1
|
Yeh NT, Lin TC, Liu IJ, Hu SH, Hsu TC, Chin HY, Tzang BS, Chiang WH. Hyaluronic acid-covered ferric ion-rich nanobullets with high zoledronic acid payload for breast tumor-targeted chemo/chemodynamic therapy. Int J Biol Macromol 2024; 279:135271. [PMID: 39233170 DOI: 10.1016/j.ijbiomac.2024.135271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/23/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Due to the heterogeneity of the tumor microenvironment, the clinical efficacy of tumor treatment is not satisfied, highlighting the necessity for new strategies to tackle this issue. To effectively treat breast tumors by tumor-targeted chemo/chemodynamic therapy, herein, the Fe3+-rich MIL-88B nanobullets (MNs) covered with hyaluronic acid (HA) were fabricated as vehicles of zoledronic acid (ZA). The attained ZA@HMNs showed a high ZA payload (ca 29.6 %), outstanding colloidal stability in the serum-containing milieu, and accelerated ZA as well as Fe3+ release under weakly acidic and glutathione (GSH)-rich conditions. Also, the ZA@HMNs consumed GSH by GSH-mediated Fe3+ reduction and converted H2O2 into OH via Fenton or Fenton-like reaction with pH reduction. After being internalized by 4T1 cells upon CD44-mediated endocytosis, the ZA@HMNs depleted intracellular GSH and degraded H2O2 into OH, thus eliciting lipid peroxidation and mitochondria damage to suppress cell proliferation. Also, the ZA@HMNs remarkably killed macrophage-like RAW 264.7 cells. Importantly, the in vivo studies and ki67 and GPX4 staining of tumor sections demonstrated that the ZA@HMNs efficiently accumulated in 4T1 tumors to hinder tumor growth via ZA chemotherapy combined with OH-mediated ferroptosis. This work presents a practicable strategy to fabricate ZA@HMNs for breast tumor-targeted chemo/chemodynamic therapy with potential clinical translation.
Collapse
Affiliation(s)
- Nien-Tzu Yeh
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan
| | - Tzu-Chen Lin
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan
| | - I-Ju Liu
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Tsai-Ching Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Hao-Yang Chin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Bor-Show Tzang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan; Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Wen-Hsuan Chiang
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
2
|
Pednekar K, Minnee J, de Vries IJM, Prakash J. Targeted nanomedicine for reprogramming the tumor innate immune system: From bench to bedside. Eur J Pharm Biopharm 2024; 204:114510. [PMID: 39307440 DOI: 10.1016/j.ejpb.2024.114510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024]
Abstract
Tumor-associated innate immune cells such as tumor-associated macrophages, neutrophils, dendritic cells play a crucial role in tumor progression, angiogenesis and metastasis. These cells also control the efficacy of chemotherapy and immunotherapy by inducing drug resistance and immunosuppression, leading to therapeutic failures. Therefore, targeting the tumor-associated innate immune cells has gained high attention for the development of effective cancer therapy. Nanomedicine based strategies to target these cells are highly relevant and can be used to reprogram these cells. In this review, we discuss the fundamental roles of the tumor-associated innate immune cells in the tumor microenvironment and different strategies to modulate them. Then, nanomedicine-based strategies to target different tumor innate immune cells are explained in detail. While the clinical development of the targeted nanomedicine remains a great challenge in practice, we have provided our perspectives on various factors such as pharmaceutical aspects, preclinical testing and biological aspects which are crucial to consider before translating these targeting strategies to clinics.
Collapse
Affiliation(s)
- Kunal Pednekar
- Engineered Therapeutics, Department of Advanced Organ bioengineering and Therapeutics, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Julia Minnee
- Department of Medical BioSciences (MBS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - I Jolanda M de Vries
- Department of Medical BioSciences (MBS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jai Prakash
- Engineered Therapeutics, Department of Advanced Organ bioengineering and Therapeutics, Technical Medical Centre, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
3
|
Li L, Ma SR, Yu ZL. Targeting the lipid metabolic reprogramming of tumor-associated macrophages: A novel insight into cancer immunotherapy. Cell Oncol (Dordr) 2024; 47:415-428. [PMID: 37776422 DOI: 10.1007/s13402-023-00881-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Tumor-associated macrophages, as the major immunocytes in solid tumors, show divided loyalty and remarkable plasticity in tumorigenesis. Once the M2-to-M1 repolarization is achieved, they could be switched from the supporters for tumor development into the guardians for host immunity. Meanwhile, Lipid metabolic reprogramming is demonstrated to be one of the most important hallmarks of tumor-associated macrophages, which plays a decisive role in regulating their phenotypes and functions to promote tumorigenesis and immunotherapy resistance. Therefore, targeting the lipid metabolism of TAMs may provide a new direction for anti-tumor strategies. CONCLUSION In this review, we first summarized the origins, classifications and general lipid metabolic process of TAMs. Then we discussed the currently available drugs and interventions that target lipid metabolic disorders of TAMs, including those targeting lipid uptake, efflux, lipolysis, FAO and lipid peroxidation. Besides, based on the recent research status, we summarized the present challenges for this cancer immunotherapy, including the precise drug delivery system, the lipid metabolic heterogeneity, and the intricate lipid metabolic interactions in the TME, and we also proposed corresponding possible solutions. Collectively, we hope this review will give researchers a better understanding of the lipid metabolism of TAMs and lead to the development of corresponding anti-tumor therapies in the future.
Collapse
Affiliation(s)
- Liang Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China
| | - Si-Rui Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Zi-Li Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
4
|
Chai K, Wang C, Zhou J, Mu W, Gao M, Fan Z, Lv G. Quenching thirst with poison? Paradoxical effect of anticancer drugs. Pharmacol Res 2023; 198:106987. [PMID: 37949332 DOI: 10.1016/j.phrs.2023.106987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Anticancer drugs have been developed with expectations to provide long-term or at least short-term survival benefits for patients with cancer. Unfortunately, drug therapy tends to provoke malignant biological and clinical behaviours of cancer cells relating not only to the evolution of resistance to specific drugs but also to the enhancement of their proliferation and metastasis abilities. Thus, drug therapy is suspected to impair long-term survival in treated patients under certain circumstances. The paradoxical therapeutic effects could be described as 'quenching thirst with poison', where temporary relief is sought regardless of the consequences. Understanding the underlying mechanisms by which tumours react on drug-induced stress to maintain viability is crucial to develop rational targeting approaches which may optimize survival in patients with cancer. In this review, we describe the paradoxical adverse effects of anticancer drugs, in particular how cancer cells complete resistance evolution, enhance proliferation, escape from immune surveillance and metastasize efficiently when encountered with drug therapy. We also describe an integrative therapeutic framework that may diminish such paradoxical effects, consisting of four main strategies: (1) targeting endogenous stress response pathways, (2) targeting new identities of cancer cells, (3) adaptive therapy- exploiting subclonal competition of cancer cells, and (4) targeting tumour microenvironment.
Collapse
Affiliation(s)
- Kaiyuan Chai
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Chuanlei Wang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jianpeng Zhou
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Wentao Mu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Menghan Gao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhongqi Fan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
5
|
Ung T, Rutledge NS, Weiss AM, Esser-Kahn AP, Deak P. Cell-targeted vaccines: implications for adaptive immunity. Front Immunol 2023; 14:1221008. [PMID: 37662903 PMCID: PMC10468591 DOI: 10.3389/fimmu.2023.1221008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Recent advancements in immunology and chemistry have facilitated advancements in targeted vaccine technology. Targeting specific cell types, tissue locations, or receptors can allow for modulation of the adaptive immune response to vaccines. This review provides an overview of cellular targets of vaccines, suggests methods of targeting and downstream effects on immune responses, and summarizes general trends in the literature. Understanding the relationships between vaccine targets and subsequent adaptive immune responses is critical for effective vaccine design. This knowledge could facilitate design of more effective, disease-specialized vaccines.
Collapse
Affiliation(s)
- Trevor Ung
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Nakisha S. Rutledge
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Adam M. Weiss
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Aaron P. Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Peter Deak
- Chemical and Biological Engineering Department, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
6
|
Yang YL, Yang F, Huang ZQ, Li YY, Shi HY, Sun Q, Ma Y, Wang Y, Zhang Y, Yang S, Zhao GR, Xu FH. T cells, NK cells, and tumor-associated macrophages in cancer immunotherapy and the current state of the art of drug delivery systems. Front Immunol 2023; 14:1199173. [PMID: 37457707 PMCID: PMC10348220 DOI: 10.3389/fimmu.2023.1199173] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
The immune system provides full protection for the body by specifically identifying 'self' and removing 'others'; thus protecting the body from diseases. The immune system includes innate immunity and adaptive immunity, which jointly coordinate the antitumor immune response. T cells, natural killer (NK) cells and tumor-associated macrophages (TAMs) are the main tumor-killing immune cells active in three antitumor immune cycle. Cancer immunotherapy focusses on activating and strengthening immune response or eliminating suppression from tumor cells in each step of the cancer-immunity cycle; thus, it strengthens the body's immunity against tumors. In this review, the antitumor immune cycles of T cells, natural killer (NK) cells and tumor-associated macrophages (TAMs) are discussed. Co-stimulatory and co-inhibitory molecules in the three activity cycles and the development of drugs and delivery systems targeting these molecules are emphasized, and the current state of the art of drug delivery systems for cancer immunotherapy are summarized.
