1
|
Verma C, Jain K, Saini A, Mani I, Singh V. Exploring the potential of drug repurposing for treating depression. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:79-105. [PMID: 38942546 DOI: 10.1016/bs.pmbts.2024.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Researchers are interested in drug repurposing or drug repositioning of existing pharmaceuticals because of rising costs and slower rates of new medication development. Other investigations that authorized these treatments used data from experimental research and off-label drug use. More research into the causes of depression could lead to more effective pharmaceutical repurposing efforts. In addition to the loss of neurotransmitters like serotonin and adrenaline, inflammation, inadequate blood flow, and neurotoxins are now thought to be plausible mechanisms. Because of these other mechanisms, repurposing drugs has resulted for treatment-resistant depression. This chapter focuses on therapeutic alternatives and their effectiveness in drug repositioning. Atypical antipsychotics, central nervous system stimulants, and neurotransmitter antagonists have investigated for possible repurposing. Nonetheless, extensive research is required to ensure their formulation, effectiveness, and regulatory compliance.
Collapse
Affiliation(s)
- Chaitenya Verma
- Department of Pathology, Ohio State University, Columbus, OH, United States
| | - Kritika Jain
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Ashok Saini
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, India.
| |
Collapse
|
2
|
Perrin AJ, Pariante CM. Endocrine and immune effects of non-convulsive neurostimulation in depression: A systematic review. Brain Behav Immun 2020; 87:910-920. [PMID: 32126288 DOI: 10.1016/j.bbi.2020.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Non-convulsive neurostimulation is a rapidly-developing alternative to traditional treatment approaches in depression. Modalities such as repetitive Transcranial Magnetic Stimulation (rTMS), transcranial Direct Current Stimulation (tDCS), Vagal Nerve Stimulation (VNS) and Deep Brain Stimulation (DBS) are now recognized as potential treatments. How non-convulsive neurostimulation interventions impact the neurohormonal and neuroimmune changes that accompany depression remains relatively unknown. If this type of intervention can drive endocrine, immune, as well symptom changes in depression, non-convulsive neurostimulation may represent a viable, multi-faceted treatment approach in depression. We were therefore interested to understand the state of the literature in this developing area. METHODS A systematic review of all studies that examined the impact of non-convulsive neurostimulation interventions on the hypothalamic-pituitary-adrenal (HPA) axis and immune function in the form of cytokine production in depression. RESULTS We identified 15 human studies, 9 that examined rTMS, 2 that examined tDCS, 2 that examined VNS and 2 that examined electroacupuncture. 11 animal studies were also identified, 3 that examined rTMS, 2 that examined DBS and 6 that examined electroacupuncture. All types of non-convulsive neurostimulation were able to revert the increases in cortisol, ACTH and other components of the HPA axis that are seen in depressed patients, as well as to modulate the levels of key cytokines known to be up-regulated in depression, such as IL-1β, IL-6 and TNF-α. Changes in the HPA axis and levels of cytokines in response to non-convulsive neurostimulation often did not correlate with change in depressive symptoms. Most studies were not controlled trials and thus, significant methodologic variability existed. Furthermore, many human studies lacked a sham stimulation comparator arm. We were unable to conduct relevant meta-analyses due to the design heterogeneities, heterogeneity in the reported outcome measures and the limited number of studies retrieved. Animal studies generally supported the findings of those in human, but again, significant variability in methodology and study design were evident. CONCLUSIONS Non-convulsive neurostimulation interventions show promise in their ability to alter the endocrine and immune disturbances that accompany depression. Further research, which includes blinded, sham-controlled comparator designs is required.
Collapse
Affiliation(s)
- Andrew J Perrin
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology & Neuroscience, King's College London, SE5 9RT, United Kingdom; Clinician Investigator Program and Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver V5Z 3X7, Canada.
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology & Neuroscience, King's College London, SE5 9RT, United Kingdom
| |
Collapse
|
3
|
Dandekar MP, Fenoy AJ, Carvalho AF, Soares JC, Quevedo J. Deep brain stimulation for treatment-resistant depression: an integrative review of preclinical and clinical findings and translational implications. Mol Psychiatry 2018; 23:1094-1112. [PMID: 29483673 DOI: 10.1038/mp.2018.2] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/05/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023]
Abstract
Although deep brain stimulation (DBS) is an established treatment choice for Parkinson's disease (PD), essential tremor and movement disorders, its effectiveness for the management of treatment-resistant depression (TRD) remains unclear. Herein, we conducted an integrative review on major neuroanatomical targets of DBS pursued for the treatment of intractable TRD. The aim of this review article is to provide a critical discussion of possible underlying mechanisms for DBS-generated antidepressant effects identified in preclinical studies and clinical trials, and to determine which brain target(s) elicited the most promising outcomes considering acute and maintenance treatment of TRD. Major electronic databases were searched to identify preclinical and clinical studies that have investigated the effects of DBS on depression-related outcomes. Overall, 92 references met inclusion criteria, and have evaluated six unique DBS targets namely the subcallosal cingulate gyrus (SCG), nucleus accumbens (NAc), ventral capsule/ventral striatum or anterior limb of internal capsule (ALIC), medial forebrain bundle (MFB), lateral habenula (LHb) and inferior thalamic peduncle for the treatment of unrelenting TRD. Electrical stimulation of these pertinent brain regions displayed differential effects on mood transition in patients with TRD. In addition, 47 unique references provided preclinical evidence for putative neurobiological mechanisms underlying antidepressant effects of DBS applied to the ventromedial prefrontal cortex, NAc, MFB, LHb and subthalamic nucleus. Preclinical studies suggest that stimulation parameters and neuroanatomical locations could influence DBS-related antidepressant effects, and also pointed that modulatory effects on monoamine neurotransmitters in target regions or interconnected brain networks following DBS could have a role in the antidepressant effects of DBS. Among several neuromodulatory targets that have been investigated, DBS in the neuroanatomical framework of the SCG, ALIC and MFB yielded more consistent antidepressant response rates in samples with TRD. Nevertheless, more well-designed randomized double-blind, controlled trials are warranted to further assess the efficacy, safety and tolerability of these more promising DBS targets for the management of TRD as therapeutic effects have been inconsistent across some controlled studies.
