1
|
Singh A, Wu M, Ye TT, Brown AC, Wittenberg NJ. Engineering Planar Gram-Negative Outer Membrane Mimics Using Bacterial Outer Membrane Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23289-23300. [PMID: 39453730 PMCID: PMC11542184 DOI: 10.1021/acs.langmuir.4c02632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 10/27/2024]
Abstract
Antibiotic resistance is a major challenge in modern medicine. The unique double membrane structure of Gram-negative bacteria limits the efficacy of many existing antibiotics and adds complexity to antibiotic development by limiting transport of antibiotics to the bacterial cytosol. New methods to mimic this barrier would enable high-throughput studies for antibiotic development. In this study, we introduce an innovative approach to modify outer membrane vesicles (OMVs) from Aggregatibacter actinomycetemcomitans, to generate planar supported lipid bilayer membranes. Our method first involves the incorporation of synthetic lipids into OMVs using a rapid freeze-thaw technique to form outer membrane hybrid vesicles (OM-Hybrids). Subsequently, these OM-Hybrids can spontaneously rupture when in contact with SiO2 surfaces to form a planar outer membrane supported bilayer (OM-SB). We assessed the formation of OM-Hybrids using dynamic light scattering and a fluorescence quenching assay. To analyze the formation of OM-SBs from OM-Hybrids we used quartz crystal microbalance with dissipation monitoring (QCM-D) and fluorescence recovery after photobleaching (FRAP). Additionally, we conducted assays to detect surface-associated DNA and proteins on OM-SBs. The interaction of an antimicrobial peptide, polymyxin B, with the OM-SBs was also assessed. These findings emphasize the capability of our platform to produce planar surfaces of bacterial outer membranes, which in turn, could function as a valuable tool for streamlining the development of antibiotics.
Collapse
Affiliation(s)
- Aarshi
N. Singh
- Department
of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Meishan Wu
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Tiffany T. Ye
- Department
of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Angela C. Brown
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Nathan J. Wittenberg
- Department
of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
2
|
Singh AN, Wu M, Ye TT, Brown AC, Wittenberg NJ. Engineering Planar Gram-Negative Outer Membrane Mimics Using Bacterial Outer Membrane Vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.11.570829. [PMID: 39229024 PMCID: PMC11370475 DOI: 10.1101/2023.12.11.570829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Antibiotic resistance is a major challenge in modern medicine. The unique double membrane structure of gram-negative bacteria limits the efficacy of many existing antibiotics and adds complexity to antibiotic development by limiting transport of antibiotics to the bacterial cytosol. New methods to mimic this barrier would enable high-throughput studies for antibiotic development. In this study, we introduce an innovative approach to modify outer membrane vesicles (OMVs) from Aggregatibacter actinomycetemcomitans, to generate planar supported lipid bilayer membranes. Our method first involves the incorporation of synthetic lipids into OMVs using a rapid freeze-thaw technique to form outer membrane hybrid vesicles (OM-Hybrids). Subsequently, these OM-Hybrids can spontaneously rupture when in contact with SiO2 surfaces to form a planar outer membrane supported bilayer (OM-SB). We assessed the formation of OM-Hybrids using dynamic light scattering and a fluorescence quenching assay. To analyze the formation of OM-SBs from OM-Hybrids we used quartz crystal microbalance with dissipation monitoring (QCM-D) and fluorescence recovery after photobleaching (FRAP). Additionally, we conducted assays to detect surface-associated DNA and proteins on OM-SBs. The interaction of an antimicrobial peptide, polymyxin B, with the OM-SBs was also assessed. These findings emphasize the capability of our platform to produce planar surfaces of bacterial outer membranes, which in turn, could function as a valuable tool for streamlining the development of antibiotics.