Collapse
Affiliation(s)
- Ya-long Yang
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Fei Yang
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Zhuan-qing Huang
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Yuan-yuan Li
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Hao-yuan Shi
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Qi Sun
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Yue Ma
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Yao Wang
- Department of Biotherapeutic, The First Medical Centre, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Ying Zhang
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Sen Yang
- Chinese People’s Armed Police Force Hospital of Beijing, Beijing, China
| | - Guan-ren Zhao
- Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Feng-hua Xu
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| |
Collapse
|
7
|
Tang M, Sakasai S, Onishi H, Kawano K, Hattori Y. Effect of PEG anchor in PEGylation of folate-modified cationic liposomes with PEG-derivatives on systemic siRNA delivery into the Tumor. J Drug Target 2023; 31:74-88. [PMID: 35864749 DOI: 10.1080/1061186x.2022.2104860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this study, we prepared small interfering RNA (siRNA)/cationic liposome complexes (lipoplexes) modified with folate (FA)-polyethylene glycol (PEG, MW 2000, 3400 or 5000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) to facilitate their uptake into tumor cells via folate receptor (FR), and with PEG1600-cholesterol (PEG1600-Chol) or PEG2000-chondroitin sulfate conjugate (PEG2000-CS), to enhance their systemic stability. Among the FA-PEG-modified siRNA lipoplexes, 0.5 mol% FA-PEG5000-DSPE-modified lipoplexes with 2.5 mol% PEG2000-CS or PEG1600-Chol (LP-0.5F5/2.5P2-CS and LP-0.5F5/2.5P1.6-CL, respectively) exhibited selective growth inhibition of human nasopharyngeal carcinoma KB cells through transduction with polo-like kinase 1 (PLK1) siRNA. Furthermore, the LP-0.5F5/2.5P2-CS and LP-0.5F5/2.5P1.6-CL lipoplexes exhibited decreased agglutination with erythrocytes through PEGylation, and markedly decreased the accumulation of siRNA in murine lungs after systemic injection. Finally, systemic injection of LP-0.5F5/2.5P2-CS and LP-0.5F5/2.5P1.6-CL lipoplexes resulted in accumulation of siRNA in KB tumor xenografts. These findings suggest that PEGylation of FA-PEG5000-DSPE-modified siRNA lipoplexes with PEG2000-CS or PEG1600-Chol might improve their systemic stability without the loss of selective transfection activity in tumor cells.
Collapse
Affiliation(s)
- Min Tang
- Department of Molecular Pharmaceutics, Hoshi University, Shinagawa, Tokyo, Japan
| | - Sho Sakasai
- Department of Molecular Pharmaceutics, Hoshi University, Shinagawa, Tokyo, Japan
| | - Hiraku Onishi
- Department of Drug Delivery Research, Hoshi University, Shinagawa, Tokyo, Japan
| | - Kumi Kawano
- Department of Molecular Pharmaceutics, Hoshi University, Shinagawa, Tokyo, Japan
| | - Yoshiyuki Hattori
- Department of Molecular Pharmaceutics, Hoshi University, Shinagawa, Tokyo, Japan
| |
Collapse
|
8
|
Mamun AA, Uddin MS, Perveen A, Jha NK, Alghamdi BS, Jeandet P, Zhang HJ, Ashraf GM. Inflammation-targeted nanomedicine against brain cancer: From design strategies to future developments. Semin Cancer Biol 2022; 86:101-116. [PMID: 36084815 DOI: 10.1016/j.semcancer.2022.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/08/2022] [Accepted: 08/21/2022] [Indexed: 02/07/2023]
Abstract
Brain cancer is an aggressive type of cancer with poor prognosis. While the immune system protects against cancer in the early stages, the tumor exploits the healing arm of inflammatory reactions to accelerate its growth and spread. Various immune cells penetrate the developing tumor region, establishing a pro-inflammatory tumor milieu. Additionally, tumor cells may release chemokines and cytokines to attract immune cells and promote cancer growth. Inflammation and its associated mechanisms in the progression of cancer have been extensively studied in the majority of solid tumors, especially brain tumors. However, treatment of the malignant brain cancer is hindered by several obstacles, such as the blood-brain barrier, transportation inside the brain interstitium, inflammatory mediators that promote tumor growth and invasiveness, complications in administering therapies to tumor cells specifically, the highly invasive nature of gliomas, and the resistance to drugs. To resolve these obstacles, nanomedicine could be a potential strategy that has facilitated advancements in diagnosing and treating brain cancer. Due to the numerous benefits provided by their small size and other features, nanoparticles have been a prominent focus of research in the drug-delivery field. The purpose of this article is to discuss the role of inflammatory mediators and signaling pathways in brain cancer as well as the recent advances in understanding the nano-carrier approaches for enhancing drug delivery to the brain in the treatment of brain cancer.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of China
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India; Department of Biotechnology, School of Applied & Life Sciences, Uttaranchal University, Dehradun 248007, India
| | - Badrah S Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Philippe Jeandet
- University of Reims Champagne-Ardenne, Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, PO Box 1039, 51687 Reims Cedex 2, France
| | - Hong-Jie Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of China
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
9
|
Jian H, Wang X, Song P, Wu X, Zheng R, Wang Y, Zhang H. Tumor microcalcification-mediated relay drug delivery for photodynamic immunotherapy of breast cancer. Acta Biomater 2022; 140:518-529. [PMID: 34923096 DOI: 10.1016/j.actbio.2021.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/06/2021] [Accepted: 12/11/2021] [Indexed: 11/17/2022]
Abstract
Spatiotemporal targeting of tumor-associated macrophages (TAMs) and tumor cells is emerging as a promising strategy for tumor therapy. Tumor microcalcifications that specifically bind to bisphosphonates are potentially used to design efficient relay drug delivery nanosystems to achieve spatiotemporal drug modulation. Here, we developed manganese dioxide (MnO2)-embedded and LyP-1 peptide-labeled liposomal nanoparticles (NPs) for photodynamic immunotherapy of breast cancer; zoledronic acid (Zol) was encapsulated in the hydrophilic cavity of liposomes, and a hydrophobic photosensitizer (IR780) was embedded in the phospholipid bilayer of liposomes. These Lipo Zol/IR NPs generated O2 bubbles through MnO2 in response to H2O2 in the tumor microenvironment, leading to the degradation of the liposomal membrane, which triggered the release of Zol and provided O2 for photodynamic therapy. The released Zol attached to microcalcifications and was selectively phagocytosed by TAMs, leading to the induction of death or repolarization of TAMs from the immunosuppressive M2 phenotype to the immunostimulatory M1 phenotype. The remaining liposomal fragments embedded with IR780 then preferentially targeted tumor cells through LyP-1 peptide and produced abundant reactive oxygen species (ROS) under near infrared (NIR) laser irradiation, resulting in the death of tumor cells and mild immune activation. All in vitro and in vivo studies demonstrated the effective photodynamic and immunoregulatory performance of Lipo Zol/IR NPs. STATEMENT OF SIGNIFICANCE: Spatiotemporal targeting of tumor-associated macrophages (TAMs) and tumor cells remains a challenge in tumor photodynamic immunotherapy for promoting synergy and reducing side effects. Here, we developed tumor microcalcification-mediated relay drug delivery nanoliposomes for breast cancer therapy. H2O2 in the tumor microenvironment (TME) triggers the breakage of nanoliposomes, thereby causing the separation of zoledronic acid (Zol) and the photosensitizer IR780 and allowing them to perform their respective functions. Microcalcifications enable Zol to target TAMs, resulting in immunomodulation. LyP-1 guides IR780 to target tumor cells for PDT with adequate O2 supply. These nanoliposomes enable precise spatiotemporal targeting of different types of cells in the TME and promote the synergy between immunotherapy and PDT while ensuring the effectiveness of both methods.
Collapse
Affiliation(s)
- Hui Jian
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
| | - Xingbo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China; University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - PanPan Song
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China; University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xiaqing Wu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China; University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Runxiao Zheng
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China; University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yanjing Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China; University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Haiyuan Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China; University of Science and Technology of China, Hefei, 230026, Anhui, China.
| |
Collapse
|
10
|
Guo C, Su Y, Wang B, Chen Q, Guo H, Kong M, Chen D. Novel polysaccharide building hybrid nanoparticles: remodelling TAMs to target ERα-positive breast cancer. J Drug Target 2021; 30:450-462. [PMID: 34927506 DOI: 10.1080/1061186x.2021.2020798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
With the increasing number of oncology patients and the use of chemotherapeutic agents, tumour multidrug resistance is becoming more and more prevalent. The search for new tumour treatment strategies to overcome tumour multidrug resistance is urgent. In this study, we designed GSH and ROS dual-responsive tumour-associated macrophages (TAMs)-targeted nanoparticles (NPs) for the co-delivery of the clinical first-line anti-breast cancer chemotherapy drug paclitaxel (PTX) and baicalin (Bai), which re-educates TAMs to alter their phenotype. We synthesised oligohyaluronic acid-mannose-folic acid (oHA-Man-FA, HMF) and astragalus polysaccharide-dithiodipropionic acid-paeoniflorol (APS-S-Pae, ASP), two hybrid materials that can self-assemble in water to form hybrid nanoparticles (HP-NPs) co-loaded with paclitaxel and baicalin (HP-NPs@PTX/Bai). The experimental results show that our designed hybrid nanoparticles can be specifically released in the tumour microenvironment and deliver the antitumor drug PTX as well as Bai, which reshapes the phenotype of TAMs, to the tumour site. The hybrid nanoparticles not only effectively re-educated TAMs from M2 TAM to M1 TAM, but also ameliorated the cytotoxic side effects caused by free PTX and provided better tumour suppression than free PTX and HP.
