo R&D between Industry, University, and Research Institute funded by Korea Ministry of SMEs and Startups
- S3248094 Collabo R&D between Industry, University, and Research Institute funded by Korea Ministry of SMEs and Startups
- S3248094 Collabo R&D between Industry, University, and Research Institute funded by Korea Ministry of SMEs and Startups
- S3248094 Collabo R&D between Industry, University, and Research Institute funded by Korea Ministry of SMEs and Startups
Collapse
Affiliation(s)
- Sooho Yeo
- Center for Nano Manufacturing and Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, South Korea.
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Seoul, South Korea.
| | - Tae Heon Lee
- Research Center of Dr. I&B Co., DaeJeon, Republic of Korea
| | - Min Je Kim
- Center for Nano Manufacturing and Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, South Korea
| | - Young Key Shim
- Research Center of Dr. I&B Co., DaeJeon, Republic of Korea
| | - Il Yoon
- Center for Nano Manufacturing and Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, South Korea
| | - Young Kyu Song
- Research Center of Dr. I&B Co., DaeJeon, Republic of Korea.
| | - Woo Kyoung Lee
- Center for Nano Manufacturing and Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, South Korea.
| |
Collapse
|
6
|
Physico-chemical characterization and anti-laryngeal cancer effects of the gold nanoparticles. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
7
|
Wang J, Yuan Q, Morovvati H, Goorani S. Green synthesis, characterization and anti-atherosclerotic properties of vanadium nanoparticles. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Lee J, Noh M, Jang J, Lee JB, Hwang YH, Lee H. Skin Penetration Enhancer-Incorporated Lipid Nanovesicles (SPE-LNV) for Skin Brightening and Wrinkle Treatment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36331-36340. [PMID: 35917318 DOI: 10.1021/acsami.2c07135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, we utilize skin penetration enhancers (SPEs) such as ceramide and fatty acids in lipid nanovesicles to promote the transdermal delivery of active ingredients. These SPE-incorporated lipid nanovesicles (SPE-LNV) interact with the constituents of skin's outermost stratum corneum (SC) layer, enabling even niacinamide and adenosine with high water solubility to effectively permeate through, leading to enhanced skin efficacy. We demonstrate by both in vitro and in vivo skin permeation studies that the SPE-LNV formulation containing both ceramide and fatty acids (LNV-CF) exhibits deeper penetration depth and faster permeation rate compared to conventional lipid nanovesicles (LNV) without SPE as well as LNV-C with only ceramide. Moreover, in vivo clinical trials were also performed to confirm that LNV-CF most effectively mediates the delivery of niacinamide and adenosine, resulting in a substantial decrease in melanin index as well as skin wrinkle compared to the control groups. We envision that the strategy of incorporating both ceramide and fatty acids in lipid nanovesicles offers a simple and convenient route for the rapid and effective delivery of water-soluble active ingredients across the skin barrier layer.
Collapse
Affiliation(s)
- Jihyun Lee
- Innovation Lab., Cosmax R&I Center, 255 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13486, South Korea
| | - Minjoo Noh
- Innovation Lab., Cosmax R&I Center, 255 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13486, South Korea
| | - Jihui Jang
- Innovation Lab., Cosmax R&I Center, 255 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13486, South Korea
| | - Jun Bae Lee
- Innovation Lab., Cosmax R&I Center, 255 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13486, South Korea
| | - Yoon-Ho Hwang
- Department of Chemical Engineering, Soft Matter and Functional Interfaces Laboratory, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do 37673, South Korea
| | - Hyomin Lee
- Department of Chemical Engineering, Soft Matter and Functional Interfaces Laboratory, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do 37673, South Korea
| |
Collapse
|
9
|
Qu J, Yang J, Chen M, Zhai A. Anti-human gastric cancer study of gold nanoparticles synthesized using Alhagi maurorum. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Ahati P, Xu T, Chen L, Fang H. Biosynthesis, characterization and evaluation of anti-bone carcinoma, cytotoxicity, and antioxidant properties of gold nanoparticles mediated by Citrus reticulata seed aqueous extract: Introducing a novel chemotherapeutic drug. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Zhang YW, Wang LK, Fang-Zhou L, Yuan BH, Zou XM, Wang RT. Synthesis and characterization of silver nanoparticles green-formulated by Allium stipitatum and treat the colorectal cancer as a modern chemotherapeutic supplement. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Zhao W, Wang L, Chen H, Qi L, Yang R, Ouyang T, Ning L. Green synthesis, characterization and determination of anti-prostate cancer, cytotoxicity and antioxidant effects of gold nanoparticles synthesized using Alhagi maurorum. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Fan N, Li P, Wang J, Gongsun X, Xue L, Bai J, Morovvati H, Goorani S. Novel formulation, characterization, cytotoxicity, antioxidant, and anti-lung cancer activities of silver nanoparticles green-formulated by plant extract. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Hosseini SM, Farmany A, Alikhani MY, Taheri M, Asl SS, Alamian S, Arabestani MR. Co-Delivery of Doxycycline and Hydroxychloroquine Using CdTe-Labeled Solid Lipid Nanoparticles for Treatment of Acute and Chronic Brucellosis. Front Chem 2022; 10:890252. [PMID: 35646816 PMCID: PMC9130827 DOI: 10.3389/fchem.2022.890252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/07/2022] [Indexed: 12/15/2022] Open
Abstract
Brucellosis is a systemic disease in both acute and chronic forms which can affect any organ or tissue in the body. One of the biggest issues in treating this disease is its relapse. In this study, a complete treatment of brucellosis was evaluated using enhanced performance of doxycycline and hydroxychloroquine drugs by using solid lipid nanoparticles (SLN) conjugated cadmium-telluride quantum dots. The double emulsion method was used to prepare SLN and cadmium-telluride quantum dots. The physicochemical properties of NPs were determined. The effect of nanoparticle-loaded antibiotics against Brucella melitensis was determined by well diffusion, minimum inhibitory concentration (MIC), cell culture, and animal studies. The means of particle size, PDI, zeta potential, drugs loading, and encapsulation efficiency were 214 ± 25 nm, 0.385 ± 0.022, −18.7 ± 2.3 mV, 17.7 ± 1.5%, and 94.15 ± 2.6%, respectively. The results of FTIR and DSC showed that no chemical reaction occurred between the components of the NPs. The effect of free drug and NPs on bacteria was the same by well diffusion and MIC method. Drug-loaded NPs significantly reduced the number of CFUs in the cell line and acute and chronic brucellosis compared to the free drug. In conclusion, the synthesized nanoparticles were safe and green. With the slow release of the drug (100 h), the accumulation of the drug at the bacterial site increases and causes a greater effect on the B. melitensis and improves the disease of brucellosis. The use of synthesized nanodrugs in this study had promising therapeutic results.