Collapse
Affiliation(s)
- M P Dandekar
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - A J Fenoy
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - A F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - J C Soares
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - J Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| |
Collapse
|
4
|
Ramasubbu R, Lang S, Kiss ZHT. Dosing of Electrical Parameters in Deep Brain Stimulation (DBS) for Intractable Depression: A Review of Clinical Studies. Front Psychiatry 2018; 9:302. [PMID: 30050474 PMCID: PMC6050377 DOI: 10.3389/fpsyt.2018.00302] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/18/2018] [Indexed: 01/16/2023] Open
Abstract
Background: The electrical parameters used for deep brain stimulation (DBS) in movement disorders have been relatively well studied, however for the newer indications of DBS for psychiatric indications these are less clear. Based on the movement disorder literature, use of the correct stimulation parameters should be crucial for clinical outcomes. This review examines the stimulation parameters used in DBS studies for treatment resistant depression (TRD) and their relevance to clinical outcome and brain targets. Methods: We examined the published studies on DBS for TRD archived in major databases. Data on stimulus parameters (frequency, pulse width, amplitude), stimulation mode, brain target, efficacy, safety, and duration of follow up were extracted from 29 observational studies including case reports of patients with treatment resistant unipolar, bipolar, and co-morbid depression. Results: The algorithms commonly used to optimize efficacy were increasing amplitude followed by changing the electric contacts or increasing pulse width. High frequency stimulation (>100 Hz) was applied in most cases across brain targets. Keeping the high frequency stimulation constant, three different combinations of parameters were mainly used: (i) short pulse width (60-90 us) and low amplitude (0-4 V), (ii) short pulse width and high amplitude (5-10 V), (iii) long pulse width (120-450 us) and low amplitude. There were individual variations in clinical response to electrical dosing and also in the time of clinical recovery. There was no significant difference in mean stimulation parameters between responders and non-responders suggesting a role for stimulation unrelated factors in response. Conclusions: Although limited by open trials and small sample size, three optimal stimulation parameter combinations emerged from this review. Studies are needed to assess the comparative efficacy and safety of these combinations, such as a registry of data from patients undergoing DBS for TRD with individual data on stimulation parameters.
Collapse
Affiliation(s)
- Rajamannar Ramasubbu
- Department of Psychiatry and Clinical Neurosciences, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Stefan Lang
- Department of Psychiatry and Clinical Neurosciences, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Zelma H T Kiss
- Department of Psychiatry and Clinical Neurosciences, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
5
|
Schumann A, Andrack C, Bär KJ. Differences of sympathetic and parasympathetic modulation in major depression. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:324-331. [PMID: 28710030 DOI: 10.1016/j.pnpbp.2017.07.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 07/09/2017] [Accepted: 07/09/2017] [Indexed: 10/19/2022]
Abstract
Inconsistent results have been reported with respect to cardiac autonomic function in major depression. The aim of our study was to investigate autonomic function in various branches of the autonomic nervous system in order to better understand parasympathetic and sympathetic modulation in the disease. We investigated 29 unmedicated patients suffering from major depression (MD) in comparison to matched control subjects (gender, age, BMI). The autonomic assessment at rest included values of heart rate variability (HRV), blood pressure variability (BPV), baroreflex sensitivity (BRS), respiration, skin conductance (SC) as well as the calculation of pupillary diameter and the unrest index (PUI). Results were compared by means of a multivariate analysis of variance. In a classification analysis, we identified suitable parameters for patient - control separation. Finally, to analyze interrelations of pupillometric parameters and autonomic indices, we estimated Pearson correlation coefficients and fitted a linear regression model. Apart from a significantly increased heart rate (75±12 vs. 65±6min-1, p<0.001) and decreased BRS (14±13 vs. 20±15ms/mmHg, p<0.05), we observed a lack of significant differences in HRV and BPV analysis between patients and controls. However, pupillary diameter (left: 4.3±0.9 vs. 3.8±0.6, p<0.01; right: 4.3±0.9 vs. 3.7±0.6mm, p<0.01) and PUI (left: 14.8±6.0 vs. 10.7±4.5mm/min, p<0.01; right: 14.1±5.5 vs. 10.7±4.8mm/min, p<0.01), as well as the level (left: 7.3±6.2 vs. 4.3±4.4 μS, p<0.05) and fluctuations of skin conductance (left: 4.2±4.1 vs. 2.5±3.6, p<0.05; right: 4.2±4.4 vs. 2.6±3.2, p<0.05) were significantly different. The classification accuracy was 88.5% with high specificity (e=92.9%) and sensitivity (s=83.3%) including heart rate, PUI and skin conductance. HRV indices correlated to PUI in controls but not in patients. Our data add evidence to the current debate on autonomic function in major depression. We suggest that diverse results are mainly caused by methodological shortcomings, in particular by the application of HRV assessment only, which misses changes of sympathetic modulation. The application of broader analyzing tools will clarify the pattern of autonomic function in depression and ultimately its role in cardiac morbidity and mortality.