Collapse
Affiliation(s)
- Chunjing Guo
- College of Marine Life Science, Ocean University of China, Qingdao, PR China
| | - Yanguo Su
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Yantai University, Yantai, PR China
| | - Bingjie Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Yantai University, Yantai, PR China.,School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Qiang Chen
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Yantai University, Yantai, PR China
| | - Huimin Guo
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Yantai University, Yantai, PR China
| | - Ming Kong
- College of Marine Life Science, Ocean University of China, Qingdao, PR China
| | - Daquan Chen
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Yantai University, Yantai, PR China
| |
Collapse
|
11
|
Miatmoko A, Mianing EA, Sari R, Hendradi E. Nanoparticles use for Delivering Ursolic Acid in Cancer Therapy: A Scoping Review. Front Pharmacol 2021; 12:787226. [PMID: 35002719 PMCID: PMC8740088 DOI: 10.3389/fphar.2021.787226] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Ursolic acid is a natural pentacyclic triterpenoid that exerts a potent anticancer effect. Furthermore, it is classified as a BCS class IV compound possessing low permeability and water solubility, consequently demonstrating limited bioavailability in addition to low therapeutic effectiveness. Nanoparticles are developed to modify the physical characteristics of drug and can often be produced in the range of 30-200 nm, providing highly effective cancer therapy due to the Enhanced Permeation and Retention (EPR) Effect. This study aims to provide a review of the efficacy and safety of various types of Ursolic Acid-loading nanoparticles within the setting of preclinical and clinical anticancer studies. This literature study used scoping review method, where the extracted data must comply with the journal inclusion criteria of within years of 2010-2020. The identification stage produced 237 suitable articles. Duplicate screening was then conducted followed by the initial selection of 18 articles that had been reviewed and extracted for data analysis. Based on this review, the use of nanoparticles can be seen to increase the anticancer efficacy of Ursolic Acid in terms of several parameters including pharmacokinetic data, survival rates and inhibition rates, as well as the absence of serious toxicity in preclinical and clinical trials in terms of several parameters including body weight, blood clinical chemistry, and organ histipathology. Based on this review, the use of nanoparticles has been able to increase the anticancer efficacy of Ursolic Acid, as well as show the absence of serious toxicity in preclinical and clinical trials. Evenmore, the liposome carrier provides development data that has reached the clinical trial phase I. The use of nanoparticle provides high potential for Ursolic Acid delivery in cancer therapy.
Collapse
Affiliation(s)
- Andang Miatmoko
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
- Stem Cell Research and Development Center, Universitas Airlangga, Surabaya, Indonesia
| | - Ester Adelia Mianing
- Study Program of Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Retno Sari
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Esti Hendradi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
12
|
CAR-T cell-mediated depletion of immunosuppressive tumor-associated macrophages promotes endogenous antitumor immunity and augments adoptive immunotherapy. Nat Commun 2021; 12:877. [PMID: 33563975 PMCID: PMC7873057 DOI: 10.1038/s41467-021-20893-2] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
The immunosuppressive tumor microenvironment (TME) represents a major barrier for effective immunotherapy. Tumor-associated macrophages (TAMs) are highly heterogeneous and plastic cell components of the TME which can either promote tumor progression (M2-like) or boost antitumor immunity (M1-like). Here, we demonstrate that a subset of TAMs that express folate receptor β (FRβ) possess an immunosuppressive M2-like profile. In syngeneic tumor mouse models, chimeric antigen receptor (CAR)-T cell-mediated selective elimination of FRβ+ TAMs in the TME results in an enrichment of pro-inflammatory monocytes, an influx of endogenous tumor-specific CD8+ T cells, delayed tumor progression, and prolonged survival. Preconditioning of the TME with FRβ-specific CAR-T cells also improves the effectiveness of tumor-directed anti-mesothelin CAR-T cells, while simultaneous co-administration of both CAR products does not. These results highlight the pro-tumor role of FRβ+ TAMs in the TME and the therapeutic implications of TAM-depleting agents as preparative adjuncts to conventional immunotherapies that directly target tumor antigens.
Collapse
|
13
|
Zang X, Zhou J, Zhang X, Chen D, Han Y, Chen X. Dual-targeting tumor cells and tumor associated macrophages with lipid coated calcium zoledronate for enhanced lung cancer chemoimmunotherapy. Int J Pharm 2020; 594:120174. [PMID: 33338567 DOI: 10.1016/j.ijpharm.2020.120174] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/26/2020] [Accepted: 12/10/2020] [Indexed: 12/28/2022]
Abstract
Lung cancer is the leading cause of cancer death among both men and women, and non-small cell lung cancer (NSCLC) accounts for almost 80% of such death. Tumor associated macrophage (TAMs) are abundant components in NSCLC. TAMs play critical roles in angiogenesis, immune escape and chemoresistance. Here we developed a dual-targeting drug delivery system (CaZOL@BMNPs) of zoledronate, which could bind to both tumor cells with overexpressed biotin receptors and macrophage mannose receptor (MMR) positive TAMs. The biotin- and mannose-modified lipid coated calcium zoledronate nanoparticles were preferentially internalized in both tumor cells and TAMs, and thereby inhibited their survivals. Our studies demonstrated that CaZOl@BMNPs treatment obviously reduced angiogenesis, reprogrammed immunosuppressive tumor microenvironment and eventually restrained tumor progression with negligible systemic toxicity. Collectively, CaZOL@BMNPs could be a promising approach by dual-targeting tumor cells and TAMs for NSCLS chemoimmunotherapy.
Collapse
Affiliation(s)
- Xinlong Zang
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, PR China
| | - Jingyi Zhou
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, PR China
| | - Xiaoxu Zhang
- School of Pharmacy, Shenyang University, Wenhua Road 103, Shenyang, PR China
| | - Dawei Chen
- School of Pharmacy, Shenyang University, Wenhua Road 103, Shenyang, PR China
| | - Yantao Han
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, PR China
| | - Xuehong Chen
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, PR China.
| |
Collapse
|
14
|
Zhao YD, Muhetaerjiang M, An HW, Fang X, Zhao Y, Wang H. Nanomedicine enables spatiotemporally regulating macrophage-based cancer immunotherapy. Biomaterials 2020; 268:120552. [PMID: 33307365 DOI: 10.1016/j.biomaterials.2020.120552] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Cancer immunotherapy, leveraging the host's coordinated immune system to fight against tumor has been clinically validated. However, the modest response owing to the multiple ways of tumor immune evasion is one of the challenges in cancer immunotherapy. Tumor associated macrophages (TAMs), as a major component of the leukocytes infiltrating in all tumors, play crucial roles in driving cancer initiation, progress and metastasis via multiple mechanisms such as mediating chronic inflammation, promoting angiogenesis, taming protective immune responses, and supporting migration and intravasation. TAMs targeted therapeutics have achieved remarkable successes in clinical trials mostly through the use of small-molecule agents and antibodies. However, efforts for further application have met with challenges of limited efficacy and safety. Nanomaterials can provide versatile approaches to realize the superior spatiotemporal control over immunomodulation to amplify immune responses, ultimately enhancing the therapeutic benefits and reducing toxicity. Here, the potential drugs used in TAM-centered cancer treatment in clinic are summarized and the recent advances of TAMs targeted nanomedicines in this filed are highlighted. More importantly, we focus on how nanomedicine can exert their advantages in spatial and temporal control of immunomodulation.
Collapse
Affiliation(s)
- Yong-Dan Zhao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; School of Pharmacy, Shanxi Medical University, Shanxi, 030009, PR China
| | - Mamuti Muhetaerjiang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; GBA Research Innovation Institute for Nanotechnology, Guangdong, 510700, PR China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; GBA Research Innovation Institute for Nanotechnology, Guangdong, 510700, PR China
| | - Xiaohong Fang
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Yuliang Zhao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China; GBA Research Innovation Institute for Nanotechnology, Guangdong, 510700, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China; GBA Research Innovation Institute for Nanotechnology, Guangdong, 510700, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
15
|
Tang X, Sui D, Liu M, Zhang H, Liu M, Wang S, Zhao D, Sun W, Liu M, Luo X, Lai X, Liu X, Deng Y, Song Y. Targeted delivery of zoledronic acid through the sialic acid - Siglec axis for killing and reversal of M2 phenotypic tumor-associated macrophages – A promising cancer immunotherapy. Int J Pharm 2020; 590:119929. [DOI: 10.1016/j.ijpharm.2020.119929] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/15/2020] [Accepted: 09/26/2020] [Indexed: 12/19/2022]
|
16
|
Dai X, Yu L, Zhao X, Ostrikov KK. Nanomaterials for oncotherapies targeting the hallmarks of cancer. NANOTECHNOLOGY 2020; 31:392001. [PMID: 32503023 DOI: 10.1088/1361-6528/ab99f1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
An increasing amount of evidence has demonstrated the diverse functionalities of nanomaterials in oncotherapies such as drug delivery, imaging, and killing cancer cells. This review aims to offer an authoritative guide for the development of nanomaterial-based oncotherapies and shed light on emerging yet understudied hallmarks of cancer where nanoparticles can help improve cancer control. With this aim, three nanomaterials, i.e. those based on gold, graphene, and liposome, were selected to represent and encompass metal inorganic, nonmetal inorganic, and organic nanomaterials, and four oncotherapies, i.e. phototherapies, immunotherapies, cancer stem cell therapies, and metabolic therapies, were characterized based on the differential hallmarks of cancer that they target. We also view physical plasma as a cocktail of reactive species and carrier of nanomaterials and focus on its roles in targeting the hallmarks of cancer provided with its unique traits and ability to selectively induce epigenetic and genetic modulations in cancer cells that halt tumor initiation and progression. This review provides a clear understanding of how the physico-chemical features of particles at the nanoscale contribute alone or create synergistic effects with current treatment modalities in combating each of the hallmarks of cancer that ultimately leads to desired therapeutic outcomes and shapes the toolbox for cancer control.