Collapse
Affiliation(s)
- Aarshi N. Singh
- Department of Chemistry, Lehigh University, Bethlehem, PA, USA
| | - Meishan Wu
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - Tiffany T. Ye
- Department of Chemistry, Lehigh University, Bethlehem, PA, USA
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | | |
Collapse
|
3
|
Sapre A, Mandal NS, Somasundar A, Bhide A, Song J, Borhan A, Sen A. Enzyme Catalysis Causes Fluid Flow, Motility, and Directional Transport on Supported Lipid Bilayers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9380-9387. [PMID: 38319873 DOI: 10.1021/acsami.3c15383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The dynamic interplay between the composition of lipid membranes and the behavior of membrane-bound enzymes is critical to the understanding of cellular function and viability, and the design of membrane-based biosensing platforms. While there is a significant body of knowledge about how lipid composition and dynamics affect membrane-bound enzymes, little is known about how enzyme catalysis influences the motility and lateral transport on lipid membranes. Using enzyme-attached lipids in supported bilayers (SLBs), we provide direct evidence of catalysis-induced fluid flow that underlies the observed motility on SLBs. Additionally, by using active enzyme patches, we demonstrate the directional transport of tracer particles on SLBs. As expected, enhancing the membrane viscosity by incorporating cholesterol into the bilayer suppresses the overall movement. These are the first steps in understanding diffusion and transport on lipid membranes due to active, out-of-equilibrium processes that are the hallmark of living systems. In general, our study demonstrates how active enzymes can be used to control diffusion and transport in confined 2-D environments.
Collapse
Affiliation(s)
- Aditya Sapre
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Niladri Sekhar Mandal
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ambika Somasundar
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ashlesha Bhide
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jiaqi Song
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ali Borhan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ayusman Sen
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
4
|
The potential of antifungal peptide Sesquin as natural food preservative. Biochimie 2022; 203:51-64. [PMID: 35395327 DOI: 10.1016/j.biochi.2022.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022]
Abstract
Sesquin is a wide spectrum antimicrobial peptide displaying a remarkable activity on fungi. Contrarily to most antimicrobial peptides, it presents an overall negative charge. In the present study, we elucidate the molecular basis of its mode of action towards biomimetic membranes by NMR and MD experiments. While a specific recognition of phosphatidylethanolamine (PE) might explain its activity in a variety of different organisms (including bacteria), a further interaction with ergosterol accounts for its strong antifungal activity. NMR data reveal a charge gradient along its amide protons allowing the peptide to reach the membrane phosphate groups despite its negative charge. Subsequently, the peptide gets structured inside the bilayer, reducing its order. MD simulations predict that its activity is retained in conditions commonly used for food preservation: low temperatures, high pressure, or the presence of electric field pulses, making Sesquin a good candidate as food preservative.
Collapse
|
5
|
Kakar A, Sastré-Velásquez LE, Hess M, Galgóczy L, Papp C, Holzknecht J, Romanelli A, Váradi G, Malanovic N, Marx F. The Membrane Activity of the Amphibian Temporin B Peptide Analog TB_KKG6K Sheds Light on the Mechanism That Kills Candida albicans. mSphere 2022; 7:e0029022. [PMID: 35972132 PMCID: PMC9599520 DOI: 10.1128/msphere.00290-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022] Open
Abstract
Temporin B (TB) is a 13-amino-acid-long, cationic peptide secreted by the granular glands of the European frog Rana temporaria. We recently showed that the modified TB peptide analog TB_KKG6K rapidly killed planktonic and sessile Candida albicans at low micromolar concentrations and was neither hemolytic nor cytotoxic to mammalian cells in vitro. The present study aimed to shed light into its mechanism of action, with a focus on its fungal cell membrane activity. We utilized different fluorescent dyes to prove that it rapidly induces membrane depolarization and permeabilization. Studies on model membrane systems revealed that the TB analog undergoes hydrophobic and electrostatic membrane interactions, showing a preference for anionic lipids, and identified phosphatidylinositol and cardiolipin as possible peptide targets. Fluorescence microscopy using fluorescein isothiocyanate-labeled TB_KKG6K in the presence of the lipophilic dye FM4-64 indicated that the peptide compromises membrane integrity and rapidly enters C. albicans cells in an energy-independent manner. Peptide-treated cells analyzed by cryo-based electron microscopy exhibited no signs of cell lysis; however, subcellular structures had disintegrated, suggesting that intracellular activity may form part of the killing mechanism