Collapse
Affiliation(s)
- Andy Schumann
- Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, University Hospital Jena, Jena, Germany
| | - Caroline Andrack
- Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, University Hospital Jena, Jena, Germany
| | - Karl-Jürgen Bär
- Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, University Hospital Jena, Jena, Germany.
| |
Collapse
|
6
|
Oldani L, Altamura AC, Abdelghani M, Young AH. Brain stimulation treatments in bipolar disorder: A review of the current literature. World J Biol Psychiatry 2016; 17:482-94. [PMID: 25471324 DOI: 10.3109/15622975.2014.984630] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Brain stimulation techniques are non-pharmacologic strategies which offer additional therapeutic options for treatment-resistant depression (TRD). The purpose of this paper is to review the current literature regarding the use of brain stimulation in resistant bipolar disorder (BD), with particular reference to hypomanic/manic symptoms. METHODS Keywords pertaining to the brain simulation techniques used in the treatment of depression (either unipolar or bipolar) along with their role in regard to hypomanic/manic symptoms were used to conduct an electronic search of the literature. Pertinent findings were identified by the authors and reviewed. RESULTS Brain stimulation techniques represent a valid therapeutic option in TRD. They have been extensively studied in unipolar depression and, to a minor extent, in the depressive phase of BD, showing encouraging but often limited results. With exception of electroconvulsive therapy, the efficacy of brain stimulation in the treatment of manic symptoms of bipolar patients is still uncertain and needs to be fully evaluated. CONCLUSIONS Brain stimulation in BD is derived from its use in unipolar depression. However, there are many important differences between these two disorders and more studies with a systematic approach need to be conducted on larger samples of bipolar patients with treatment-resistant characteristics.
Collapse
Affiliation(s)
- Lucio Oldani
- a Department of Psychiatry , University of Milan, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico , Milan , Italy
| | - A Carlo Altamura
- a Department of Psychiatry , University of Milan, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico , Milan , Italy
| | - Mohamed Abdelghani
- b Complex Depression, Anxiety and Trauma Service (CDAT) and Neurodevelopmental Service (Adult ADHD and Adult ASD), Camden and Islington NHS Foundation Trust, St Pancras Hospital , London , UK
| | - Allan H Young
- c Centre for Affective Disorders, Institute of Psychiatry, King's College London , Denmark Hill, London , UK
| |
Collapse
|
7
|
Abstract
Major depressive disorder (MDD) is a debilitating disease that is characterized by depressed mood, diminished interests, impaired cognitive function and vegetative symptoms, such as disturbed sleep or appetite. MDD occurs about twice as often in women than it does in men and affects one in six adults in their lifetime. The aetiology of MDD is multifactorial and its heritability is estimated to be approximately 35%. In addition, environmental factors, such as sexual, physical or emotional abuse during childhood, are strongly associated with the risk of developing MDD. No established mechanism can explain all aspects of the disease. However, MDD is associated with alterations in regional brain volumes, particularly the hippocampus, and with functional changes in brain circuits, such as the cognitive control network and the affective-salience network. Furthermore, disturbances in the main neurobiological stress-responsive systems, including the hypothalamic-pituitary-adrenal axis and the immune system, occur in MDD. Management primarily comprises psychotherapy and pharmacological treatment. For treatment-resistant patients who have not responded to several augmentation or combination treatment attempts, electroconvulsive therapy is the treatment with the best empirical evidence. In this Primer, we provide an overview of the current evidence of MDD, including its epidemiology, aetiology, pathophysiology, diagnosis and treatment.
Collapse
Affiliation(s)
- Christian Otte
- Department of Psychiatry and Psychotherapy, Charité University Medical Center, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Stefan M Gold
- Department of Psychiatry and Psychotherapy, Charité University Medical Center, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Brenda W Penninx
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
| | - Carmine M Pariante
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Amit Etkin
- Department of Psychiatry and Behavioural Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| | - Maurizio Fava
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David C Mohr
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Alan F Schatzberg
- Department of Psychiatry and Behavioural Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
8
|
Mi K. Use of deep brain stimulation for major affective disorders. Exp Ther Med 2016; 12:2371-2376. [PMID: 27698736 PMCID: PMC5038190 DOI: 10.3892/etm.2016.3622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/04/2016] [Indexed: 12/30/2022] Open
Abstract
The multifactorial etiology of major affective disorders, such as major depression and bipolar disorder, poses a challenge for identification of effective treatments. In a substantial number of patients, psychopharmacologic treatment does not lead to effective continuous symptom relief. The use of deep brain stimulation (DBS) for treatment-resistant patients is an investigational approach that has recently produced promising results. The recent development of safer stereotaxic neurosurgery, and the combination with functional neuroimaging to map the affected brain circuits, have led to the investigation of DBS as a potential strategy to treat major mood disorders. Several independent clinical studies have recently shown that chronic DBS treatment leads to remission of symptoms in a high number of treatment-resistant patients for major depression and bipolar disorder. In conclusion, the existing proof-of-principle that DBS can be an effective intervention for treatment-resistant depression opens new avenues for treatment. However, multicenter, randomized and blind trials need to confirm efficacy and be approved after the most recent failures. Patient selection and surgical-related improvements are key issues that remain to be addressed to help deliver more precise and customized treatment.
Collapse
Affiliation(s)
- Kuanqing Mi
- Department of Neurosurgery, The Fifth People's Hospital of Jinan, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
9
|
Abstract
OBJECTIVE Autonomic nervous system dysfunction has the potential to adversely impact general medical health and is known to exist in a number of psychiatric disorders. It reflects alterations in the function of several regions of the central nervous system. Measurement of heart rate variability provides a non-invasive tool for studying autonomic function. While the literature relating to the technical process of heart rate variability and aspects of depressive disorders has been reviewed in the past, research relating to both depressive and bipolar disorders has not been comprehensively reviewed. This paper critically considers the published research in heart rate variability in both depressive and bipolar affective disorders. METHOD A literature search using Medline, EMBASE, PsycINFO, ProQuest Psychology and references included in published literature was conducted using the following keywords: 'heart rate variability and autonomic, combined with depression, depressive disorder, bipolar, mania and sleep'. RESULTS The evidence demonstrates that, using heart rate variability measures, significant distortions of autonomic function are evident in both depressive and bipolar disorders and from most of their pharmacological treatments. CONCLUSION The autonomic dysfunction evident in both unipolar and bipolar affective disorders, and many psychotropic medications, has significant implications for our understanding of the neurophysiology of these disorders, their treatment and associated general health.