Collapse
Affiliation(s)
- Xiaofeng Dai
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | | | | | | |
Collapse
|
17
|
Chaib M, Chauhan SC, Makowski L. Friend or Foe? Recent Strategies to Target Myeloid Cells in Cancer. Front Cell Dev Biol 2020; 8:351. [PMID: 32509781 PMCID: PMC7249856 DOI: 10.3389/fcell.2020.00351] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is a complex network of epithelial and stromal cells, wherein stromal components provide support to tumor cells during all stages of tumorigenesis. Among these stromal cell populations are myeloid cells, which are comprised mainly of tumor-associated macrophages (TAM), dendritic cells (DC), myeloid-derived suppressor cells (MDSC), and tumor-associated neutrophils (TAN). Myeloid cells play a major role in tumor growth through nurturing cancer stem cells by providing growth factors and metabolites, increasing angiogenesis, as well as promoting immune evasion through the creation of an immune-suppressive microenvironment. Immunosuppression in the TME is achieved by preventing critical anti-tumor immune responses by natural killer and T cells within the primary tumor and in metastatic niches. Therapeutic success in targeting myeloid cells in malignancies may prove to be an effective strategy to overcome chemotherapy and immunotherapy limitations. Current therapeutic approaches to target myeloid cells in various cancers include inhibition of their recruitment, alteration of function, or functional re-education to an antitumor phenotype to overcome immunosuppression. In this review, we describe strategies to target TAMs and MDSCs, consisting of single agent therapies, nanoparticle-targeted approaches and combination therapies including chemotherapy and immunotherapy. We also summarize recent molecular targets that are specific to myeloid cell populations in the TME, while providing a critical review of the limitations of current strategies aimed at targeting a single subtype of the myeloid cell compartment. The goal of this review is to provide the reader with an understanding of the critical role of myeloid cells in the TME and current therapeutic approaches including ongoing or recently completed clinical trials.
Collapse
Affiliation(s)
- Mehdi Chaib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Subhash C Chauhan
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, United States.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Liza Makowski
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States.,Division of Hematology Oncology, Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States.,Center for Cancer Research, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
18
|
Wang B, Zhang W, Zhou X, Liu M, Hou X, Cheng Z, Chen D. Development of dual-targeted nano-dandelion based on an oligomeric hyaluronic acid polymer targeting tumor-associated macrophages for combination therapy of non-small cell lung cancer. Drug Deliv 2020; 26:1265-1279. [PMID: 31777307 PMCID: PMC6896416 DOI: 10.1080/10717544.2019.1693707] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this study, the novel carrier materials were screened to structure targeting nano-micelles (named ‘nano-dandelion’) for synchronous delivery of curcumin (Cur) and baicalin (Bai), which could effectively overcome the tumor resistance. Mannose (Man) was found to bind better to CD206 receptors on the surface of tumor-associated macrophages (TAMs), thereby increasing the number of nano-dandelion engulfed by TAMs. Furthermore, oligomeric hyaluronic acid (oHA) was able to target CD44 receptors, resulting in recruitment of a higher number of nano-dandelion to locate and engulf tumor cells. The disulfide bond (S–S) in 3,3′-dithiodipropionic acid (DA) could be broken by the high concentration of glutathione (GSH) in the tumor microenvironment (TME). Based on this, we selected DA to connect hydrophobic fragments (quercetin, Que) and oHA. A reduction-sensitive amphiphilic carrier material, quercetin–dithiodipropionic acid–oligomeric hyaluronic acid–mannose–ferulic acid (Que–S–S–oHA–Man–FA; QHMF) was fabricated and synthesized by 1H NMR. Next, QHMF self-assembled into nano-dandelion, i.e. encapsulated Cur and Bai in water. Critical experimental conditions in the preparation process of nano-dandelion that could affect its final properties were explored. Nano-dandelion with a small particle size (121.0 ± 15 nm) and good normal distribution (PI = 0.129) could easily enter tumor tissue through vascular barrier. In addition, nano-dandelion with a suitable surface potential (–20.33 ± 4.02 mV) could remain stable for a long duration. Furthermore, good cellular penetration and tumor cytotoxicity of nano-dandelion were demonstrated through in vitro cellular studies. Finally, effective antitumor activity and reduced side effects were confirmed through in vivo antitumor experiments in A549 tumor-bearing nude mice.
Collapse
Affiliation(s)
- Bingjie Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Yantai University, Yantai, PR China
| | - Wei Zhang
- Department of Radiotherapy, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, PR China
| | - Xiudi Zhou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Yantai University, Yantai, PR China.,Department of Pharmacy, Binzhou People's Hospital, Binzhou, PR China
| | - Mengna Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Yantai University, Yantai, PR China
| | - Xiaoya Hou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Yantai University, Yantai, PR China
| | - Ziting Cheng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Yantai University, Yantai, PR China
| | - Daquan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Yantai University, Yantai, PR China
| |
Collapse
|
19
|
Sun X, Guo L, Shang M, Shi D, Liang P, Jing X, Meng D, Liu X, Zhou X, Zhao Y, Li J. Ultrasound Mediated Destruction of LMW-HA-Loaded and Folate-Conjugated Nanobubble for TAM Targeting and Reeducation. Int J Nanomedicine 2020; 15:1967-1981. [PMID: 32273697 PMCID: PMC7102913 DOI: 10.2147/ijn.s238587] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose To synthesize and evaluate a novel folate-conjugated ultrasonic nanobubble (HA-FOL-NB) loading low-molecular-weight hyaluronic acid (LMW-HA) for specific tumor-associated macrophages (TAMs) targeting and reeducation. Methods The characteristics, cytotoxicity, contrast-enhanced ultrasound imaging (CEUS), and targeting ability to TAMs of HA-FOL-NBs were investigated. The TAMs reprogramming function of HA-FOL-NBs combining ultrasound targeted nanobubble destruction was assessed as well. Results HA-FOL-NBs (about 342 nm) showed remarkable contrast enhancement images, and higher targeting ability due to the folate to folate receptor interactions. Combined with ultrasound targeted nanobubble destruction, HA-FOL-NBs could specifically deliver LMW-HA into TAMs, thus exhibited stronger reeducation effect compared with free LMW-HA. Conclusion These folate-conjugated and LMW-HA-loaded nanobubbles, with targeted CEUS imaging and TAMs reeducation, are expected to be a potential approach for tumor therapy based on TAMs, especially folate receptor-positive ones.
Collapse
Affiliation(s)
- Xiao Sun
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Lu Guo
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Mengmeng Shang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Dandan Shi
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Ping Liang
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xuanxuan Jing
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Dong Meng
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Xinxin Liu
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Xiaoying Zhou
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Yading Zhao
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Jie Li
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| |
Collapse
|
20
|
Gaspar N, Zambito G, Löwik CMWG, Mezzanotte L. Active Nano-targeting of Macrophages. Curr Pharm Des 2020; 25:1951-1961. [PMID: 31291874 DOI: 10.2174/1381612825666190710114108] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/25/2019] [Indexed: 01/01/2023]
Abstract
Macrophages play a role in almost every disease such as cancer, infections, injuries, metabolic and inflammatory diseases and are becoming an attractive therapeutic target. However, understanding macrophage diversity, tissue distribution and plasticity will help in defining precise targeting strategies and effective therapies. Active targeting of macrophages using nanoparticles for therapeutic purposes is still at its infancy but holds promises since macrophages have shown high specific uptake of nanoparticles. Here, we highlight recent progress in active nanotechnology-based systems gaining pivotal roles to target diverse macrophage subsets in diseased tissues.
Collapse
Affiliation(s)
- Natasa Gaspar
- Optical Molecular Imaging, Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Molecular Genetics, Erasmus Medical Center, Rotterdam, Netherlands.,Percuros B.V., Department of Developmental BioEngineering, University of Twente, Enschede, Netherlands
| | - Giorgia Zambito
- Optical Molecular Imaging, Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Molecular Genetics, Erasmus Medical Center, Rotterdam, Netherlands.,Medres-Medical Research gmbh, Cologne, Germany
| | - Clemens M W G Löwik
- Optical Molecular Imaging, Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Molecular Genetics, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Oncology, Lausanne University Hospital (CHUV), UNIL, Switzerland
| | - Laura Mezzanotte
- Optical Molecular Imaging, Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Molecular Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
21
|
Tie Y, Zheng H, He Z, Yang J, Shao B, Liu L, Luo M, Yuan X, Liu Y, Zhang X, Li H, Wu M, Wei X. Targeting folate receptor β positive tumor-associated macrophages in lung cancer with a folate-modified liposomal complex. Signal Transduct Target Ther 2020; 5:6. [PMID: 32296026 PMCID: PMC6976681 DOI: 10.1038/s41392-020-0115-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/10/2019] [Accepted: 12/31/2019] [Indexed: 02/05/2023] Open
Abstract
Tumor-associated macrophages (TAMs) facilitate cancer progression by promoting tumor invasion, angiogenesis, metastasis, inflammatory responses, and immunosuppression. Folate receptor β (FRβ) is overexpressed in TAMs. However, the clinical significance of FRβ-positive macrophages in lung cancer remains poorly understood. In this study, we verified that FRβ overexpression in lung cancer TAMs was associated with poor prognosis. We utilized a folate-modified lipoplex comprising a folate-modified liposome (F-PLP) delivering a BIM-S plasmid to target both lung cancer cells and FRβ-positive macrophages in the tumor microenvironment. Transfection of LL/2 cells and MH-S cells with F-PLP/pBIM induced cell apoptosis. Injection of F-PLP/pBIM into LL/2 and A549 lung cancer models significantly depleted FRβ-positive macrophages and reduced tumor growth. Treatment of tumor-bearing mice with F-PLP/pBIM significantly inhibited tumor growth in vivo by inducing tumor cell and macrophage apoptosis, reducing tumor proliferation, and inhibiting tumor angiogenesis. In addition, a preliminary safety evaluation demonstrated a good safety profile of F-PLP/pBIM as a gene therapy administered intravenously. This work describes a novel application of lipoplexes in lung cancer targeted therapy that influences the tumor microenvironment by targeting TAMs.