of the peptide. Taken together, this study proved that TB_KKG6K compromises C. albicans membrane function, which explains the previously observed rapid, fungicidal mode of action and supports its great potential as a future anti-Candida therapeutic. IMPORTANCE Fungal infections with the opportunistic human pathogen C. albicans are associated with high mortality rates in immunocompromised patients. This is partly due to the yeast's ability to rapidly develop resistance toward currently available antifungals. Small, cationic, membrane-active peptides are promising compounds to fight against resistance development, as many of them effectuate rapid fungal cell death. This fast killing is believed to hamper the development of resistance, as the fungi do not have sufficient time to adapt to the antifungal compound. We previously reported that the synthetic variant of the amphibian TB peptide, TB_KKG6K, rapidly kills C. albicans. In the current study, the mechanism of action of the TB analog was investigated. We show that this TB analog is membrane-active and impairs cell membrane function, highlighting its potential to be developed as an attractive alternative anti-C. albicans therapeutic that may hinder the development of resistance.
Collapse
Affiliation(s)
- Anant Kakar
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Michael Hess
- Institute for Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - László Galgóczy
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Csaba Papp
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Jeanett Holzknecht
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Györgyi Váradi
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Nermina Malanovic
- Institute of Molecular Biosciences, Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Florentine Marx
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Ramos-Martín F, Herrera-León C, D'Amelio N. Bombyx mori Cecropin D could trigger cancer cell apoptosis by interacting with mitochondrial cardiolipin. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184003. [PMID: 35850261 DOI: 10.1016/j.bbamem.2022.184003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Cecropin D is an antimicrobial peptide from Bombyx mori displaying anticancer and pro-apoptotic activities and, together with Cecropin XJ and Cecropin A, one of the very few peptides targeting esophageal cancer. Cecropin D displays poor similarity to other cecropins but a remarkable similarity in the structure and activity spectrum with Cecropin A and Cecropin XJ, offering the possibility to highlight key motifs at the base of the biological activity. In this work we show by NMR and MD simulations that Cecropin D is partially structured in solution and stabilizes its two-helix folding upon interaction with biomimetic membranes. Simulations show that Cecropin D strongly interacts with the surface of cancer cell biomimetic bilayers where it recognises the phosphatidylserine headgroup often exposed in the outer leaflet of cancerous cells by means of specific salt bridges. Cecropin D is also able to penetrate deeply in bilayers containing cardiolipin, a phospholipid found in mitochondria, causing significant destabilization in the lipid packing which might account for its pro-apoptotic activity. In bacterial membranes, phosphatidylglycerol and phosphatidylethanolamine act synergically by electrostatically attracting cecropin D and providing access to the membrane core, respectively.
Collapse
Affiliation(s)
- Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens 80039, France.
| | - Claudia Herrera-León
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens 80039, France
| | - Nicola D'Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens 80039, France.
| |
Collapse
|
7
|
Ramos-Martín F, D'Amelio N. Biomembrane lipids: When physics and chemistry join to shape biological activity. Biochimie 2022; 203:118-138. [PMID: 35926681 DOI: 10.1016/j.biochi.2022.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022]
Abstract
Biomembranes constitute the first lines of defense of cells. While small molecules can often permeate cell walls in bacteria and plants, they are generally unable to penetrate the barrier constituted by the double layer of phospholipids, unless specific receptors or channels are present. Antimicrobial or cell-penetrating peptides are in fact highly specialized molecules able to bypass this barrier and even discriminate among different cell types. This capacity is made possible by the intrinsic properties of its phospholipids, their distribution between the internal and external leaflet, and their ability to mutually interact, modulating the membrane fluidity and the exposition of key headgroups. Although common phospholipids can be found in the membranes of most organisms, some are characteristic of specific cell types. Here, we review the properties of the most common lipids and describe how they interact with each other in biomembrane. We then discuss how their assembly in bilayers determines some key physical-chemical properties such as permeability, potential and phase status. Finally, we describe how the exposition of specific phospholipids determines the recognition of cell types by membrane-targeting molecules.