Collapse
Affiliation(s)
- Darryl Bassett
- School of Medicine, University of Notre Dame, Notre Dame, Fremantle, Western Australia; School of Psychiatry and Clinical Neurosciences, University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
10
|
Mahmud M, Vassanelli S. Differential Modulation of Excitatory and Inhibitory Neurons during Periodic Stimulation. Front Neurosci 2016; 10:62. [PMID: 26941602 PMCID: PMC4766297 DOI: 10.3389/fnins.2016.00062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/09/2016] [Indexed: 01/02/2023] Open
Abstract
Non-invasive transcranial neuronal stimulation, in addition to deep brain stimulation, is seen as a promising therapeutic and diagnostic approach for an increasing number of neurological diseases such as epilepsy, cluster headaches, depression, specific type of blindness, and other central nervous system disfunctions. Improving its effectiveness and widening its range of use may strongly rely on development of proper stimulation protocols that are tailored to specific brain circuits and that are based on a deep knowledge of different neuron types response to stimulation. To this aim, we have performed a simulation study on the behavior of excitatory and inhibitory neurons subject to sinusoidal stimulation. Due to the intrinsic difference in membrane conductance properties of excitatory and inhibitory neurons, we show that their firing is differentially modulated by the wave parameters. We analyzed the behavior of the two neuronal types for a broad range of stimulus frequency and amplitude and demonstrated that, within a small-world network prototype, parameters tuning allow for a selective enhancement or suppression of the excitation/inhibition ratio.
Collapse
Affiliation(s)
- Mufti Mahmud
- NeuroChip Laboratory, Department of Biomedical Sciences, University of PadovaPadova, Italy; Institute of Information Technology, Jahangirnagar UniversitySavar, Dhaka, Bangladesh
| | - Stefano Vassanelli
- NeuroChip Laboratory, Department of Biomedical Sciences, University of Padova Padova, Italy
| |
Collapse
|
11
|
Malhi GS, Bassett D, Boyce P, Bryant R, Fitzgerald PB, Fritz K, Hopwood M, Lyndon B, Mulder R, Murray G, Porter R, Singh AB. Royal Australian and New Zealand College of Psychiatrists clinical practice guidelines for mood disorders. Aust N Z J Psychiatry 2015; 49:1087-206. [PMID: 26643054 DOI: 10.1177/0004867415617657] [Citation(s) in RCA: 543] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To provide guidance for the management of mood disorders, based on scientific evidence supplemented by expert clinical consensus and formulate recommendations to maximise clinical salience and utility. METHODS Articles and information sourced from search engines including PubMed and EMBASE, MEDLINE, PsycINFO and Google Scholar were supplemented by literature known to the mood disorders committee (MDC) (e.g., books, book chapters and government reports) and from published depression and bipolar disorder guidelines. Information was reviewed and discussed by members of the MDC and findings were then formulated into consensus-based recommendations and clinical guidance. The guidelines were subjected to rigorous successive consultation and external review involving: expert and clinical advisors, the public, key stakeholders, professional bodies and specialist groups with interest in mood disorders. RESULTS The Royal Australian and New Zealand College of Psychiatrists clinical practice guidelines for mood disorders (Mood Disorders CPG) provide up-to-date guidance and advice regarding the management of mood disorders that is informed by evidence and clinical experience. The Mood Disorders CPG is intended for clinical use by psychiatrists, psychologists, physicians and others with an interest in mental health care. CONCLUSIONS The Mood Disorder CPG is the first Clinical Practice Guideline to address both depressive and bipolar disorders. It provides up-to-date recommendations and guidance within an evidence-based framework, supplemented by expert clinical consensus. MOOD DISORDERS COMMITTEE Professor Gin Malhi (Chair), Professor Darryl Bassett, Professor Philip Boyce, Professor Richard Bryant, Professor Paul Fitzgerald, Dr Kristina Fritz, Professor Malcolm Hopwood, Dr Bill Lyndon, Professor Roger Mulder, Professor Greg Murray, Professor Richard Porter and Associate Professor Ajeet Singh. INTERNATIONAL EXPERT ADVISORS Professor Carlo Altamura, Dr Francesco Colom, Professor Mark George, Professor Guy Goodwin, Professor Roger McIntyre, Dr Roger Ng, Professor John O'Brien, Professor Harold Sackeim, Professor Jan Scott, Dr Nobuhiro Sugiyama, Professor Eduard Vieta, Professor Lakshmi Yatham. AUSTRALIAN AND NEW ZEALAND EXPERT ADVISORS Professor Marie-Paule Austin, Professor Michael Berk, Dr Yulisha Byrow, Professor Helen Christensen, Dr Nick De Felice, A/Professor Seetal Dodd, A/Professor Megan Galbally, Dr Josh Geffen, Professor Philip Hazell, A/Professor David Horgan, A/Professor Felice Jacka, Professor Gordon Johnson, Professor Anthony Jorm, Dr Jon-Paul Khoo, Professor Jayashri Kulkarni, Dr Cameron Lacey, Dr Noeline Latt, Professor Florence Levy, A/Professor Andrew Lewis, Professor Colleen Loo, Dr Thomas Mayze, Dr Linton Meagher, Professor Philip Mitchell, Professor Daniel O'Connor, Dr Nick O'Connor, Dr Tim Outhred, Dr Mark Rowe, Dr Narelle Shadbolt, Dr Martien Snellen, Professor John Tiller, Dr Bill Watkins, Dr Raymond Wu.