Collapse
Affiliation(s)
- Seyed Mostafa Hosseini
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Farmany
- Dental Research Center, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Yousef Alikhani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleimani Asl
- Department of Anatomical Sciences, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeed Alamian
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Brucellosis Research Center, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- *Correspondence: Mohammad Reza Arabestani,
| |
Collapse
|
15
|
CuO NPs@Starch as a novel chemotherapeutic drug for the treatment of several types of gastrointestinal system cancers including gastric, pancreatic, and colon cancers. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
Wei G, He W, Bai Y, Yu H. Design and evaluation of a novel Kaolin-chitosan/gold nanocomposite for the treatment of human lung cancer. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Zhou J, Zheng X, Cai Q, Song C. Introducing a Novel Chemotherapeutic Drug for the Treatment of Lung Adenocarcinoma: Silver Nanoparticles Green-formulated by Cinnamomum verum. J Oleo Sci 2022; 71:371-378. [PMID: 35173088 DOI: 10.5650/jos.ess21316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study we report the green synthesis of nontoxic, stable, and small size silver nanoparticle by Cinnamomum verum with reducing/capping ability without any toxic reducing agents. The in situ prepared AgNPs were characterized by advanced physicochemical techniques like FE-SEM, TEM, and UV-Vis study. It has been established that AgNPs have a spherical shape with a mean diameter from 10 to 45 nm. In the antioxidant test, the IC50 of AgNPs and BHT against DPPH free radicals were 191 and 242 µg/mL, respectively. In the cellular and molecular part of the recent study, the treated cells with AgNPs were assessed by MTT assay for 48 h about the cytotoxicity and anti-human lung adenocarcinoma properties on normal (HUVEC) and lung adenocarcinoma cell lines i.e. PC-14, LC-2/ad, and HLC-1. The IC50 of AgNPs were 259, 291, and 395 µg/mL against PC-14, LC-2/ad, and HLC-1 cell lines, respectively. The viability of malignant lung cell line reduced dose-dependently in the presence of AgNPs.
Collapse
Affiliation(s)
- Jianzhong Zhou
- Department of Thoracic and Cardiovascular Surgery, Affiliated Hospital of Jinggangshan University
| | - Xiaogang Zheng
- Department of Emergency, Affiliated Hospital of Jinggangshan University
| | - Qigui Cai
- Department of Thoracic and Cardiovascular Surgery, Affiliated Hospital of Jinggangshan University
| | - Chunlin Song
- The Affiliated Hospital of Jinggangshan University, General Medicine
| |
Collapse
|
18
|
Hosseini SM, Taheri M, Nouri F, Farmani A, Moez NM, Arabestani MR. Nano drug delivery in intracellular bacterial infection treatments. Biomed Pharmacother 2022; 146:112609. [PMID: 35062073 DOI: 10.1016/j.biopha.2021.112609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 12/20/2022] Open
Abstract
The present work aimed to review the potential mechanisms used by macrophages to kill intracellular bacteria, their entrance to the cell, and mechanisms of escape of cellular immunity and applications of various nanoparticles. Since intracellular bacteria such as Mycobacterium and Brucella can survive in host cells and can resist the lethal power of macrophages, they can cause chronic disease or recur in 10-30% of cases in improved patients Nano drug-based therapeutics are promising tools for treating intracellular bacteria and preventing recurrence of the disease caused by these bacteria. In addition, among their unique features, we can mention the small size and the ability of these compounds to purposefully reach the target location.
Collapse
Affiliation(s)
- Seyed Mostafa Hosseini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Nouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Farmani
- Department of Nanobiotechnology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Narjes Morovati Moez
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
19
|
Mohd Hanafiah Z, Wan Mohtar WHM, Abd Manan TSB, Bachi' NA, Abdullah NA, Abd Hamid HH, Beddu S, Mohd Kamal NL, Ahmad A, Wan Rasdi N. The occurrence of non-steroidal anti-inflammatory drugs (NSAIDs) in Malaysian urban domestic wastewater. CHEMOSPHERE 2022; 287:132134. [PMID: 34517236 DOI: 10.1016/j.chemosphere.2021.132134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The water stream has been reported to contain non-steroidal anti-inflammatory drugs (NSAIDs), released from households and premises through discharge from Sewage Treatment Plant (STP). This research identifies commonly consumed NSAIDs namely ibuprofen (IBU), diclofenac (DIC), ketoprofen (KET) and naproxen (NAP) in the influent wastewater from two urban catchments (i.e. 2 STPs). We expand our focus to assess the efficiency of monomer (C18) and dimer (HLB) types of sorbents in the solid phase extraction method followed by gas chromatography mass spectrometry (GCMS) analysis and optimize model prediction of NSAIDs in the influent wastewater using I-Optimal design. The ecological risk assessment of the NSAIDs was evaluated. The HLB produced reliable analysis for all NSAIDs under study (STP1: 6.7 × 10-3 mg L-1 to 2.21 × 10-1 mg L-1, STP2: 1.40 × 10-4 mg L-1 to 9.72 × 10-2 mg L-1). The C18 however, selective to NAP. Based on the Pearson proximity matrices, the DICHLB can be a good indicator for IBUHLB (0.565), NAPC18 (0.721), NAPHLB (0.566), and KETHLB (0.747). The optimized model prediction for KET and NAP based on DIC are successfully validated. The risk quotients (RQ) values of NSAIDs were classified as high (RQ > 1), medium (RQ, 0.1-1) and low (RQ, 0.01-0.1) risks. The optimized models are beneficial for major NSAIDs (KET and NAP) monitoring in the influent wastewater of urban domestic area. An upgrade on the existing wastewater treatment infrastructure is recommended to counteract current water security situation.