Collapse
Affiliation(s)
- Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, 80039, France.
| | - Nicola D'Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, 80039, France.
| |
Collapse
|
8
|
Suri M, Mohamed Z, Bint E Naser SF, Mao X, Chen P, Daniel S, Hanrath T. Bioelectronic Platform to Investigate Charge Transfer between Photoexcited Quantum Dots and Microbial Outer Membranes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15799-15810. [PMID: 35344337 DOI: 10.1021/acsami.1c25032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photosynthetic semiconductor biohybrids (PSBs) convert light energy to chemical energy through photo-driven charge transfer from nanocrystals to microorganisms that perform bioreactions of interest. Initial proof-of-concept PSB studies with an emphasis on enhanced CO2 conversion have been encouraging; however, bringing the broad prospects of PSBs to fruition is contingent on establishing a firm fundamental understanding of underlying interfacial charge transfer processes. We introduce a bioelectronic platform that reduces the complexity of PSBs by focusing explicitly on interactions between colloidal quantum dots (QDs), microbial outer membranes, and native, small-molecule redox mediators. Our model platform employs a standard three-electrode electrochemical cell with supported outer membranes of Pseudomonas aeruginosa, pyocyanin redox mediators, and semiconducting CdSe QDs dispersed in an aqueous electrolyte. We present a comprehensive electrochemical analysis of this platform via electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and chronoamperometry (CA). EIS reveals the formation and electronic properties of supported outer membrane films. CV reveals the electrochemically active surface area of P. aeruginosa outer membranes and that pyocyanin is the sole species that performs redox with these outer membranes under sweeping applied potential. CA demonstrates that photoexcited charge transfer in this system is driven by the reduction of pyocyanin at the QD surface followed by diffusion of reduced pyocyanin through the outer membrane. The broad applicability of this platform across many bacterial species, QD architectures, and controlled environmental conditions affords the possibility to define design principles for future PSB systems to synergistically integrate concurrent advances in genetically engineered organisms and inorganic nanomaterials.
Collapse
Affiliation(s)
- Mokshin Suri
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Zeinab Mohamed
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Samavi Farnush Bint E Naser
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Xianwen Mao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Peng Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Susan Daniel
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Tobias Hanrath
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
9
|
Carey AB, Ashenden A, Köper I. Model architectures for bacterial membranes. Biophys Rev 2022; 14:111-143. [PMID: 35340604 PMCID: PMC8921416 DOI: 10.1007/s12551-021-00913-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023] Open
Abstract
The complex composition of bacterial membranes has a significant impact on the understanding of pathogen function and their development towards antibiotic resistance. In addition to the inherent complexity and biosafety risks of studying biological pathogen membranes, the continual rise of antibiotic resistance and its significant economical and clinical consequences has motivated the development of numerous in vitro model membrane systems with tuneable compositions, geometries, and sizes. Approaches discussed in this review include liposomes, solid-supported bilayers, and computational simulations which have been used to explore various processes including drug-membrane interactions, lipid-protein interactions, host-pathogen interactions, and structure-induced bacterial pathogenesis. The advantages, limitations, and applicable analytical tools of all architectures are summarised with a perspective for future research efforts in architectural improvement and elucidation of resistance development strategies and membrane-targeting antibiotic mechanisms. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-021-00913-7.