Collapse
Affiliation(s)
- Gin S Malhi
- Discipline of Psychiatry, Kolling Institute, Sydney Medical School, University of Sydney, Sydney, NSW, Australia CADE Clinic, Department of Psychiatry, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Darryl Bassett
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, WA, Australia School of Medicine, University of Notre Dame, Perth, WA, Australia
| | - Philip Boyce
- Discipline of Psychiatry, Sydney Medical School, Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Richard Bryant
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre (MAPrc), Monash University Central Clinical School and The Alfred, Melbourne, VIC, Australia
| | - Kristina Fritz
- CADE Clinic, Discipline of Psychiatry, Sydney Medical School - Northern, University of Sydney, Sydney, NSW, Australia
| | - Malcolm Hopwood
- Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
| | - Bill Lyndon
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia Mood Disorders Unit, Northside Clinic, Greenwich, NSW, Australia ECT Services Northside Group Hospitals, Greenwich, NSW, Australia
| | - Roger Mulder
- Department of Psychological Medicine, University of Otago-Christchurch, Christchurch, New Zealand
| | - Greg Murray
- Department of Psychological Sciences, School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Richard Porter
- Department of Psychological Medicine, University of Otago-Christchurch, Christchurch, New Zealand
| | - Ajeet B Singh
- School of Medicine, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
12
|
Haddad PM, Talbot PS, Anderson IM, McAllister-Williams RH. Managing inadequate antidepressant response in depressive illness. Br Med Bull 2015; 115:183-201. [PMID: 26311502 DOI: 10.1093/bmb/ldv034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/15/2015] [Indexed: 01/03/2023]
Abstract
INTRODUCTION OR BACKGROUND Depression frequently fails to respond to initial treatment. SOURCES OF DATA Predominantly meta-analyses and RCTs but supplemented where necessary by additional data and the authors' clinical experience. AREAS OF AGREEMENT A systematic assessment to identify remedial causes of poor response should be followed by planned sequential treatment trials. Joint decision making by the patient and clinician is essential. Strategies with the strongest support are antidepressant augmentation with lithium or second generation antipsychotics and adding cognitive behavioural treatment. Electroconvulsive therapy is highly effective in resistant depression but there is a high relapse rate when treatment ends. AREAS OF CONTROVERSY Some pharmacological strategies have inconsistent data (e.g. antidepressant combinations, T3 augmentation) or limited preliminary data (e.g. ketamine, antidepressant augmentation with pramipexole). The efficacy of vagus nerve stimulation, deep brain stimulation and repetitive transcranial magnetic stimulation is unclear. GROWING POINTS A greater understanding of the causes of depression may assist the development of more effective treatments. AREAS TIMELY FOR DEVELOPING RESEARCH Role of glutamate antagonists and psychological treatments, other than cognitive behavioural therapy, as adjunctive treatments.
Collapse
Affiliation(s)
- Peter M Haddad
- Neuroscience and Psychiatry Unit, University of Manchester, Stopford Building, Oxford Rd, Manchester M13 9PT, UK Greater Manchester West Mental Health NHS Foundation Trust, Cromwell House, Eccles, Salford M30 0GT, UK
| | - Peter S Talbot
- Wolfson Molecular Imaging Centre, University of Manchester, 27 Palatine Road, Manchester M20 3LJ, UK
| | - Ian M Anderson
- Neuroscience and Psychiatry Unit, University of Manchester, Stopford Building, Oxford Rd, Manchester M13 9PT, UK
| | - R Hamish McAllister-Williams
- Institute of Neuroscience, Newcastle University, Wolfson Research Centre, Campus for Ageing and Vitality, Westgate Road, Newcastle upon Tyne NE4 5PL, UK Northumberland, Tyne and Wear NHS Foundation Trust, Regional Affective Disorders Service, Campus for Ageing and Vitality, Westgate Road, Newcastle upon Tyne NE4 5PR, UK
| |
Collapse
|
13
|
Acupuncture-induced changes of vagal function in patients with depression: A preliminary sham-controlled study with press needles. Complement Ther Clin Pract 2015; 21:193-200. [DOI: 10.1016/j.ctcp.2015.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/03/2015] [Indexed: 02/06/2023]
|
14
|
Feldman-Goriachnik R, Belzer V, Hanani M. Systemic inflammation activates satellite glial cells in the mouse nodose ganglion and alters their functions. Glia 2015; 63:2121-2132. [DOI: 10.1002/glia.22881] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 06/08/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Rachel Feldman-Goriachnik
- Laboratory of Experimental Surgery; Hadassah-Hebrew University Medical Center; Mount Scopus Jerusalem 91240 Israel
| | - Vitali Belzer
- Laboratory of Experimental Surgery; Hadassah-Hebrew University Medical Center; Mount Scopus Jerusalem 91240 Israel
| | - Menachem Hanani
- Laboratory of Experimental Surgery; Hadassah-Hebrew University Medical Center; Mount Scopus Jerusalem 91240 Israel
| |
Collapse
|
15
|
Vagal pathways for microbiome-brain-gut axis communication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 817:115-33. [PMID: 24997031 DOI: 10.1007/978-1-4939-0897-4_5] [Citation(s) in RCA: 333] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is now strong evidence from animal studies that gut microorganism can activate the vagus nerve and that such activation plays a critical role in mediating effects on the brain and behaviour. The vagus appears to differentiate between non-pathogenic and potentially pathogenic bacteria even in the absence of overt inflammation and vagal pathways mediate signals that can induce both anxiogenic and anxiolytic effects, depending on the nature of the stimulus. Certain vagal signals from the gut can instigate an anti-inflammatory reflex with afferent signals to the brain activating an efferent response, releasing mediators including acetylcholine that, through an interaction with immune cells, attenuates inflammation. This immunomodulatory role of the vagus nerve may also have consequences for modulation of brain function and mood.What is currently lacking are relevant data on the electrophysiology of the system. Certainly, important advances in our understanding of the gut-brain and microbiome- gut-brain axis will come from studies of how distinct microbial and nutritional stimuli activate the vagus and the nature of the signals transmitted to the brain that lead to differential changes in the neurochemistry of the brain and behaviour.Understanding the induction and transmission of signals in the vagus nerve may have important implications for the development of microbial-or nutrition based therapeutic strategies for mood disorders.