Collapse
Affiliation(s)
- Zarimah Mohd Hanafiah
- Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor Darul Ehsan, 43600, Malaysia
| | - Wan Hanna Melini Wan Mohtar
- Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor Darul Ehsan, 43600, Malaysia.
| | - Teh Sabariah Binti Abd Manan
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu Darul Iman, 21030, Malaysia.
| | - Nur Aina Bachi'
- Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor Darul Ehsan, 43600, Malaysia
| | - Nor Azura Abdullah
- Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor Darul Ehsan, 43600, Malaysia
| | - Haris Hafizal Abd Hamid
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor Darul Ehsan, 43600, Malaysia
| | - Salmia Beddu
- Department of Civil Engineering, Universiti Tenaga Nasional, Jalan Ikram-Uniten, Kajang, Selangor Darul Ehsan, 43000, Malaysia
| | - Nur Liyana Mohd Kamal
- Department of Civil Engineering, Universiti Tenaga Nasional, Jalan Ikram-Uniten, Kajang, Selangor Darul Ehsan, 43000, Malaysia
| | - Amirrudin Ahmad
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu Darul Iman, 21030, Malaysia; Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu Darul Iman, 21030, Malaysia
| | - Nadiah Wan Rasdi
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu Darul Iman, 21030, Malaysia; Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu Darul Iman, 21030, Malaysia
| |
Collapse
|
20
|
Liu Z, Wang K, Wang T, Wang Y, Ge Y. Copper nanoparticles supported on polyethylene glycol-modified magnetic Fe3O4 nanoparticles: Its anti-human gastric cancer investigation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
21
|
Pulmonary protective effects of ultrasonic green synthesis of gold nanoparticles mediated by pectin on Methotrexate-induced acute lung injury in lung BEAS-2B, WI-38, CCD-19Lu, IMR-90, MRC-5, and HEL 299 cell lines. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
22
|
Yang Y, Sun H, Awwad NS, Ibrahium HA, Alhomaid FA, El-kott AF, Abdel-Daim MM. Gold nanoparticles immobilized over Kaolin modified-Mentha extract: Investigation of its antioxidant and anticancer effects against cervical adenocarcinoma cancer cells as a novel chemotherapy agent. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Green preparation of copper nanoparticle-loaded chitosan/alginate bio-composite: Investigation of its cytotoxicity, antioxidant and anti-human breast cancer properties. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
24
|
Wei X, Liu Y, El-kott A, Ahmed AE, Khames A. Calendula officinalis-based green synthesis of titanium nanoparticle: Fabrication, characterization, and evaluation of human colorectal carcinoma. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Li C, Zhang Y, Li M, Zhang H, Zhu Z, Xue Y. Fumaria officinalis-assisted synthesis of Manganese nanoparticles as an anti-human gastric cancer agent. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
26
|
Yeo S, Jung S, Cho HK, Kim YH, Kim GH, Kim D, Ko BH, Lee J. Design and Characterization of Elastic Artificial Skin Containing Adenosine-Loaded Solid Lipid Nanoparticles for Treating Wrinkles. Pharmaceutics 2020; 13:33. [PMID: 33379295 PMCID: PMC7823613 DOI: 10.3390/pharmaceutics13010033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 11/16/2022] Open
Abstract
Adenosine (AD), which is used for treating wrinkles, exhibits poor skin permeation. The aim of the present study was to develop a cross-linked silicone-based cellulose elastomer as an elastic artificial skin for the treatment of skin wrinkles, a biocompatible lipid-based nano-carrier for enhancing the skin permeation of AD, and a formulation consisting of the lipid-based carrier incorporated in the elastic artificial skin. AD-loaded solid lipid nanoparticles (SLNs) were prepared using a double-emulsion method. Particle characteristics and mechanical properties of SLNs and elastic artificial skin, respectively, were assessed. Skin permeation was evaluated using SkinEthic RHE tissue, a reconstructed human epidermis model. The mean particle size and zeta potential for SLNs ranged from 123.57 to 248.90 nm and -13.23 to -41.23 mV, respectively. The components of neither SLNs nor the elastic artificial skin were cytotoxic, according to cell- and tissue-viability assays and EU classification. SLNs and the elastic artificial skin exhibited sustained drug release for 48 h. The amount of AD released from SLNs and elastic artificial skin was approximately 10 times and 5 times higher, respectively, than that from AD solution. Therefore, elastic artificial skin incorporated with AD-loaded SLNs may serve as a promising topical delivery system for cosmeceutical treatment of skin wrinkles.
Collapse
Affiliation(s)
- Sooho Yeo
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (S.Y.); (S.J.); (D.K.); (B.H.K.)
| | - Sukkyun Jung
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (S.Y.); (S.J.); (D.K.); (B.H.K.)
| | - Heui Kyoung Cho
- R&D Center, Megacos, 16, Simin-daero 327 Rd, Dongan-gu, Anyang-si, Gyeonggi-do 14055, Korea; (H.K.C.); (Y.H.K.); (G.H.K.)
| | - Young Ho Kim
- R&D Center, Megacos, 16, Simin-daero 327 Rd, Dongan-gu, Anyang-si, Gyeonggi-do 14055, Korea; (H.K.C.); (Y.H.K.); (G.H.K.)
| | - Gi Hwan Kim
- R&D Center, Megacos, 16, Simin-daero 327 Rd, Dongan-gu, Anyang-si, Gyeonggi-do 14055, Korea; (H.K.C.); (Y.H.K.); (G.H.K.)
| | - Dohyun Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (S.Y.); (S.J.); (D.K.); (B.H.K.)
| | - Byoung Hyen Ko
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (S.Y.); (S.J.); (D.K.); (B.H.K.)
| | - Jaehwi Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (S.Y.); (S.J.); (D.K.); (B.H.K.)
| |
Collapse
|
27
|
Afra B, Mohammadi M, Soleimani M, Mahjub R. Preparation, statistical optimization, in vitro characterization, and in vivo pharmacological evaluation of solid lipid nanoparticles encapsulating propolis flavonoids: a novel treatment for skin edema. Drug Dev Ind Pharm 2020; 46:1163-1176. [PMID: 32503368 DOI: 10.1080/03639045.2020.1779286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Propolis is a natural resinous product and exerts anti-inflammatory properties. The aim of this study is formulation and characterization of solid lipid nanoparticles (SLNs) encapsulating propolis flavonoids (PFs), intended for topical treatment of skin edema. The nanoparticles were prepared and statistically optimized using Box-Behnken response surface methodology. The in vitro release profile of the optimized nanoparticles was investigated. Cytotoxicity of nanoparticles on HSF-PI 18 cell line was determined. Permeation and penetration of nanoparticles across the incised skin were measured. Finally, the nanoparticles were incorporated into a pharmaceutical hydrogel formulation and the in vivo efficacy in reduction of skin edema was determined. The size, PdI, zeta potential, entrapment efficiency (EE%) and loading efficiency (LE %) of the optimized nanoparticles were 111.3 ± 19.35 nm, 0.34 ± 0.005, -24.17 ± 3.3 mV, 73.5 ± 0.86%, and 3.2 ± 0.27%, respectively. Data obtained through in vitro release study suggested a burst release followed by a prolonged release behavior up to 24 h post incubation time interval. The prepared SLNs exhibited no cytotoxicity on HSF-PI 18 cell line. Ex vivo permeation and penetration study of nanoparticles across the incised skin showed approximately a 2.5-fold and a 3-fold increase in cumulative amount of transport and cumulative amount of skin penetration, respectively. Finally, in vivo studies in rat models, showed a threefold reduction in volume of the edema in animals treated with SLNs. The obtained data revealed that the prepared SNs entrapping PFs, exert high skin targeting effects, prolonged anti-inflammatory properties and therefore high efficiency in treatment of skin edema.