Collapse
Affiliation(s)
- Ashley B. Carey
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| | - Alex Ashenden
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| | - Ingo Köper
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| |
Collapse
|
10
|
Losasso V, Agarwal K, Waskar M, Majumdar A, Crain J, Winn M, Hoptroff M. Small molecules enhance the potency of natural antimicrobial peptides. Biophys J 2022; 121:491-501. [PMID: 34954157 PMCID: PMC8822605 DOI: 10.1016/j.bpj.2021.12.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 02/03/2023] Open
Abstract
The skin-associated microbiome plays an important role in general well-being and in a variety of treatable skin conditions. In this regard, endogenous antimicrobial peptides have both a direct and indirect role in determining the composition of the microbiota. We demonstrate here that certain small molecular species can amplify the antimicrobial potency of naturally occurring antimicrobial peptides. In this study, we have used niacinamide, a form of vitamin B3 naturally found in foods and widely used in cosmetic skincare products, and two of its structural analogs, to investigate their cooperativity with the human antimicrobial peptide LL37 on the bacterium Staphylococcus aureus. We observed a clear synergistic effect of niacinamide and, to some extent, N-methylnicotinamide, whereas isonicotinamide showed no significant cooperativity with LL37. Adaptively biased molecular dynamics simulations using simplified model membrane substrates and single peptides revealed that these molecules partition into the headgroup region of an anionic bilayer used to mimic the bacterial membrane. The simulated effects on the physical properties of the simulated model membrane are well correlated with experimental activity observed in real biological assays despite the simplicity of the model. In contrast, these molecules have little effect on zwitterionic bilayers that mimic a mammalian membrane. We conclude that niacinamide and N-methylnicotinamide can therefore potentiate the activity of host peptides by modulating the physical properties of the bacterial membrane, and to a lesser extent through direct interactions with the peptide. The level of cooperativity is strongly dependent on the detailed chemistry of the additive, suggesting an opportunity to fine-tune the behavior of host peptides.
Collapse
Affiliation(s)
- Valeria Losasso
- Science and Technology Facilities Council, Daresbury Laboratory, Sci-Tech Daresbury, Daresbury, UK
| | | | | | | | - Jason Crain
- IBM Research Europe, Hartree Centre, Daresbury, UK,Department of Biochemistry, University of Oxford, Oxford, UK
| | - Martyn Winn
- Science and Technology Facilities Council, Daresbury Laboratory, Sci-Tech Daresbury, Daresbury, UK
| | - Michael Hoptroff
- Unilever Research and Development, Port Sunlight, UK,Corresponding author
| |
Collapse
|
11
|
Ramos-Martín F, Herrera-León C, D'Amelio N. Molecular basis of the anticancer, apoptotic and antibacterial activities of Bombyx mori Cecropin A. Arch Biochem Biophys 2022; 715:109095. [PMID: 34826396 DOI: 10.1016/j.abb.2021.109095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/10/2021] [Accepted: 11/23/2021] [Indexed: 02/06/2023]
Abstract
As Cecropin XJ, Cecropin A from Bombyx mori is one of the very few antimicrobial peptides having shown activity against esophageal cancer cells. It displays remarkable sequence-similarity to Cecropin XJ but slightly enhanced activity. In this work we show by NMR that both peptides are unstructured in solution but get structured in the presence of DPC micelles, mimicking the surface of biological membranes. In order to get insight into the molecular basis of its anticancer, antimicrobial and antifungal activity, we have investigated by MD simulations their interaction with a large variety of lipid bilayers mimicking cancer, mitochondrial, bacterial and fungal membranes. At variance with CecXJ, organized in two main helices, CecA tends to form a three helix bundle resulting in enhanced adaptability to its membrane targets. A specificity for the headgroup of phosphatidylserine and affinity for phosphatidylglycerol and cardiolipin may account for its selective targeting of cancer, bacterial and mitochondrial membranes, respectively.