Collapse
Affiliation(s)
- Yan Tie
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
- Department of Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, Sichuan, PR China
| | - Heng Zheng
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Zhiyao He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Bin Shao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Li Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Min Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Xia Yuan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Yu Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Xiangxian Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Hongyi Li
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
22
|
Kapitanova KS, Naumenko VA, Garanina AS, Melnikov PA, Abakumov MA, Alieva IB. Advances and Challenges of Nanoparticle-Based Macrophage Reprogramming for Cancer Immunotherapy. BIOCHEMISTRY (MOSCOW) 2019; 84:729-745. [PMID: 31509725 DOI: 10.1134/s0006297919070058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite the progress of modern medicine, oncological diseases are still among the most common causes of death of adult populations in developed countries. The current therapeutic approaches are imperfect, and the high mortality of oncological patients under treatment, the lack of personalized strategies, and severe side effects arising as a result of treatment force seeking new approaches to therapy of malignant tumors. During the last decade, cancer immunotherapy, an approach that relies on activation of the host antitumor immune response, has been actively developing. Cancer immunotherapy is the most promising trend in contemporary fundamental and practical oncology, and restoration of the pathologically altered tumor microenvironment is one of its key tasks, in particular, the reprogramming of tumor macrophages from the immunosuppressive M2-phenotype into the proinflammatory M1-phenotype is pivotal for eliciting antitumor response. This review describes the current knowledge about macrophage classification, mechanisms of their polarization, their role in formation of the tumor microenvironment, and strategies for changing the functional activity of M2-macrophages, as well as problems of targeted delivery of immunostimulatory signals to tumor macrophages using nanoparticles.
Collapse
Affiliation(s)
- K S Kapitanova
- Lomonosov Moscow State University, Department of Bioengineering and Bioinformatics, Moscow, 119991, Russia
| | - V A Naumenko
- National University of Science and Technology "MISIS", Moscow, 119049, Russia.
| | - A S Garanina
- National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - P A Melnikov
- Serbsky Federal Medical Research Center of Psychiatry and Narcology, Department of Fundamental and Applied Neurobiology, Ministry of Health of the Russian Federation, Moscow, 119034, Russia
| | - M A Abakumov
- National University of Science and Technology "MISIS", Moscow, 119049, Russia.,Russian National Research Medical University, Department of Medical Nanobiotechnology, Moscow, 117997, Russia
| | - I B Alieva
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
23
|
Chen M, Daddy J.C. KA, Su Z, Guissi NEI, Xiao Y, Zong L, Ping Q. Folate Receptor-Targeting and Reactive Oxygen Species-Responsive Liposomal Formulation of Methotrexate for Treatment of Rheumatoid Arthritis. Pharmaceutics 2019; 11:E582. [PMID: 31698794 PMCID: PMC6921073 DOI: 10.3390/pharmaceutics11110582] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
Multifunctional nanomedicines with active targeting and stimuli-responsive drug release function utilizing pathophysiological features of the disease are regarded as an effective strategy for treatment of rheumatoid arthritis (RA). Under the inflammatory environment of RA, activated macrophages revealed increased expression of folate receptor and elevated intracellular reactive oxygen species (ROS) level. In this study, we successfully conjugated folate to polyethylene glycol 100 monostearate as film-forming material and further prepared methotrexate (MTX) and catalase (CAT) co-encapsulated liposomes, herein, shortened to FOL-MTX&CAT-L, that could actively target to activated macrophages. Thereafter, elevated intracellular hydrogen peroxide, the main source of ROS, diffused into liposomes and encapsulated CAT catalyzed the decomposition of hydrogen peroxide into oxygen and water. Continuous oxygen-generation inside liposomes would eventually disorganize its structure and release the encapsulated MTX. We characterized the in vitro drug release, cellular uptake and cytotoxicity studies as well as in vivo pharmacokinetics, biodistribution, therapeutic efficacy and safety studies of FOL-MTX&CAT-L. In vitro results revealed that FOL-MTX&CAT-L possessed sufficient ROS-sensitive drug release, displayed an improved cellular uptake through folate-mediated endocytosis and exhibited a higher cytotoxic effect on activated RAW264.7 cells. Moreover, in vivo results showed prolonged blood circulation time of PEGylated liposomes, enhanced accumulation of MTX in inflamed joints of collagen-induced arthritis (CIA) mice, reinforced therapeutic efficacy and minimal toxicity toward major organs. These results imply that FOL-MTX&CAT-L may be used as an effective nanomedicine system for RA treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Zong
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (M.C.); (Z.S.); (N.E.I.G.); (Y.X.)
| | - Qineng Ping
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (M.C.); (Z.S.); (N.E.I.G.); (Y.X.)
| |
Collapse
|
24
|
Liposome and immune system interplay: Challenges and potentials. J Control Release 2019; 305:194-209. [DOI: 10.1016/j.jconrel.2019.05.030] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 01/20/2023]
|
25
|
Effect of Cationic Lipid Type in Folate-PEG-Modified Cationic Liposomes on Folate Receptor-Mediated siRNA Transfection in Tumor Cells. Pharmaceutics 2019; 11:pharmaceutics11040181. [PMID: 30991703 PMCID: PMC6523911 DOI: 10.3390/pharmaceutics11040181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/06/2019] [Accepted: 04/12/2019] [Indexed: 12/04/2022] Open
Abstract
In this study, we examined the effect of cationic lipid type in folate (FA)-polyethylene glycol (PEG)-modified cationic liposomes on gene-silencing effects in tumor cells using cationic liposomes/siRNA complexes (siRNA lipoplexes). We used three types of cationic cholesterol derivatives, cholesteryl (3-((2-hydroxyethyl)amino)propyl)carbamate hydroiodide (HAPC-Chol), N-(2-(2-hydroxyethylamino)ethyl)cholesteryl-3-carboxamide (OH-Chol), and cholesteryl (2-((2-hydroxyethyl)amino)ethyl)carbamate (OH-C-Chol), and we prepared three types of FA-PEG-modified siRNA lipoplexes. The modification of cationic liposomes with 1–2 mol % PEG-lipid abolished the gene-silencing effect in human nasopharyngeal tumor KB cells, which overexpress the FA receptor (FR). In contrast, FA-PEG-modification of cationic liposomes restored gene-silencing activity regardless of the cationic lipid type in cationic liposomes. However, the optimal amount of PEG-lipid and FA-PEG-lipid in cationic liposomes for selective gene silencing and cellular uptake were different among the three types of cationic liposomes. Furthermore, in vitro transfection of polo-like kinase 1 (PLK1) siRNA by FA-PEG-modified liposomes exhibited strong cytotoxicity in KB cells, compared with PEG-modified liposomes; however, in in vivo therapy, intratumoral injection of PEG-modified PLK1 siRNA lipoplexes inhibited tumor growth of KB xenografts, as well as that of FA-PEG-modified PLK1 siRNA lipoplexes. From these results, the optimal formulation of PEG- and FA-PEG-modified liposomes for FR-selective gene silencing might be different between in vitro and in vivo transfection.
Collapse
|
26
|
Chandrupatla DMSH, Molthoff CFM, Lammertsma AA, van der Laken CJ, Jansen G. The folate receptor β as a macrophage-mediated imaging and therapeutic target in rheumatoid arthritis. Drug Deliv Transl Res 2019; 9:366-378. [PMID: 30280318 PMCID: PMC6328514 DOI: 10.1007/s13346-018-0589-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Macrophages play a key role in the pathophysiology of rheumatoid arthritis (RA). Notably, positive correlations have been reported between synovial macrophage infiltration and disease activity as well as therapy outcome in RA patients. Hence, macrophages can serve as an important target for both imaging disease activity and drug delivery in RA. Folate receptor β (FRβ) is a glycosylphosphatidyl (GPI)-anchored plasma membrane protein being expressed on myeloid cells and activated macrophages. FRβ harbors a nanomolar binding affinity for folic acid allowing this receptor to be exploited for RA disease imaging (e.g., folate-conjugated PET tracers) and therapeutic targeting (e.g., folate antagonists and folate-conjugated drugs). This review provides an overview of these emerging applications in RA by summarizing and discussing properties of FRβ, expression of FRβ in relation to macrophage polarization, FRβ-targeted in vivo imaging modalities, and FRβ-directed drug targeting.
Collapse
Affiliation(s)
- Durga M S H Chandrupatla
- Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Carla F M Molthoff
- Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Adriaan A Lammertsma
- Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Conny J van der Laken
- Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Targeting Macrophages as a Potential Therapeutic Intervention: Impact on Inflammatory Diseases and Cancer. Int J Mol Sci 2018; 19:ijms19071953. [PMID: 29973487 PMCID: PMC6073303 DOI: 10.3390/ijms19071953] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 06/28/2018] [Accepted: 06/30/2018] [Indexed: 12/11/2022] Open
Abstract
Macrophages, cells belonging to the innate immune system, present a high plasticity grade, being able to change their phenotype in response to environmental stimuli. They play central roles during development, homeostatic tissue processes, tissue repair, and immunity. Furthermore, it is recognized that macrophages are involved in chronic inflammation and that they play central roles in inflammatory diseases and cancer. Due to their large involvement in the pathogenesis of several types of human diseases, macrophages are considered to be relevant therapeutic targets. Nanotechnology-based systems have attracted a lot of attention in this field, gaining a pivotal role as useful moieties to target macrophages in diseased tissues. Among the different approaches that can target macrophages, the most radical is represented by their depletion, commonly obtained by means of clodronate-containing liposomal formulations and/or depleting antibodies. These strategies have produced encouraging results in experimental mouse models. In this review, we focus on macrophage targeting, based on the results so far obtained in preclinical models of inflammatory diseases and cancer. Pros and cons of these therapeutic interventions will be highlighted.