Collapse
Affiliation(s)
- Bahareh Afra
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Pharmacology and Toxicology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology and Toxicology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Mahjub
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
28
|
Zhang X, Li Y, Huang Z, Cui Y, Zhao Z, Yue X, Wang G, Liang R, Huang Y, Tan W, Wu C. Development and pharmacokinetics evaluation of quetiapine fumarate sustained-release tablets based on hydrophilic matrix. J Drug Deliv Sci Technol 2019; 54:101322. [DOI: 10.1016/j.jddst.2019.101322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
29
|
Hosseini SM, Farmany A, Abbasalipourkabir R, Soleimani Asl S, Nourian A, Arabestani MR. Doxycycline-encapsulated solid lipid nanoparticles for the enhanced antibacterial potential to treat the chronic brucellosis and preventing its relapse: in vivo study. Ann Clin Microbiol Antimicrob 2019; 18:33. [PMID: 31706304 PMCID: PMC6842259 DOI: 10.1186/s12941-019-0333-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 10/28/2019] [Indexed: 12/23/2022] Open
Abstract
Background Brucellosis is one of the most important infection of diseases. Due to its large period of treatment and survival ability of bacteria inside the macrophages, relapse of this disease is the main challenge, especially, after the treatment. Objective The current study was carried out to evaluate the antibacterial effect of solid lipid nanoparticles loaded with doxycycline on the Brucella melitensis in in vivo conditions. Methods The double emulsion synthesized doxycycline-encapsulated solid lipid nanoparticles (DOX-SLN) was characterized using DLS and FE-SEM. The efficacy of the DOX-SLN on the acute and chronic Wistar rat infected brucellosis was investigated. The pathological assessments were made on the spleen and liver in the treated rates. Results The in vivo experimental results demonstrated that the treated rats with DOX-SLN had significantly decreased the B. melitensis CFUs in their spleen and liver compared to that of the treated rates with free doxycycline and untreated ones. The pathologic results indicate that the improvement trend of spleen and liver tissues in rats treated by DOX-SLN was satisfactory. Conclusion According to in vivo results, the DOX-SLN has better effects on the treatment of chronic brucellosis. Therefore, DOX-SLN is recommended to treat the brucellosis and avoid its relapse. ![]()
Collapse
Affiliation(s)
- Seyed Mostafa Hosseini
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Farmany
- Dental Research Center, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Sara Soleimani Asl
- Department of Anatomical Sciences, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Nourian
- Department of Pathobiology, School of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. .,Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
30
|
Blend of cellulose ester and enteric polymers for delayed and enteric coating of core tablets of hydrophilic and hydrophobic drugs. Int J Pharm 2019; 567:118462. [PMID: 31247274 DOI: 10.1016/j.ijpharm.2019.118462] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/19/2019] [Accepted: 06/23/2019] [Indexed: 11/21/2022]
Abstract
The focus of this work was to explore feasibility of using blends of cellulose esters (CA 320S, CA 3980-10 or CAB 171-15) and enteric polymers (C-A-P, Eudragit® L100 or HPMCP HP-55) for delayed and enteric coating of tablets containing either diclofenac sodium (DFS, high dose) or prednisone (PDS, low dose) drug. The core tablets of DFS or PDS were coated with polymer blends to achieve approximate weight gain of 5% and 10%. The coated tablets were characterized for dissolution (0.1 N HCl and phosphate buffer pH 6.8) and surface morphology. The surface morphology of CA 398-10 or CAB 171-15 based polymer blends was rough and fibrous. Less than 0.5% drug was dissolved in 120 min from 5% w/w coated tablets in acid-phase dissolution testing. The dissolution in phosphate buffer pH 6.8 medium varied from 16.2 ± 0.2 to 98 ± 2.1%, and 30.1 ± 0.5% to 101.7 ± 3.4% in 120 min from DFS and PDS coated tablets, respectively. Dissolution was less in CA 320S based blends compared to CA 398-10 or CAB 171-15 blends in phosphate buffer medium. Furthermore, there were no significant differences observed in dissolution profiles of coated tablets of DFS or PDS. This can be explained by dose of the drugs. Additionally, dissolution was higher in tablets coated with enteric polymer alone compared with the blends. In conclusion, core tablets can be coated with cellulose ester and enteric polymers blend to impart both delayed and enteric release feature to the tablets containing hydrophilic or hydrophobic drug.
Collapse
|
31
|
Shinde UA, Parmar SJ, Easwaran S. Metronidazole-loaded nanostructured lipid carriers to improve skin deposition and retention in the treatment of rosacea. Drug Dev Ind Pharm 2019; 45:1039-1051. [PMID: 30727789 DOI: 10.1080/03639045.2019.1569026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The objective of the present investigation was to improve the skin deposition and retention of metronidazole (MTZ) in rosacea therapy by incorporating it into nanostructured lipid carriers (NLCs). The main challenge in this endeavor was the partial hydrophilicity of MTZ, which mandated careful selection of excipients, including solid and liquid lipids, surfactants, and their ratios in combination. NLCs were produced by the phase inversion temperature method and finally converted into a gel for topical application. The prepared nanoparticles were evaluated for their particle size, zeta potential, entrapment efficiency, solid-state characteristics, surface morphology, in vitro drug release, and permeation through excised skin. The gel was additionally characterized for its pH, drug content, viscosity, and spreadability. The prepared nanoparticles were spherical in shape and of size less than 300 nm. Incorporation of judiciously chosen excipients made possible a relatively high entrapment efficiency of almost 40%. The drug release was found to be biphasic, with an initial burst release followed by sustained release up to 8 hours. In comparison to the plain drug gel, which had a tissue deposition of 11.23%, the NLC gel showed a much superior and desirable deposition of 26.41%. The lipophilic nature of the carrier, its size, and property of occlusion enabled greater amounts of drug to enter and be retained in the skin, simultaneously minimizing permeation through the skin, i.e. systemic exposure. The results of the study suggest that NLCs of anti-rosacea drugs have the potential to be used in the therapy of rosacea.