Collapse
|
16
|
Greene JG. Causes and consequences of degeneration of the dorsal motor nucleus of the vagus nerve in Parkinson's disease. Antioxid Redox Signal 2014; 21:649-67. [PMID: 24597973 DOI: 10.1089/ars.2014.5859] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Parkinson's disease (PD) is no longer considered merely a movement disorder caused by degeneration of dopamine neurons in the midbrain. It is now recognized as a widespread neuropathological syndrome accompanied by a variety of motor and nonmotor clinical symptoms. As such, any hypothesis concerning PD pathogenesis and pathophysiology must account for the entire spectrum of disease and not solely focus on the dopamine system. RECENT ADVANCES Based on its anatomy and the intrinsic properties of its neurons, the dorsal motor nucleus of the vagus nerve (DMV) is uniquely vulnerable to damage from PD. Fibers in the vagus nerve course throughout the gastrointestinal (GI) tract to and from the brainstem forming a close link between the peripheral and central nervous systems and a point of proximal contact between the environment and areas where PD pathology is believed to start. In addition, DMV neurons are under high levels of oxidative stress due to their high level of α-synuclein expression, fragile axons, and specific neuronal physiology. Moreover, several consequences of DMV damage, namely, GI dysfunction and unrestrained inflammation, may propagate a vicious cycle of injury affecting vulnerable brain regions. CRITICAL ISSUES Current evidence to suggest the vagal system plays a pivotal role in PD pathogenesis is circumstantial, but given the current state of the field, the time is ripe to obtain direct experimental evidence to better delineate it. FUTURE DIRECTIONS Better understanding of the DMV and vagus nerve may provide insight into PD pathogenesis and a neural highway with direct brain access that could be harnessed for novel therapeutic interventions.
Collapse
Affiliation(s)
- James G Greene
- Department of Neurology, Emory University , Atlanta, Georgia
| |
Collapse
|
17
|
Rizvi SJ, Grima E, Tan M, Rotzinger S, Lin P, Mcintyre RS, Kennedy SH. Treatment-resistant depression in primary care across Canada. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2014; 59:349-57. [PMID: 25007419 PMCID: PMC4086317 DOI: 10.1177/070674371405900702] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 01/01/2014] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Treatment-resistant depression (TRD) represents a considerable global health concern. The goal of the InSight study was to investigate the prevalence of TRD and to evaluate its clinical characterization and management, compared with nonresistant depression, in primary care centres. METHODS Physicians completed a case report on a consecutive series of patients with major depressive disorder (n = 1212), which captured patient demographics and comorbidity, as well as current and past medication. RESULTS Using failure to respond to at least 2 antidepressants (ADs) from different classes as the definition of TRD, the overall prevalence was 21.7%. There were no differences in prevalence between men and women or among ethnicities. Patients with TRD had longer episode duration, were more likely to receive polypharmacy (for example, psychotropic, lipid-lowering, and antiinflammatory agents), and reported more AD related side effects. Higher rates of disability and comorbidity (axes I to III) were associated with treatment resistance. Obesity and being overweight were also associated with treatment resistance. While the selection and sequencing of pharmacotherapy by family physicians in this sample was in line with recommendations from evidence-based treatment guidelines, the wait time to make a change in treatment was 6 to 8 weeks in both groups, which exceeds guideline recommendations. CONCLUSIONS These real-world data demonstrate the high prevalence of TRD in primary care settings, and underscore the substantial burden of illness associated with TRD.
Collapse
Affiliation(s)
- Sakina J Rizvi
- Student, Departments of Pharmaceutical Sciences and Neuroscience, University of Toronto, Toronto, Ontario; Clinical Research Coordinator, Department of Psychiatry, University Health Network, Toronto, Ontario
| | - Etienne Grima
- Chief Operating Officer and Chief Financial Officer, Canadian Heart Research Centre, Toronto, Ontario
| | - Mary Tan
- Statistician, Canadian Heart Research Centre, Toronto, Ontario
| | - Susan Rotzinger
- Project Manager, Department of Psychiatry, University Health Network, Toronto, Ontario
| | - Peter Lin
- Director of Primary Care Initiatives, Canadian Heart Research Centre, Toronto, Ontario
| | - Roger S Mcintyre
- Psychiatrist, Department of Psychiatry, University Health Network, Toronto, Ontario; Professor, Department of Psychiatry, University of Toronto, Toronto, Ontario; Professsor, Department of Pharmacology, University of Toronto, Toronto, Ontario
| | - Sidney H Kennedy
- Psychiatrist, Department of Psychiatry, University Health Network, Toronto, Ontario; Professor, Department of Psychiatry, University of Toronto, Toronto, Ontario; Professor, Institute of Medical Sciences, University of Toronto, toronto, Ontario
| |
Collapse
|
18
|
Treatment-resistant depression: definitions, review of the evidence, and algorithmic approach. J Affect Disord 2014; 156:1-7. [PMID: 24314926 DOI: 10.1016/j.jad.2013.10.043] [Citation(s) in RCA: 294] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 10/22/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND Most adults with major depressive disorder (MDD) fail to achieve remission with index pharmacological treatment. Moreover, at least half will not achieve and sustain remission following multiple pharmacological approaches. Herein, we succinctly review treatment modalities proven effective in treatment-resistant depression (TRD). METHODS We conducted a review of computerized databases (PubMed, Google Scholar) from 1980 to April 2013. Articles selected for review were based on author consensus, adequacy of sample size, the use of a standardized experimental procedure, validated assessment measures and overall manuscript quality. RESULTS The evidence base supporting augmentation of conventional antidepressants with atypical antipsychotics (i.e., aripiprazole, quetiapine, and olanzapine) is the most extensive and rigorous of all pharmacological approaches in TRD. Emerging evidence supports the use of some psychostimulants (i.e., lisdexamfetamine) as well as aerobic exercise. In addition, treatments informed by pathogenetic disease models provide preliminary evidence for the efficacy of immune-inflammatory based therapies and metabolic interventions. Manual based psychotherapies remain a treatment option, with the most compelling evidence for cognitive behavioral therapy. Disparate neurostimulation strategies are also available for individuals insufficiently responsive to pharmacotherapy and/or psychosocial interventions. LIMITATIONS Compared to non-treatment-resistant depression, TRD has been less studied. Most clinical studies on TRD have focused on pharmacotherapy-resistant depression, with relatively fewer studies evaluating "next choice" treatments in individuals who do not initially respond to psychosocial and/or neurostimulatory treatments. CONCLUSION The pathoetiological heterogeneity of MDD/TRD invites the need for mechanistically dissimilar, and empirically validated, treatment approaches for TRD.