Collapse
|
28
|
Li P, Zhao Z, Wang L, Jin X, Shen Y, Nan C, Liu H. Minimally effective concentration of zoledronic acid to suppress osteoclasts in vitro. Exp Ther Med 2018; 15:5330-5336. [PMID: 29904413 PMCID: PMC5996712 DOI: 10.3892/etm.2018.6120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/16/2018] [Indexed: 12/12/2022] Open
Abstract
Zoledronic acid is regarded as the most potent bisphosphonate and is widely used in patients with osteoporosis; however, its side effects, including acute-phase reactions, gastrointestinal complaints, renal dysfunction and bisphosphonate-associated osteonecrosis impair the safety and quality of life of patients. The present study was designed to determine the minimal effective concentration of zoledronic acid through testing the dose-dependent effects of zoledronic acid on osteoclast suppression. A primary culture of bone marrow mononuclear cells obtained from C57 mice (age, 6 weeks) was established and induced to form osteoclasts. The number of multinuclear cells was determined by tartrate-resistant acid phosphatase staining and compared among cultured marrow cells treated with different concentrations of zoledronic acid. Furthermore, the cellular properties, including adhesion, migration and bone resorption, were compared at the minimal effective concentration. At a concentration of 1×10−6 mol/l, zoledronic acid significantly inhibited the formation of osteoclasts. This inhibitory effect was further enhanced at the concentration of 1×10−5 mol/l. However, the inhibitory effect of zoledronic acid tapered at the concentration of 1×10−4 mol/l and there was no further dose-dependent increase. In addition, the concentration of 1×10−6 mol/l was sufficient to alter cellular functions, including cell adhesion, migration and bone resorption. In conclusion, zoledronic acid was effective in reducing osteoclast formation and suppressing cellular functions. The minimal effective concentration of zoledronic acid in vitro was 1 µmol/l. Based on these results, a comparable dosage should be explored in clinical applications.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China.,Department of Bone Disease, Harrison International Peace Hospital, Hengshui, Hebei 053000, P.R. China
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Litao Wang
- Department of Bone Disease, Harrison International Peace Hospital, Hengshui, Hebei 053000, P.R. China
| | - Xianhui Jin
- Department of Bone Disease, Harrison International Peace Hospital, Hengshui, Hebei 053000, P.R. China
| | - Yaxin Shen
- Department of Surgery, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Chengrui Nan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Hanjie Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
29
|
Schupp J, Krebs FK, Zimmer N, Trzeciak E, Schuppan D, Tuettenberg A. Targeting myeloid cells in the tumor sustaining microenvironment. Cell Immunol 2017; 343:103713. [PMID: 29129292 DOI: 10.1016/j.cellimm.2017.10.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/26/2017] [Accepted: 10/26/2017] [Indexed: 12/24/2022]
Abstract
Myeloid cells are the most abundant cells in the tumor microenvironment (TME). The tumor recruits and modulates endogenous myeloid cells to tumor-associated macrophages (TAM), dendritic cells (DC), myeloid-derived suppressor cells (MDSC) and neutrophils (TAN), to sustain an immunosuppressive environment. Pathologically overexpressed mediators produced by cancer cells like granulocyte-macrophage colony-stimulating- and vascular endothelial growth factor induce myelopoiesis in the bone marrow. Excess of myeloid cells in the blood, periphery and tumor has been associated with tumor burden. In cancer, myeloid cells are kept at an immature state of differentiation to be diverted to an immunosuppressive phenotype. Here, we review human myeloid cells in the TME and the mechanisms for sustaining the hallmarks of cancer. Simultaneously, we provide an introduction into current and novel therapeutic approaches to redirect myeloid cells from a cancer promoting to a rather inflammatory, cancer inhibiting phenotype. In addition, the role of platelets for tumor promotion is discussed.
Collapse
Affiliation(s)
- Jonathan Schupp
- Department of Dermatology, University Medical Center, Mainz, Germany
| | - Franziska K Krebs
- Department of Dermatology, University Medical Center, Mainz, Germany; German Cancer Consortium (DKTK), partner site Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Niklas Zimmer
- Department of Dermatology, University Medical Center, Mainz, Germany
| | - Emily Trzeciak
- The Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
30
|
Andón FT, Digifico E, Maeda A, Erreni M, Mantovani A, Alonso MJ, Allavena P. Targeting tumor associated macrophages: The new challenge for nanomedicine. Semin Immunol 2017; 34:103-113. [PMID: 28941641 DOI: 10.1016/j.smim.2017.09.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 12/23/2022]
Abstract
The engineering of new nanomedicines with ability to target and kill or re-educate Tumor Associated Macrophages (TAMs) stands up as a promising strategy to induce the effective switching of the tumor-promoting immune suppressive microenvironment, characteristic of tumors rich in macrophages, to one that kills tumor cells, is anti-angiogenic and promotes adaptive immune responses. Alternatively, the loading of monocytes/macrophages in blood circulation with nanomedicines, may be used to profit from the high infiltration ability of myeloid cells and to allow the drug release in the bulk of the tumor. In addition, the development of TAM-targeted imaging nanostructures, can be used to study the macrophage content in solid tumors and, hence, for a better diagnosis and prognosis of cancer disease. The major challenges for the effective targeting of TAM with nanomedicines and their application in the clinic have already been identified. These challenges are associated to the undesirable clearance of nanomedicines by, the mononuclear phagocyte system (macrophages) in competing organs (liver, lung or spleen), upon their intravenous injection; and also to the difficult penetration of nanomedicines across solid tumors due to the abnormal vasculature and the excessive extracellular matrix present in stromal tumors. In this review we describe the recent nanotechnology-base strategies that have been developed to target macrophages in tumors.
Collapse
Affiliation(s)
- Fernando Torres Andón
- Istituto Clinico Humanitas, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via A. Manzoni 113, 20089 Rozzano, Milan, Italy; Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), University of Santiago de Compostela, 15706 Campus Vida, Santiago de Compostela, Spain.
| | - Elisabeth Digifico
- Istituto Clinico Humanitas, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via A. Manzoni 113, 20089 Rozzano, Milan, Italy; Humanitas University, Via A. Manzoni 113, 20089 Rozzano, Milan, Italy
| | - Akihiro Maeda
- Istituto Clinico Humanitas, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via A. Manzoni 113, 20089 Rozzano, Milan, Italy
| | - Marco Erreni
- Istituto Clinico Humanitas, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via A. Manzoni 113, 20089 Rozzano, Milan, Italy
| | - Alberto Mantovani
- Istituto Clinico Humanitas, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via A. Manzoni 113, 20089 Rozzano, Milan, Italy; Humanitas University, Via A. Manzoni 113, 20089 Rozzano, Milan, Italy
| | - María José Alonso
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), University of Santiago de Compostela, 15706 Campus Vida, Santiago de Compostela, Spain; Pharmacy & Pharmaceutical Technology Department, School of Pharmacy, University of Santiago de Compostela, 15705 Campus Vida, Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Paola Allavena
- Istituto Clinico Humanitas, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via A. Manzoni 113, 20089 Rozzano, Milan, Italy
| |
Collapse
|
31
|
Zimel MN, Horowitz CB, Rajasekhar VK, Christ AB, Wei X, Wu J, Wojnarowicz PM, Wang D, Goldring SR, Purdue PE, Healey JH. HPMA-Copolymer Nanocarrier Targets Tumor-Associated Macrophages in Primary and Metastatic Breast Cancer. Mol Cancer Ther 2017; 16:2701-2710. [PMID: 28830983 DOI: 10.1158/1535-7163.mct-15-0995] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 07/24/2017] [Accepted: 08/16/2017] [Indexed: 01/03/2023]
Abstract
Polymeric nanocarriers such as N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers deliver drugs to solid tumors and avoid the systemic toxicity of conventional chemotherapy. Because HPMA copolymers can target sites of inflammation and accumulate within innate immune cells, we hypothesized that HPMA copolymers could target tumor-associated macrophages (TAM) in both primary and metastatic tumor microenvironments. We verified this hypothesis, first in preliminary experiments with isolated bone marrow macrophage cultures in vitro and subsequently in a spontaneously metastatic murine breast cancer model generated from a well-established, cytogenetically characterized 4T1 breast cancer cell line. Using our standardized experimental conditions, we detected primary orthotopic tumor growth at 7 days and metastatic tumors at 28 days after orthotopic transplantation of 4T1 cells into the mammary fat pad. We investigated the uptake of HPMA copolymer conjugated with Alexa Fluor 647 and folic acid (P-Alexa647-FA) and HPMA copolymer conjugated with IRDye 800CW (P-IRDye), following their retroorbital injection into the primary and metastatic tumor-bearing mice. A significant uptake of P-IRDye was observed at all primary and metastatic tumor sites in these mice, and the P-Alexa647-FA signal was found specifically within CD11b+ TAMs costained with pan-macrophage marker CD68. These findings demonstrate, for the first time, a novel capacity of a P-Alexa647-FA conjugate to colocalize to CD11b+CD68+ TAMs in both primary and metastatic breast tumors. This underscores the potential of this HPMA nanocarrier to deliver functional therapeutics that specifically target tumor-promoting macrophage activation and/or polarization during tumor development. Mol Cancer Ther; 16(12); 2701-10. ©2017 AACR.