Collapse
Affiliation(s)
- Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, 80039, France.
| | - Claudia Herrera-León
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, 80039, France
| | - Nicola D'Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, 80039, France.
| |
Collapse
|
12
|
Herrera-León C, Ramos-Martín F, Antonietti V, Sonnet P, D'Amelio N. The impact of phosphatidylserine exposure on cancer cell membranes on the activity of the anticancer peptide HB43. FEBS J 2021; 289:1984-2003. [PMID: 34767285 DOI: 10.1111/febs.16276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/19/2021] [Accepted: 11/10/2021] [Indexed: 02/04/2023]
Abstract
HB43 (FAKLLAKLAKKLL) is a synthetic peptide active against cell lines derived from breast, colon, melanoma, lung, prostate, and cervical cancers. Despite its remarkable spectrum of activity, the mechanism of action at the molecular level has never been investigated, preventing further optimization of its selectivity. The alternation of charged and hydrophobic residues suggests amphipathicity, but the formation of alpha-helical structure seems discouraged by its short length and the large number of positively charged residues. Using different biophysical and in silico approaches we show that HB43 is completely unstructured in solution but assumes alpha-helical conformation in the presence of DPC micelles and liposomes exposing phosphatidylserine (PS) used as mimics of cancer cell membranes. Membrane permeabilization assays demonstrate that the interaction leads to the preferential destabilization of PS-containing vesicles with respect to PC-containing ones, here used as noncancerous cell mimics. ssNMR reveals that HB43 is able to fluidify the internal structure of cancer-cell mimicking liposomes while MD simulations show its internalization in such bilayers. This is achieved by the formation of specific interactions between the lysine side chains and the carboxylate group of phosphatidylserine and/or the phosphate oxygen atoms of targeted phospholipids, which could catalyze the formation of the alpha helix required for internalization. With the aim of better understanding the peptide biocompatibility and the additional antibacterial activity, the interaction with noncancerous cell mimicking liposomes exposing phosphatidylcholine (PC) and bacterial mimicking bilayers exposing phosphatidylglycerol (PG) is also described.
Collapse
Affiliation(s)
- Claudia Herrera-León
- Unité de Génie Enzymatique et Cellulaire, UMR 7025, CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire, UMR 7025, CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Viviane Antonietti
- Agents Infectieux, Résistance et Chimiothérapie, UFR de Pharmacie, AGIR UR 4294, Université de Picardie Jules Verne, Amiens, France
| | - Pascal Sonnet
- Agents Infectieux, Résistance et Chimiothérapie, UFR de Pharmacie, AGIR UR 4294, Université de Picardie Jules Verne, Amiens, France
| | - Nicola D'Amelio
- Unité de Génie Enzymatique et Cellulaire, UMR 7025, CNRS, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
13
|
Mach M, Kowalska M, Olechowska K, Płachta Ł, Wydro P. The studies on the membrane activity of triester of phosphatidylcholine in artificial membrane systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183711. [PMID: 34343534 DOI: 10.1016/j.bbamem.2021.183711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 11/28/2022]
Abstract
Due to the increasing number of infections together with the appearance of bacteria exhibiting multi-drug resistance, new antibiotics are being sought. In this context the interest of the cationic lipoids increases because of their amphiphilic structure and positive charge that can stimulates the antibacterial action of these compounds. Thus, in this work we have performed the studies on the effect of one selected triesters of phosphatidylcholine, namely 1,2-dipalmitoyl-sn-glycero-3-ethylphosphocholine (EDPPC), on the model lipid membranes. The investigations included the analysis of the impact of EDPPC on multicomponent monolayers and bilayers consisting of the lipids naturally occurring in bacterial membranes (phosphatidylethanolamines (PE), phosphatidylglycerols (PG) and cardiolipin (CL)), mixed in proportions reflecting the lipid composition of these biomembranes. In the study, the Langmuir monolayers (registered on water and PBS buffer) and liposomes as model bacterial biomembranes were applied. The obtained results demonstrate that the presence of cationic lipoid in PE/PG and PE/PG/CL systems significantly modifies their properties and molecular organization. The incorporation of EDPPC into model bacterial membranes primarily impact on the intermolecular interactions. It was shown that the strength of the interaction between the cationic lipid and the components of the model membranes depends both on the composition of the membrane as well as on the type of subphase. Furthermore, the investigated cationic lipoid leads to the decrease of the ordering of acyl chains and thus to the increase of fluidity of membranes. The obtained results allow one to propose that EDPPC may behave as antibiotic active at the level of membrane.