Collapse
Affiliation(s)
- Ujwala A Shinde
- a Department of Pharmaceutics , Bombay College of Pharmacy , Mumbai , India
| | - Shruti J Parmar
- a Department of Pharmaceutics , Bombay College of Pharmacy , Mumbai , India
| | - Shuba Easwaran
- a Department of Pharmaceutics , Bombay College of Pharmacy , Mumbai , India
| |
Collapse
|
32
|
Hosseini SM, Abbasalipourkabir R, Jalilian FA, Asl SS, Farmany A, Roshanaei G, Arabestani MR. Doxycycline-encapsulated solid lipid nanoparticles as promising tool against Brucella melitensis enclosed in macrophage: a pharmacodynamics study on J774A.1 cell line. Antimicrob Resist Infect Control 2019; 8:62. [PMID: 30988946 PMCID: PMC6448226 DOI: 10.1186/s13756-019-0504-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
Background Brucellosis is a zoonotic disease caused by Brucella species. It has been estimated that more than 500,000 new cases of Brucellosis occur annually all around the world. Relapse of the disease is one of the most important challenges. The most important reason for the relapse of brucellosis is the survival of the bacteria inside the macrophages, which makes them safe from the immune system and disrupts drug delivery mechanism. Objectives The present study was performed to assess the effects of Doxycycline-loaded Solid Lipid Nanoparticles (DOX-SLN) on the Brucella melitensis inside macrophages. Methods DOX-SLN was prepared using double emulsion method. The technological characterization of DOX-SLN, including particle size, zeta potential, polydispersity index (PDI), drug loading and encapsulation efficiency were used. Fourier-transform infrared spectroscopy (FTIR) and Differential scanning calorimetry (DSC) were used to assess the interactions between Nanoparticles (NPs) components and crystalline form of doxycycline. Moreover, the effect of DOX-SLN on the bacteria were compared with that of the doxycycline using various methods, including well diffusion, Minimum Inhibitory Concentration (MIC), and investigation of their effects on murine macrophage-like cells cell line J774A.1. Results The means of particle size, zeta potential, PDI, drug loading and encapsulation efficiency were 299 ± 34 nm, − 28.7 ± 3.2 mV, 0.29 ± 0.027, 11.2 ± 1.3%, and 94.9 ± 3.2%, respectively. The morphology of NPs were spherical with a smooth surface. No chemical reaction was occurred between the components. Doxycycline was located within NP matrix in its molecular form. The DOX-SLN significantly decreased the microbial loading within macrophages (3.5 Log) in comparison with the free doxycycline. Conclusions Since the DOX-SLN showed better effects on B. melitensis enclosed in macrophages than the free doxycycline, it is recommended to use it for treating brucellosis and preventing relapse.
Collapse
Affiliation(s)
- Seyed Mostafa Hosseini
- 1Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Shahid fahmideh street, Park Mardome, Hamadan, IR Iran
| | - Roghayyeh Abbasalipourkabir
- 2Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Shahid fahmideh street, Park Mardome, Hamadan, IR Iran
| | - Farid Azizi Jalilian
- 3Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Shahid fahmideh street, Park Mardome, Hamadan, IR Iran
| | - Sara Soleimani Asl
- 4Department of Anatomical Sciences, Faculty of Medicine, Hamadan University of Medical Sciences, Shahid fahmideh street, Park Mardome, Hamadan, IR Iran
| | - Abbas Farmany
- 5Dental Research Center, School of Dentistry,, Hamadan University of Medical Sciences, Shahid fahmideh street, Park Mardome, Hamadan, IR Iran
| | - Ghodratollah Roshanaei
- 6Department of Biostatistics, School of Health, Hamadan University of Medical Sciences, Shahid fahmideh street, Park Mardome, Hamadan, IR Iran
| | - Mohammad Reza Arabestani
- 1Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Shahid fahmideh street, Park Mardome, Hamadan, IR Iran.,7Brucellosis Research Center, Hamadan University of Medical Sciences, Shahid fahmideh street, Park Mardome, Hamadan, IR Iran
| |
Collapse
|
33
|
Bayón-Cordero L, Alkorta I, Arana L. Application of Solid Lipid Nanoparticles to Improve the Efficiency of Anticancer Drugs. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E474. [PMID: 30909401 PMCID: PMC6474076 DOI: 10.3390/nano9030474] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 12/25/2022]
Abstract
Drug delivery systems have opened new avenues to improve the therapeutic effects of already-efficient molecules. Particularly, Solid Lipid Nanoparticles (SLNs) have emerged as promising nanocarriers in cancer therapy. SLNs offer remarkable advantages such as low toxicity, high bioavailability of drugs, versatility of incorporation of hydrophilic and lipophilic drugs, and feasibility of large-scale production. Their molecular structure is crucial to obtain high quality SLN preparations and it is determined by the relationship between the composition and preparation method. Additionally, SLNs allow overcoming several physiological barriers that hinder drug delivery to tumors and are also able to escape multidrug resistance mechanisms, characteristic of cancer cells. Focusing on cell delivery, SLNs can improve drug delivery to target cells by different mechanisms, such as passive mechanisms that take advantage of the tumor microenvironment, active mechanisms by surface modification of SLNs, and codelivery mechanisms. SLNs can incorporate many different drugs and have proven to be effective in different types of tumors (i.e., breast, lung, colon, liver, and brain), corroborating their potential. Finally, it has to be taken into account that there are still some challenges to face in the application of SLNs in anticancer treatments but their possibilities seem to be high.
Collapse
Affiliation(s)
- Laura Bayón-Cordero
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Spain.
| | - Itziar Alkorta
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Spain.
- Instituto Biofisika (CSIC, UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Spain.
| | - Lide Arana
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Spain.