Collapse
Affiliation(s)
- Melissa N Zimel
- Orthopaedic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chloe B Horowitz
- Orthopaedic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vinagolu K Rajasekhar
- Orthopaedic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Xin Wei
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jianbo Wu
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Paulina M Wojnarowicz
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, New York, New York
| | - Dong Wang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | | | | | - John H Healey
- Orthopaedic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York. .,Department of Surgery, Weill Cornell Medical College, New York, New York
| |
Collapse
|
32
|
Killing Is Not Enough: How Apoptosis Hijacks Tumor-Associated Macrophages to Promote Cancer Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 930:205-39. [PMID: 27558823 DOI: 10.1007/978-3-319-39406-0_9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Macrophages are a group of heterogeneous cells of the innate immune system that are crucial to the initiation, progression, and resolution of inflammation. Moreover, they control tissue homeostasis in healthy tissue and command a broad sensory arsenal to detect disturbances in tissue integrity. Macrophages possess a remarkable functional plasticity to respond to irregularities and to initiate programs that allow overcoming them in order to return back to normal. Thus, macrophages kill malignant or transformed cells, rearrange extracellular matrix, take up and recycle cellular as well as molecular debris, initiate cellular growth cascades, and favor directed migration of cells. As an example, apoptotic death of bystander cells is sensed by macrophages, initiating functional responses that support all hallmarks of cancer. In this chapter, we describe how tumor cell apoptosis hijacks tumor-associated macrophages to promote tumor growth. We propose that tumor therapy should not only kill malignant cells but also target the interaction of the host with apoptotic cancer cells, as this might be efficient to limit the protumor action of apoptotic cells and boost the antitumor potential of macrophages. Leaving the apoptotic cell/macrophage interaction untouched might also limit the benefit of conventional tumor cell apoptosis-focused therapy since surviving tumor cells might receive overwhelming support by the wound healing response that apoptotic tumor cells will trigger in local macrophages, thereby enhancing tumor recurrence.
Collapse
|
33
|
Ngambenjawong C, Gustafson HH, Pun SH. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev 2017; 114:206-221. [PMID: 28449873 DOI: 10.1016/j.addr.2017.04.010] [Citation(s) in RCA: 587] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 02/06/2023]
Abstract
As an essential innate immune population for maintaining body homeostasis and warding off foreign pathogens, macrophages display high plasticity and perform diverse supportive functions specialized to different tissue compartments. Consequently, aberrance in macrophage functions contributes substantially to progression of several diseases including cancer, fibrosis, and diabetes. In the context of cancer, tumor-associated macrophages (TAMs) in tumor microenvironment (TME) typically promote cancer cell proliferation, immunosuppression, and angiogenesis in support of tumor growth and metastasis. Oftentimes, the abundance of TAMs in tumor is correlated with poor disease prognosis. Hence, significant attention has been drawn towards development of cancer immunotherapies targeting these TAMs; either depleting them from tumor, blocking their pro-tumoral functions, or restoring their immunostimulatory/tumoricidal properties. This review aims to introduce readers to various aspects in development and evaluation of TAM-targeted therapeutics in pre-clinical and clinical stages.
Collapse
Affiliation(s)
- Chayanon Ngambenjawong
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, United States
| | - Heather H Gustafson
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, United States
| | - Suzie H Pun
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
34
|
Binnemars-Postma K, Storm G, Prakash J. Nanomedicine Strategies to Target Tumor-Associated Macrophages. Int J Mol Sci 2017; 18:E979. [PMID: 28471401 PMCID: PMC5454892 DOI: 10.3390/ijms18050979] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 04/25/2017] [Accepted: 05/01/2017] [Indexed: 12/14/2022] Open
Abstract
In recent years, the influence of the tumor microenvironment (TME) on cancer progression has been better understood. Macrophages, one of the most important cell types in the TME, exist in different subtypes, each of which has a different function. While classically activated M1 macrophages are involved in inflammatory and malignant processes, activated M2 macrophages are more involved in the wound-healing processes occurring in tumors. Tumor-associated macrophages (TAM) display M2 macrophage characteristics and support tumor growth and metastasis by matrix remodeling, neo-angiogenesis, and suppressing local immunity. Due to their detrimental role in tumor growth and metastasis, selective targeting of TAM for the treatment of cancer may prove to be beneficial in the treatment of cancer. Due to the plastic nature of macrophages, their activities may be altered to inhibit tumor growth. In this review, we will discuss the therapeutic options for the modulation and targeting of TAM. Different therapeutic strategies to deplete, inhibit recruitment of, or re-educate TAM will be discussed. Current strategies for the targeting of TAM using nanomedicine are reviewed. Passive targeting using different nanoparticle systems is described. Since TAM display a number of upregulated surface proteins compared to non-TAM, specific targeting using targeting ligands coupled to nanoparticles is discussed in detail.
Collapse
Affiliation(s)
- Karin Binnemars-Postma
- Targeted Therapeutics, Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7522NB Enschede, The Netherlands.
| | - Gert Storm
- Targeted Therapeutics, Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7522NB Enschede, The Netherlands.
- Department of Pharmaceutics, Utrecht University, 3584CS Utrecht, The Netherlands.
| | - Jai Prakash
- Targeted Therapeutics, Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7522NB Enschede, The Netherlands.
| |
Collapse
|
35
|
Nadar RA, Margiotta N, Iafisco M, van den Beucken JJJP, Boerman OC, Leeuwenburgh SCG. Bisphosphonate-Functionalized Imaging Agents, Anti-Tumor Agents and Nanocarriers for Treatment of Bone Cancer. Adv Healthc Mater 2017; 6. [PMID: 28207199 DOI: 10.1002/adhm.201601119] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/23/2016] [Indexed: 12/14/2022]
Abstract
Bone metastases result from the invasion of primary tumors to bone. Current treatment modalities include local treatments such as surgery and radiotherapy, while systemic treatments include chemotherapy and (palliative) treatment of skeletal metastases. Nevertheless, once bone metastases have been established they remain incurable leading to morbidity and mortality. Bisphosphonates are a well-established class of drugs, which are increasingly applied in the treatment of bone cancers owing to their effective inhibition of tumor cells and suppression of bone metastases. The increased understanding of the mechanism of action of bisphosphonates on bone and tumor cells has prompted the development of novel bisphosphonate-functionalized imaging and therapeutic agents. This review provides an update on the preclinical efficacy of bisphosphonate-functionalized fluorophore, anti-tumor agents and nanocarriers for the treatment of bone metastases. After an overview of the general characteristics of bisphosphonates and their mechanisms of action, an outline is provided on the various conjugation strategies that have become available to functionalize imaging agents, anti-tumor agents and nanocarriers with bisphosphonates. Finally, the efficacy of these bisphosphonate-modified agents and carriers in preclinical studies is evaluated by reviewing their potential to target tumors and inhibit tumor growth in clinically relevant animal models for the treatment of bone cancer.
Collapse
Affiliation(s)
- Robin A. Nadar
- Department of Biomaterials; Radboud University Medical Center; Philips van Leydenlaan 25 6525 EX Nijmegen The Netherlands
| | - Nicola Margiotta
- Dipartimento di Chimica; Università degli Studi di Bari Aldo Moro; Via E. Orabona 4 70125 Bari Italy
| | - Michele Iafisco
- Institute of Science and Technology for Ceramics (ISTEC); National Research Council (CNR); Via Granarolo 64 48018 Faenza Italy
| | | | - Otto C. Boerman
- Department of Nuclear Medicine; Radboud University Medical Center; Geert Grooteplein Zuid 10 6525 AG Nijmegen The Netherlands
| | - Sander C. G. Leeuwenburgh
- Department of Biomaterials; Radboud University Medical Center; Philips van Leydenlaan 25 6525 EX Nijmegen The Netherlands
| |
Collapse
|
36
|
He H, Ghosh S, Yang H. Nanomedicines for dysfunctional macrophage-associated diseases. J Control Release 2017; 247:106-126. [PMID: 28057522 PMCID: PMC5360184 DOI: 10.1016/j.jconrel.2016.12.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/28/2016] [Indexed: 12/13/2022]
Abstract
Macrophages play vital functions in host inflammatory reaction, tissue repair, homeostasis and immunity. Dysfunctional macrophages have significant pathophysiological impacts on diseases such as cancer, inflammatory diseases (rheumatoid arthritis and inflammatory bowel disease), metabolic diseases (atherosclerosis, diabetes and obesity) and major infections like human immunodeficiency virus infection. In view of this common etiology in these diseases, targeting the recruitment, activation and regulation of dysfunctional macrophages represents a promising therapeutic strategy. With the advancement of nanotechnology, development of nanomedicines to efficiently target dysfunctional macrophages can strengthen the effectiveness of therapeutics and improve clinical outcomes. This review discusses the specific roles of dysfunctional macrophages in various diseases and summarizes the latest advances in nanomedicine-based therapeutics and theranostics for treating diseases associated with dysfunctional macrophages.
Collapse
Affiliation(s)
- Hongliang He
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23219, United States
| | - Shobha Ghosh
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States.