Collapse
|
19
|
Calleja-Castillo JM, De La Cruz-Aguilera DL, Manjarrez J, Velasco-Velázquez MA, Morales-Espinoza G, Moreno-Aguilar J, Hernández ME, Aguirre-Cruz L, Pavón L. Chronic deep brain stimulation of the hypothalamic nucleus in wistar rats alters circulatory levels of corticosterone and proinflammatory cytokines. Clin Dev Immunol 2013; 2013:698634. [PMID: 24235973 PMCID: PMC3819891 DOI: 10.1155/2013/698634] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 11/17/2022]
Abstract
Deep brain stimulation (DBS) is a therapeutic option for several diseases, but its effects on HPA axis activity and systemic inflammation are unknown. This study aimed to detect circulatory variations of corticosterone and cytokines levels in Wistar rats, after 21 days of DBS-at the ventrolateral part of the ventromedial hypothalamic nucleus (VMHvl), unilateral cervical vagotomy (UCVgX), or UCVgX plus DBS. We included the respective control (C) and sham (S) groups (n = 6 rats per group). DBS treated rats had higher levels of TNF-α (120%; P < 0.01) and IFN-γ (305%; P < 0.001) but lower corticosterone concentration (48%; P < 0.001) than C and S. UCVgX animals showed increased corticosterone levels (154%; P < 0.001) versus C and S. UCVgX plus DBS increased IL-1β (402%; P < 0.001), IL-6 (160%; P < 0.001), and corsticosterone (178%; P < 0.001 versus 48%; P < 0.001) compared with the C and S groups. Chronic DBS at VMHvl induced a systemic inflammatory response accompanied by a decrease of HPA axis function. UCVgX rats experienced HPA axis hyperactivity as result of vagus nerve injury; however, DBS was unable to block the HPA axis hyperactivity induced by unilateral cervical vagotomy. Further studies are necessary to explore these findings and their clinical implication.
Collapse
Affiliation(s)
- Juan Manuel Calleja-Castillo
- Laboratory of Neuroimmunoendocrinology, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Avenida Insurgentes Sur 3877, La Fama, Tlalpan, 14269 Mexico City, DF, Mexico
| | - Dora Luz De La Cruz-Aguilera
- Laboratory of Neuroimmunoendocrinology, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Avenida Insurgentes Sur 3877, La Fama, Tlalpan, 14269 Mexico City, DF, Mexico
| | - Joaquín Manjarrez
- Laboratory of Reticular Formation Physiology, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Avenida Insurgentes Sur 3877, La Fama, Tlalpan, 14269 Mexico City, DF, Mexico
| | - Marco Antonio Velasco-Velázquez
- Department of Pharmacology, School of Medicine, National Autonomous University of Mexico, P.O. Box 70-297, Coyoacan, 04510 Mexico City, DF, Mexico
| | - Gabriel Morales-Espinoza
- Laboratory of Neuroimmunoendocrinology, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Avenida Insurgentes Sur 3877, La Fama, Tlalpan, 14269 Mexico City, DF, Mexico
| | - Julia Moreno-Aguilar
- Department of Psychoimmunology, National Institute of Psychiatry “Ramón de la Fuente”, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, DF, Mexico
| | - Maria Eugenia Hernández
- Department of Psychoimmunology, National Institute of Psychiatry “Ramón de la Fuente”, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, DF, Mexico
| | - Lucinda Aguirre-Cruz
- Laboratory of Neuroimmunoendocrinology, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Avenida Insurgentes Sur 3877, La Fama, Tlalpan, 14269 Mexico City, DF, Mexico
| | - Lenin Pavón
- Department of Psychoimmunology, National Institute of Psychiatry “Ramón de la Fuente”, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, DF, Mexico
| |
Collapse
|
20
|
|
21
|
Abstract
Bipolar depression remains a major unresolved challenge for psychiatric therapeutics. It is associated with significant disability and mortality and represents the major proportion of the approximately half of follow-up time spent in morbid states despite use of available treatments. Evidence regarding effectiveness of standard treatments, particularly with antidepressants, remains limited and inconsistent. We reviewed available clinical and research literature concerning treatment with antidepressants in bipolar depression and its comparison with unipolar depression. Research evidence concerning efficacy and safety of commonly used antidepressant treatments for acute bipolar depression is very limited. Nevertheless, an updated meta-analysis indicated that overall efficacy was significantly greater with antidepressants than with placebo-treatment and not less than was found in trials for unipolar major depression. Moreover, risks of non-spontaneous mood-switching specifically associated with antidepressant treatment are less than appears to be widely believed. The findings encourage additional efforts to test antidepressants adequately in bipolar depression, and to consider options for depression in types I vs. II bipolar disorder, depression with subsyndromal hypomania and optimal treatment of mixed agitated-dysphoric states--both short- and long-term. Many therapeutic trials considered were small, varied in design, often involved co-treatments, or lacked adequate controls.
Collapse
|
22
|
Lipsman N, Sankar T, Downar J, Kennedy SH, Lozano AM, Giacobbe P. Neuromodulation for treatment-refractory major depressive disorder. CMAJ 2013; 186:33-9. [PMID: 23897945 DOI: 10.1503/cmaj.121317] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
23
|
Neurostimulation in the treatment of epilepsy. Exp Neurol 2013; 244:87-95. [DOI: 10.1016/j.expneurol.2013.04.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 11/24/2022]
|
24
|
Rocha L. Interaction between electrical modulation of the brain and pharmacotherapy to control pharmacoresistant epilepsy. Pharmacol Ther 2013; 138:211-28. [DOI: 10.1016/j.pharmthera.2013.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 01/07/2013] [Indexed: 12/15/2022]
|
25
|
Hurley LL, Tizabi Y. Neuroinflammation, neurodegeneration, and depression. Neurotox Res 2013; 23:131-44. [PMID: 22895696 PMCID: PMC3751583 DOI: 10.1007/s12640-012-9348-1] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 12/19/2022]
Abstract
Neurodegeneration and depression are two common co-morbid conditions, particularly within the aging population. Research has linked neuroinflammation as a major contributing factor to both of these diseases. The key to neuroinflammation effects on neurodegeneration and depression appears to lie within the dysregulation of the control and release of pro- and anti-inflammatory cytokines. This can come from an internal or external insult to the system, or from changes in the individual due to aging that culminate in immune dysregulation. The need to reduce neuroinflammation has led to extensive research into neuroprotectants. We discuss the efficacy found with nicotine, alcohol, resveratrol, curcumin, and ketamine. Our main focus will be on what research tells us about the connections between neuroinflammation, neurodegeneration, and depression, and the hope that neuroprotectants research gives people suffering from neurodegeneration and depression stemming from neuroinflammation. We will conclude by making suggestions for future research in this area.