| |
Collapse
|
34
|
Komath S, Garg A, Wahajuddin M. Development and evaluation of Chrysin-Phospholipid complex loaded solid lipid nanoparticles - storage stability and in vitro anti-cancer activity. J Microencapsul 2018; 35:600-617. [DOI: 10.1080/02652048.2018.1559369] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Shahadali Komath
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh, India
| | - Anuj Garg
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh, India
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Muhammad Wahajuddin
- Divisions of Metabolism and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| |
Collapse
|
35
|
Vakilinezhad MA, Tanha S, Montaseri H, Dinarvand R, Azadi A, Akbari Javar H. Application of Response Surface Method for Preparation, Optimization, and Characterization of Nicotinamide Loaded Solid Lipid Nanoparticles. Adv Pharm Bull 2018; 8:245-256. [PMID: 30023326 PMCID: PMC6046421 DOI: 10.15171/apb.2018.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/16/2018] [Accepted: 04/25/2018] [Indexed: 12/26/2022] Open
Abstract
Purpose: Solid lipid nanoparticles (SLNs) have been proven to possess pharmaceutical advantages. They have the ability to deliver hydrophilic drugs through lipid membranes of the body. However, the loading of such drugs into SLNs is challenging. Hydrophilic nicotinamide, a histone deacetylase inhibitor, is used to establish SLNs with enhanced encapsulation efficiency by using statistical design. Methods: The possible effective parameters of these particles’ characteristics were determined using pre-formulation studies and preliminary tests. Afterwards, the Response Surface Method (RSM) was utilized to optimize the preparation condition of SLNs. The effect of the amount of lipid, drug, surfactant, and the mixing apparatus were studied on particle size, zeta potential, and encapsulation efficiency of the obtained particles. The acquired particles were characterized in respect of their morphology, in vitro release profile, and cytotoxicity. Results: According to this study, all the dependant variables could be fitted into quadratic models. Particles of 107 nm with zeta potential of about -40.9 and encapsulation efficiency of about 36% were obtained under optimized preparation conditions; i.e. with stearic acid to phospholipon® 90G ratio of 7.5 and nicotinamide to sodium taurocholate ratio of 14.74 using probe sonication. The validation test confirmed the model’s suitability. The release profile demonstrated the controlled release profile following the initial burst release. Neither the nicotinamide nor the SLNs showed toxicity under the evaluated concentrations. Conclusion: The acquired results suggested the suitability of the model for designing the delivery system with a highly encapsulated water soluble drug for controlling its delivery.
Collapse
Affiliation(s)
| | - Shima Tanha
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hashem Montaseri
- Department of Quality Control, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Akbari Javar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Zhang J, Tang H, Liu Z, Chen B. Effects of major parameters of nanoparticles on their physical and chemical properties and recent application of nanodrug delivery system in targeted chemotherapy. Int J Nanomedicine 2017; 12:8483-8493. [PMID: 29238188 PMCID: PMC5713688 DOI: 10.2147/ijn.s148359] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chemotherapy is still one of the main cancer therapy treatments, but the curative effect of chemotherapy is relatively low, as such the development of a new cancer treatment is highly desirable. The gradual maturation of nanotechnology provides an innovative perspective not only for cancer therapy but also for many other applications. There are a diverse variety of nanoparticles available, and choosing the appropriate carriers according to the demand is the key issue. The performance of nanoparticles is affected by many parameters, mainly size, shape, surface charge, and toxicity. Using nanoparticles as the carriers to realize passive targeting and active targeting can improve the efficacy of chemotherapy drugs significantly, reduce the mortality rate of cancer patients, and improve the quality of life of patients. In recent years, there has been extensive research on nanocarriers. In this review, the effects of several major parameters of nanoparticles on their physical and chemical properties are reviewed, and then the recent progress in the application of several commonly used nanoparticles is presented.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing
| | - Hua Tang
- Department of Hematology, People's Hospital of Xinghua City, Xinghua City, Jiangsu Province, People's Republic of China
| | - Zefa Liu
- Department of Hematology, People's Hospital of Xinghua City, Xinghua City, Jiangsu Province, People's Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing
| |
Collapse
|
37
|
|
38
|
Manaia EB, Abuçafy MP, Chiari-Andréo BG, Silva BL, Oshiro Junior JA, Chiavacci LA. Physicochemical characterization of drug nanocarriers. Int J Nanomedicine 2017; 12:4991-5011. [PMID: 28761340 PMCID: PMC5516877 DOI: 10.2147/ijn.s133832] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pharmaceutical design has enabled important advances in the prevention, treatment, and diagnosis of diseases. The use of nanotechnology to optimize the delivery of drugs and diagnostic molecules is increasingly receiving attention due to the enhanced efficiency provided by these systems. Understanding the structures of nanocarriers is crucial in elucidating their physical and chemical properties, which greatly influence their behavior in the body at both the molecular and systemic levels. This review was conducted to describe the principles and characteristics of techniques commonly used to elucidate the structures of nanocarriers, with consideration of their size, morphology, surface charge, porosity, crystalline arrangement, and phase. These techniques include X-ray diffraction, small-angle X-ray scattering, dynamic light scattering, zeta potential, polarized light microscopy, transmission electron microscopy, scanning electron microcopy, and porosimetry. Moreover, we describe some of the commonly used nanocarriers (liquid crystals, metal-organic frameworks, silica nanospheres, liposomes, solid lipid nanoparticles, and micelles) and the main aspects of their structures.
Collapse
Affiliation(s)
- Eloísa Berbel Manaia
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Marina Paiva Abuçafy
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Bruna Galdorfini Chiari-Andréo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
- Department of Biological and Health Sciences, Centro Universitário de Araraquara, UNIARA, Araraquara, SP, Brazil
| | - Bruna Lallo Silva
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - João Augusto Oshiro Junior
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Leila Aparecida Chiavacci
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| |
Collapse
|
39
|
Pashirova TN, Zueva IV, Petrov KA, Babaev VM, Lukashenko SS, Rizvanov IK, Souto EB, Nikolsky EE, Zakharova LY, Masson P, Sinyashin OG. Nanoparticle-Delivered 2-PAM for Rat Brain Protection against Paraoxon Central Toxicity. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16922-16932. [PMID: 28504886 DOI: 10.1021/acsami.7b04163] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Solid lipid nanoparticles (SLNs) are among the most promising nanocarriers to target the blood-brain barrier (BBB) for drug delivery to the central nervous system (CNS). Encapsulation of the acetylcholinesterase reactivator, pralidoxime chloride (2-PAM), in SLNs appears to be a suitable strategy for protection against poisoning by organophosphorus agents (OPs) and postexposure treatment. 2-PAM-loaded SLNs were developed for brain targeting and delivery via intravenous (iv) administration. 2-PAM-SLNs displayed a high 2-PAM encapsulation efficiency (∼90%) and loading capacity (maximum 30.8 ± 1%). Drug-loaded particles had a mean hydrodynamic diameter close to 100 nm and high negative zeta potential (-54 to -15 mV). These properties contribute to improve long-term stability of 2-PAM-SLNs when stored both at room temperature (22 °C) and at 4 °C, as well as to longer circulation time in the bloodstream compared to free 2-PAM. Paraoxon-poisoned rats (2 × LD50) were treated with 2-PAM-loaded SLNs at a dose of 2-PAM of 5 mg/kg. 2-PAM-SLNs reactivated 15% of brain AChE activity. Our results confirm the potential use of SLNs loaded with positively charged oximes as a medical countermeasure both for protection against OPs poisoning and for postexposure treatment.