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23219, United States; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, United States; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States.
| |
Collapse
|
37
|
Hodgins NO, Al-Jamal WT, Wang JTW, Parente-Pereira AC, Liu M, Maher J, Al-Jamal KT. In vitro potency, in vitro and in vivo efficacy of liposomal alendronate in combination with γδ T cell immunotherapy in mice. J Control Release 2016; 241:229-241. [PMID: 27664328 PMCID: PMC5073077 DOI: 10.1016/j.jconrel.2016.09.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 11/18/2022]
Abstract
Nitrogen-containing bisphosphonates (N-BP), including zoledronic acid (ZOL) and alendronate (ALD), have been proposed as sensitisers in γδ T cell immunotherapy in pre-clinical and clinical studies. Therapeutic efficacy of N-BPs is hampered by their rapid renal excretion and high affinity for bone. Liposomal formulations of N-BP have been proposed to improve accumulation in solid tumours. Liposomal ALD (L-ALD) has been suggested as a suitable alternative to liposomal ZOL (L-ZOL), due to unexpected mice death experienced in pre-clinical studies with the latter. Only one study so far has proven the therapeutic efficacy of L-ALD, in combination with γδ T cell immunotherapy, after intraperitoneal administration of γδ T cell resulting in delayed growth of ovarian cancer in mice. This study aims to assess the in vitro efficacy of L-ALD, in combination with γδ T cell immunotherapy, in a range of cancerous cell lines, using L-ZOL as a comparator. The therapeutic efficacy was tested in a pseudo-metastatic lung mouse model, following intravenous injection of γδ T cell, L-ALD or the combination. In vivo biocompatibility and organ biodistribution studies of L-N-BPs were undertaken simultaneously. Higher concentrations of L-ALD (40-60μM) than L-ZOL (3-10μM) were required to produce a comparative reduction in cell viability in vitro, when used in combination with γδ T cells. Significant inhibition of tumour growth was observed after treatment with both L-ALD and γδ T cells in pseudo-metastatic lung melanoma tumour-bearing mice after tail vein injection of both treatments, suggesting that therapeutically relevant concentrations of L-ALD and γδ T cell could be achieved in the tumour sites, resulting in significant delay in tumour growth.
Collapse
MESH Headings
- Alendronate/administration & dosage
- Alendronate/therapeutic use
- Alendronate/toxicity
- Animals
- Cell Line, Tumor
- Cell Survival/drug effects
- Cell Survival/immunology
- Coculture Techniques
- Cytotoxicity, Immunologic
- Humans
- Immunotherapy, Adoptive/methods
- Interferon-gamma/blood
- Liposomes
- Male
- Mice, SCID
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/therapy
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Naomi O Hodgins
- King's College London, 150 Stamford Street, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Wafa' T Al-Jamal
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Julie T-W Wang
- King's College London, 150 Stamford Street, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Ana C Parente-Pereira
- King's College London, Division of Cancer Studies, Guy's Hospital, London SE1 9RT, UK
| | - Mao Liu
- King's College London, 150 Stamford Street, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - John Maher
- King's College London, Division of Cancer Studies, Guy's Hospital, London SE1 9RT, UK.
| | - Khuloud T Al-Jamal
- King's College London, 150 Stamford Street, Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
38
|
Belmadi N, Berchel M, Denis C, Berthe W, Sibiril Y, Le Gall T, Haelters JP, Jaffres PA, Montier T. Evaluation of New Fluorescent Lipophosphoramidates for Gene Transfer and Biodistribution Studies after Systemic Administration. Int J Mol Sci 2015; 16:26055-76. [PMID: 26540038 PMCID: PMC4661800 DOI: 10.3390/ijms161125941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/08/2015] [Accepted: 10/16/2015] [Indexed: 11/16/2022] Open
Abstract
The objective of lung gene therapy is to reach the respiratory epithelial cells in order to deliver a functional nucleic acid sequence. To improve the synthetic carrier's efficacy, knowledge of their biodistribution and elimination pathways, as well as cellular barriers faced, depending on the administration route, is necessary. Indeed, the in vivo fate guides the adaptation of their chemical structure and formulation to increase their transfection capacity while maintaining their tolerance. With this goal, lipidic fluorescent probes were synthesized and formulated with cationic lipophosphoramidate KLN47 (KLN: Karine Le Ny). We found that such formulations present constant compaction properties and similar transfection results without inducing additional cytotoxicity. Next, biodistribution profiles of pegylated and unpegylated lipoplexes were compared after systemic injection in mice. Pegylation of complexes led to a prolonged circulation in the bloodstream, whereas their in vivo bioluminescent expression profiles were similar. Moreover, systemic administration of pegylated lipoplexes resulted in a transient liver toxicity. These results indicate that these new fluorescent compounds could be added into lipoplexes in small amounts without perturbing the transfection capacities of the formulations. Such additional properties allow exploration of the in vivo biodistribution profiles of synthetic carriers as well as the expression intensity of the reporter gene.
Collapse
Affiliation(s)
- Nawal Belmadi
- Unité INSERM 1078, Faculté de Médecine, Université de Bretagne Occidentale, Université Européenne de Bretagne, 22 avenue Camille Desmoulins, 29238 Brest cedex 3, France.
| | - Mathieu Berchel
- Plateforme SynNanoVect, Biogenouest, SFR 148 ScInBioS, Université de Bretagne Occidentale, Faculté de Médecine, 22 rue Camille Desmoulins, 29238 Brest cedex 3, France.
- UMR CNRS 6521, Université de Bretagne Occidentale, Université Européenne de Bretagne, Faculté des Sciences, 6 avenue Victor Le Gorgeu, 29238 Brest, France.
| | - Caroline Denis
- Unité INSERM 1078, Faculté de Médecine, Université de Bretagne Occidentale, Université Européenne de Bretagne, 22 avenue Camille Desmoulins, 29238 Brest cedex 3, France.
- Plateforme SynNanoVect, Biogenouest, SFR 148 ScInBioS, Université de Bretagne Occidentale, Faculté de Médecine, 22 rue Camille Desmoulins, 29238 Brest cedex 3, France.
| | - Wilfried Berthe
- Plateforme SynNanoVect, Biogenouest, SFR 148 ScInBioS, Université de Bretagne Occidentale, Faculté de Médecine, 22 rue Camille Desmoulins, 29238 Brest cedex 3, France.
- UMR CNRS 6521, Université de Bretagne Occidentale, Université Européenne de Bretagne, Faculté des Sciences, 6 avenue Victor Le Gorgeu, 29238 Brest, France.
| | - Yann Sibiril
- Unité INSERM 1078, Faculté de Médecine, Université de Bretagne Occidentale, Université Européenne de Bretagne, 22 avenue Camille Desmoulins, 29238 Brest cedex 3, France.
- Plateforme SynNanoVect, Biogenouest, SFR 148 ScInBioS, Université de Bretagne Occidentale, Faculté de Médecine, 22 rue Camille Desmoulins, 29238 Brest cedex 3, France.
| | - Tony Le Gall
- Unité INSERM 1078, Faculté de Médecine, Université de Bretagne Occidentale, Université Européenne de Bretagne, 22 avenue Camille Desmoulins, 29238 Brest cedex 3, France.
- Plateforme SynNanoVect, Biogenouest, SFR 148 ScInBioS, Université de Bretagne Occidentale, Faculté de Médecine, 22 rue Camille Desmoulins, 29238 Brest cedex 3, France.
| | - Jean-Pierre Haelters
- Plateforme SynNanoVect, Biogenouest, SFR 148 ScInBioS, Université de Bretagne Occidentale, Faculté de Médecine, 22 rue Camille Desmoulins, 29238 Brest cedex 3, France.
- UMR CNRS 6521, Université de Bretagne Occidentale, Université Européenne de Bretagne, Faculté des Sciences, 6 avenue Victor Le Gorgeu, 29238 Brest, France.
| | - Paul-Alain Jaffres
- Plateforme SynNanoVect, Biogenouest, SFR 148 ScInBioS, Université de Bretagne Occidentale, Faculté de Médecine, 22 rue Camille Desmoulins, 29238 Brest cedex 3, France.
- UMR CNRS 6521, Université de Bretagne Occidentale, Université Européenne de Bretagne, Faculté des Sciences, 6 avenue Victor Le Gorgeu, 29238 Brest, France.
| | - Tristan Montier
- Unité INSERM 1078, Faculté de Médecine, Université de Bretagne Occidentale, Université Européenne de Bretagne, 22 avenue Camille Desmoulins, 29238 Brest cedex 3, France.
- Plateforme SynNanoVect, Biogenouest, SFR 148 ScInBioS, Université de Bretagne Occidentale, Faculté de Médecine, 22 rue Camille Desmoulins, 29238 Brest cedex 3, France.
- Laboratoire de génétique moléculaire et d'histocompatibilité, CHRU de Brest, 5 Avenue du Maréchal Foch, 29609 Brest cedex, DUMG, Université de Bretagne Occidentale, Université Européenne de Bretagne, 22 rue Camille Desmoulins, CS 93837-29238 Brest cedex 3, France.
| |
Collapse
|
39
|
Torres Andón F, Alonso MJ. Nanomedicine and cancer immunotherapy – targeting immunosuppressive cells. J Drug Target 2015; 23:656-71. [DOI: 10.3109/1061186x.2015.1073295] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
A comparative study of folate receptor-targeted doxorubicin delivery systems: Dosing regimens and therapeutic index. J Control Release 2015; 208:106-20. [DOI: 10.1016/j.jconrel.2015.04.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/03/2015] [Accepted: 04/09/2015] [Indexed: 01/07/2023]
|
41
|
Hattori Y, Arai S, Kikuchi T, Hamada M, Okamoto R, Machida Y, Kawano K. Optimization of siRNA Delivery Method into the Liver by Sequential Injection of Polyglutamic Acid and Cationic Lipoplex. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/pp.2015.67032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|