Collapse
Affiliation(s)
- Laura L. Hurley
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059
| | - Yousef Tizabi
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059
| |
Collapse
|
26
|
Al-Harbi KS, Qureshi NA. Neuromodulation therapies and treatment-resistant depression. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2012; 5:53-65. [PMID: 23152710 PMCID: PMC3496963 DOI: 10.2147/mder.s33198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Patients with treatment-resistant depression (TRD) who showed partial response to pharmacological and psychotherapeutic interventions need a trial of neuromodulation therapies (NTs). Objective This paper aims to review evidence-based data on the use of NTs in TRD. Method Using keywords and combined-word strategy, multiple computer searches of PubMed, Google Scholar, Quertle(R), and Medline were conducted for retrieving relevant articles published in English-language peer-reviewed journals (2000–2012). Those papers that addressed NTs in TRD were retained for extensive review. Results Despite methodological challenges, a range of 30%–93% of TRD patients showed substantial improvement to one of the NTs. One hundred–percent improvement was reported in two single-case studies on deep brain stimulation. Some studies reported no benefits from transcranial direct current stimulation. NTs were reported to have good clinical efficacy, better safety margin, and benign side-effect profile. Data are limited regarding randomized clinical trials, long-term efficacy, and cost-effectiveness of these approaches. Both modified electroconvulsive therapy and magnetic seizure therapy were associated with reversible but disturbing neurocognitive adverse effects. Besides clinical utility, NTs including approaches on the horizon may unlock the biological basis underlying mood disorders including TRD. Conclusion NTs are promising in patients with TRD, as the majority of them show good clinical response measured by standardized depression scales. NTs need further technological refinements and optimization together with continuing well-designed studies that recruit larger numbers of participants with TRD.
Collapse
|
27
|
García-Navarrete E, Torres CV, Gallego I, Navas M, Pastor J, Sola RG. Long-term results of vagal nerve stimulation for adults with medication-resistant epilepsy who have been on unchanged antiepileptic medication. Seizure 2012; 22:9-13. [PMID: 23041031 DOI: 10.1016/j.seizure.2012.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 09/10/2012] [Accepted: 09/14/2012] [Indexed: 10/27/2022] Open
Abstract
PURPOSE Several studies suggest that vagal nerve stimulation (VNS) is an effective treatment for medication-resistant epileptic patients, although patients' medication was usually modified during the assessment period. The purpose of this prospective study was to evaluate the long-term effects of VNS, at 18 months of follow-up, on epileptic patients who have been on unchanged antiepileptic medication. METHODS Forty-three patients underwent a complete epilepsy preoperative evaluation protocol, and were selected for VNS implantation. After surgery, patients were evaluated on a monthly basis, increasing stimulation 0.25mA at each visit, up to 2.5mA. Medication was unchanged for at least 18 months since the stimulation was started. The outcome was analysed in relation to patients' clinical features, stimulation parameters, epilepsy type, magnetic resonance imaging (MRI) results, and history of prior brain surgery. RESULTS Of the 43 operated patients, 63% had a similar or greater than 50% reduction in their seizure frequency. Differences in the responder rate according to stimulation intensity, age at onset of epilepsy, duration of epilepsy before surgery, previous epilepsy surgery and seizure type, did not reach statistical significance. Most side effects were well tolerated. CONCLUSIONS 62.8% of our series of 43 medication-resistant epileptic patients experienced a significant long-term seizure reduction after VNS, even in a situation of on unchanged medical therapy. Patient characteristics predictive of VNS responsiveness remain subject to investigation. Controlled studies with larger sample sizes, on VNS for patients with medication-resistant epilepsy on unchanged medication, are necessary to confirm VNS efficacy for drug-resistant epilepsy, and to identify predictive factors.
Collapse
Affiliation(s)
- Eduardo García-Navarrete
- Division of Neurosurgery, Department of Surgery, University Hospital La Princesa, Universidad Autónoma, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Karimi A, Conti JB, Beaver TM. Implantation of a cardiac resynchronization therapy defibrillator in a patient with bilateral deep brain stimulator: feasibility and technique. J Interv Card Electrophysiol 2012; 35:351-3; discussion 353. [PMID: 23011386 DOI: 10.1007/s10840-012-9718-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/23/2012] [Indexed: 11/26/2022]
Abstract
Uncommonly, a patient with a NeuroStimulator Device (NSD) for a neurologic indication requires a cardiovascular implantable electronic device (CIED) for a cardiac indication. Typically in those with a unilateral pectoral NSD, the contralateral pectoral space is used for CIED implantation; however, in very rare occasions the patient has bilateral pectoral NSDs which makes subsequent implantation of a CIED challenging both because of placement and device interaction. Herein, we introduce the case of a 68-year-old gentleman with bilateral pectoral deep brain stimulators for Parkinsonism who received cardiac resynchronization therapy-defibrillator (CRT-D) for advanced heart failure. The CRT-D generator was implanted in the abdomen and the CRT-D leads were placed through a minimally invasive epicardial approach. Both devices were tested without any evidence of device interaction.
Collapse
Affiliation(s)
- Ashkan Karimi
- Department of Medicine, University of Florida, Gainesville, FL 32610-0129, USA
| | | | | |
Collapse
|