Collapse
Affiliation(s)
- Tatiana N Pashirova
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences , 8 Arbuzov Street, Kazan 420088, Russia
| | - Irina V Zueva
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences , 8 Arbuzov Street, Kazan 420088, Russia
| | - Konstantin A Petrov
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences , 8 Arbuzov Street, Kazan 420088, Russia
- Kazan Federal University , 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Vasily M Babaev
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences , 8 Arbuzov Street, Kazan 420088, Russia
| | - Svetlana S Lukashenko
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences , 8 Arbuzov Street, Kazan 420088, Russia
| | - Ildar Kh Rizvanov
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences , 8 Arbuzov Street, Kazan 420088, Russia
| | | | - Evgeny E Nikolsky
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences , 8 Arbuzov Street, Kazan 420088, Russia
- Kazan State Medical University , 49 Butlerova Street, Kazan 420012, Russia
| | - Lucia Ya Zakharova
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences , 8 Arbuzov Street, Kazan 420088, Russia
| | - Patrick Masson
- Kazan Federal University , 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Oleg G Sinyashin
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences , 8 Arbuzov Street, Kazan 420088, Russia
| |
Collapse
|
40
|
Li J, Qiao Y, Wu Z. Nanosystem trends in drug delivery using quality-by-design concept. J Control Release 2017; 256:9-18. [PMID: 28414149 DOI: 10.1016/j.jconrel.2017.04.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 01/13/2023]
Abstract
Quality by design (QbD) has become an inevitable trend because of its benefits for product quality and process understanding. Trials have been conducted using QbD in nanosystems' optimization. This paper reviews the application of QbD for processing nanosystems and summarizes the application procedure. It provides prospective guidelines for future investigations that apply QbD to nanosystem manufacturing processes. Employing the QbD concept in this way is a novel area in nanosystem quality.
Collapse
Affiliation(s)
- Jing Li
- Beijing University of Chinese Medicine, 100102, China; Pharmaceutical Engineering and New Drug Development of TCM of Ministry of Education, 100102, China; Key Laboratory of TCM-information Engineering of State Administration of TCM, Beijing 100102, China
| | - Yanjiang Qiao
- Beijing University of Chinese Medicine, 100102, China; Pharmaceutical Engineering and New Drug Development of TCM of Ministry of Education, 100102, China; Key Laboratory of TCM-information Engineering of State Administration of TCM, Beijing 100102, China
| | - Zhisheng Wu
- Beijing University of Chinese Medicine, 100102, China; Pharmaceutical Engineering and New Drug Development of TCM of Ministry of Education, 100102, China; Key Laboratory of TCM-information Engineering of State Administration of TCM, Beijing 100102, China.
| |
Collapse
|
41
|
Kumar R, Sinha VR. Lipid Nanocarrier: an Efficient Approach Towards Ocular Delivery of Hydrophilic Drug (Valacyclovir). AAPS PharmSciTech 2017; 18:884-894. [PMID: 27368921 DOI: 10.1208/s12249-016-0575-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/13/2016] [Indexed: 11/30/2022] Open
Abstract
This research focuses on the fabrication and evaluation of solid lipid nanoparticles (SLNs) for improved ocular delivery of valacyclovir (VAC). Stearic acid and tristearin were selected as the lipid carrier while Poloxamer 188 and sodium taurocholate were used as surfactant and co-surfactant, respectively. The physiochemical properties of the optimized batch (SLN-6) fulfil the prerequisites needed for an ideal ocular formulation like submicron size (202.5 ± 2.56 nm), narrow PDI (0.252 ± 0.06), high zeta potential (-34.4 ± 3.04 mV) and good entrapment efficiency (58.82 ± 2.45%). The in vitro release study of SLN-6 exhibited a sustained release profile (>60% in 12 h). The ex vivo studies performed on excised cornea exhibited enhanced drug permeation of SLNs (22.17 ± 1.41 μg/cm2 h) in comparison to the drug solution (3.78 ± 1.34 μg/cm2 h). Apart, the corneal hydration studies, histopathology and Hen's Egg Test Chorio Allantoic Membrane (HETCAM) assay, confirmed the non-irritancy of SLNs. The in vivo study confirmed improved ocular bioavailability of VAC from SLN-6 (AUC0-12: 856.47 ± 7.86 μg h/mL) in contrast to the drug solution (AUC0-12: 470.75 ± 8.91 μg h/mL). Hence, the overall studies suggested the potential of SLNs in efficient ocular delivery of a hydrophilic molecule like VAC.
Collapse
|
42
|
Bukara K, Drvenica I, Ilić V, Stančić A, Mišić D, Vasić B, Gajić R, Vučetić D, Kiekens F, Bugarski B. Comparative studies on osmosis based encapsulation of sodium diclofenac in porcine and outdated human erythrocyte ghosts. J Biotechnol 2016; 240:14-22. [PMID: 27773756 DOI: 10.1016/j.jbiotec.2016.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 10/16/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
The objective of our study was to develop controlled drug delivery system based on erythrocyte ghosts for amphiphilic compound sodium diclofenac considering the differences between erythrocytes derived from two readily available materials - porcine slaughterhouse and outdated transfusion human blood. Starting erythrocytes, empty erythrocyte ghosts and diclofenac loaded ghosts were compared in terms of the encapsulation efficiency, drug releasing profiles, size distribution, surface charge, conductivity, surface roughness and morphology. The encapsulation of sodium diclofenac was performed by an osmosis based process - gradual hemolysis. During this process sodium diclofenac exerted mild and delayed antihemolytic effect and increased potassium efflux in porcine but not in outdated human erythrocytes. FTIR spectra revealed lack of any membrane lipid disorder and chemical reaction with sodium diclofenac in encapsulated ghosts. Outdated human erythrocyte ghosts with detected nanoscale damages and reduced ability to shrink had encapsulation efficiency of only 8%. On the other hand, porcine erythrocyte ghosts had encapsulation efficiency of 37% and relatively slow drug release rate. More preserved structure and functional properties of porcine erythrocytes related to their superior encapsulation and release performances, define them as more appropriate for the usage in sodium diclofenac encapsulation process.
Collapse
Affiliation(s)
- Katarina Bukara
- Department Pharmaceutics, Campus Drie Eiken, University of Antwerp, Antwerp, Belgium; Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia.
| | - Ivana Drvenica
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Vesna Ilić
- Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Ana Stančić
- Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Danijela Mišić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Borislav Vasić
- Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Zemun, Belgrade, Serbia
| | - Radoš Gajić
- Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Zemun, Belgrade, Serbia
| | - Dušan Vučetić
- Institute for Tranfusiology and Haemobiology of Military Medical Academy, Belgrade, Serbia
| | - Filip Kiekens
- Department Pharmaceutics, Campus Drie Eiken, University of Antwerp, Antwerp, Belgium
| | - Branko Bugarski
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
43
|
Solid Lipid Nanoparticles Improve the Diclofenac Availability in Vitreous after Intraocular Injection. JOURNAL OF DRUG DELIVERY 2016; 2016:1368481. [PMID: 27803815 PMCID: PMC5075616 DOI: 10.1155/2016/1368481] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/31/2016] [Accepted: 09/18/2016] [Indexed: 01/04/2023]
Abstract
Purpose. In order to improve the drug availability after intravitreal administration, solid lipid nanoparticles (SLNs) containing diclofenac were prepared. Methods. In this experimental study, 18 albino rabbits were included. In right and left eyes of all rabbits, SLNs containing diclofenac and commercial form of diclofenac (0.3 mg drug) were intravitreally injected, respectively. One, four, twelve, twenty-four, and forty-eight hours after injection, vitreous and aqueous humor samples were obtained in all cases. Then, the concentration of diclofenac sodium was evaluated in all samples. Results. Size of nanoparticles was around 170 nm after preparation. Drug concentration in eyes injected with SLNs was significantly higher than left eyes injected with commercial formulation up to 4 hours after intravitreal injection (p < 0.05). Diclofenac was quantified in samples up to 48 hours after intraocular injection. Four hours after intravitreal injection, the concentration of diclofenac in vitreous and aqueous humor of eyes receiving SLNs was, respectively, 2.5 and 6.5 times higher than eyes injected with commercial form of drug. Conclusions. Here, we demonstrate the potential of SLNs as a carrier of diclofenac for intraocular injection in order to prevent the systemic effects of the drug, increase the injection intervals, and improve the patient compliance.
Collapse
|
44
|
Liu D, Cito S, Zhang Y, Wang CF, Sikanen TM, Santos HA. A versatile and robust microfluidic platform toward high throughput synthesis of homogeneous nanoparticles with tunable properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:2298-304. [PMID: 25684077 DOI: 10.1002/adma.201405408] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/18/2015] [Indexed: 05/17/2023]
Abstract
A versatile and robust microfluidic nanoprecipitation platform for high throughput synthesis of nanoparticles is fabricated. The versatility of this platform is proven through the successful preparation of different types of nanoparticles. This platform presents great robustness, with homogeneous nanoparticles always being obtained, regardless of the formulation parameters. The diameter and surface charge of the prepared nanoparticles can also be easily tuned.
Collapse
Affiliation(s)
- Dongfei Liu
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
45
|
Abed N, Couvreur P. Nanocarriers for antibiotics: a promising solution to treat intracellular bacterial infections. Int J Antimicrob Agents 2014; 43:485-96. [PMID: 24721232 DOI: 10.1016/j.ijantimicag.2014.02.009] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 02/07/2014] [Indexed: 10/25/2022]
Abstract
In the field of antibiotherapy, intracellular infections remain difficult to eradicate mainly due to the poor intracellular penetration of most of the commonly used antibiotics. Bacteria have quickly understood that their intracellular localisation allows them to be protected from the host immune system, but also from the action of antimicrobial agents. In addition, in most cases pathogens nestle in professional phagocytic cells, and can even use them as a 'Trojan horse' to induce a secondary site of infection thereby causing persistent or recurrent infections. Thus, new strategies had to be considered in order to counteract these problems. Amongst them, nanocarriers loaded with antibiotics represent a promising approach. Nowadays, it is possible to encapsulate, incorporate or even conjugate biologically active molecules into different families of nanocarriers such as liposomes or nanoparticles in order to deliver antibiotics intracellularly and hence to treat infections. This review gives an overview of the variety of nanocarriers developed to deliver antibiotics directly into infected cells.
Collapse
Affiliation(s)
- Nadia Abed
- Faculté de Pharmacie, Institut Galien UMR CNRS 8612, Université Paris-Sud XI, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France
| | - Patrick Couvreur
- Faculté de Pharmacie, Institut Galien UMR CNRS 8612, Université Paris-Sud XI, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France.
| |
Collapse
|
46
|
Cooper DL, Harirforoosh S. Design and optimization of PLGA-based diclofenac loaded nanoparticles. PLoS One 2014; 9:e87326. [PMID: 24489896 PMCID: PMC3905017 DOI: 10.1371/journal.pone.0087326] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/20/2013] [Indexed: 11/18/2022] Open
Abstract
Drug based nanoparticle (NP) formulations have gained considerable attention over the past decade for their use in various drug formulations. NPs have been shown to increase bioavailability, decrease side effects of highly toxic drugs, and prolong drug release. Nonsteroidal anti-inflammatory drugs such as diclofenac block cyclooxygenase expression and reduce prostaglandin synthesis, which can lead to several side effects such as gastrointestinal bleeding and renal insufficiency. The aim of this study was to formulate and characterize diclofenac entrapped poly(lactide-co-glycolide) (PLGA) based nanoparticles. Nanoparticles were formulated using an emulsion-diffusion-evaporation technique with varying concentrations of poly vinyl alcohol (PVA) (0.1, 0.25, 0.5, or 1%) or didodecyldimethylammonium bromide (DMAB) (0.1, 0.25, 0.5, 0.75, or 1%) stabilizers centrifuged at 8,800 rpm or 12,000 rpm. The resultant nanoparticles were evaluated based on particle size, zeta potential, and entrapment efficacy. DMAB formulated NPs showed the lowest particle size (108±2.1 nm) and highest zeta potential (−27.71±0.6 mV) at 0.1 and 0.25% respectively, after centrifugation at 12,000 rpm. Results of the PVA based NP formulation showed the smallest particle size (92.4±7.6 nm) and highest zeta potential (−11.14±0.5 mV) at 0.25% and 1% w/v, respectively, after centrifugation at 12,000 rpm. Drug entrapment reached 77.3±3.5% and 80.2±1.2% efficiency with DMAB and PVA formulations, respectively. The results of our study indicate the use of DMAB for increased nanoparticle stability during formulation. Our study supports the effective utilization of PLGA based nanoparticle formulation for diclofenac.
Collapse
Affiliation(s)
- Dustin L. Cooper
- Department of Pharmaceutical Sciences, Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Sam Harirforoosh
- Department of Pharmaceutical Sciences, Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee, United States of America
- * E-mail:
| |
Collapse
|