Collapse
Affiliation(s)
- Marzena Mach
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Magdalena Kowalska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Karolina Olechowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Łukasz Płachta
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Paweł Wydro
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| |
Collapse
|
14
|
Luchini A, Cavasso D, Radulescu A, D'Errico G, Paduano L, Vitiello G. Structural Organization of Cardiolipin-Containing Vesicles as Models of the Bacterial Cytoplasmic Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8508-8516. [PMID: 34213914 DOI: 10.1021/acs.langmuir.1c00981] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The bacterial cytoplasmic membrane is the innermost bacterial membrane and is mainly composed of three different phospholipid species, i.e., phosphoethanolamine (PE), phosphoglycerol (PG), and cardiolipin (CL). In particular, PG and CL are responsible for the negative charge of the membrane and are often the targets of cationic antimicrobial agents. The growing resistance of bacteria toward the available antibiotics requires the development of new and more efficient antibacterial drugs. In this context, studying the physicochemical properties of the bacterial cytoplasmic membrane is pivotal for understanding drug-membrane interactions at the molecular level as well as for designing drug-testing platforms. Here, we discuss the preparation and characterization of PE/PG/CL vesicle suspensions, which contain all of the main lipid components of the bacterial cytoplasmic membrane. The vesicle suspensions were characterized by means of small-angle neutron scattering, dynamic light scattering, and electron paramagnetic spectroscopy. By combining solution scattering and spectroscopy techniques, we propose a detailed description of the impact of different CL concentrations on the structure and dynamics of the PE/PG bilayer. CL induces the formation of thicker bilayers, which exhibit higher curvature and are overall more fluid. The experimental results contribute to shed light on the structure and dynamics of relevant model systems of the bacterial cytoplasmic membrane.
Collapse
Affiliation(s)
- Alessandra Luchini
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Domenico Cavasso
- Department of Chemical Science, University of Naples Federico II, Complesso di Monte Sant'Angelo, Via Cinthia 4, 80126 Naples, Italy
| | - Aurel Radulescu
- Jülich Centre for Neutron Science, Garching Forschungszentrum, Lichtenbergstrasse 1, D-85747 Garching bei München, Germany
| | - Gerardino D'Errico
- Department of Chemical Science, University of Naples Federico II, Complesso di Monte Sant'Angelo, Via Cinthia 4, 80126 Naples, Italy
- CSGI, Center for Colloid and Surface Science, Via della Lastruccia 3, 50019 Sesto Fiorentino FI, Italy
| | - Luigi Paduano
- Department of Chemical Science, University of Naples Federico II, Complesso di Monte Sant'Angelo, Via Cinthia 4, 80126 Naples, Italy
- CSGI, Center for Colloid and Surface Science, Via della Lastruccia 3, 50019 Sesto Fiorentino FI, Italy
| | - Giuseppe Vitiello
- CSGI, Center for Colloid and Surface Science, Via della Lastruccia 3, 50019 Sesto Fiorentino FI, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
15
|
Study of the solubilisation process of bacterial model membranes induced by DDAO. EUROPEAN PHARMACEUTICAL JOURNAL 2021. [DOI: 10.2478/afpuc-2020-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Solubilisation of two bacterial model membranes induced by N,N-dimethyl-1-dodecanamine-N-oxide (DDAO) was studied. The first model membrane consisted of a mixture of palmitoyloleoylphosphatidylethanolamine (POPE) and palmitoyloleoylphosphatidylglycerol (POPG) in a molar ratio 0.6:0.4 mol/mol, and a second model membrane was enriched with tetraoleoylcardiolipin (TOCL) with a composition POPE-POPG-TOCL = 0.67:0.23:0.1 mol/mol/mol. Solubilisation of these model membranes was studied by static light scattering (nephelometry). Effective ratio Re (the amount of DDAO integrated into the bilayer to the amount of lipid) at different steps of the solubilisation process was determined. The molar partition coefficient of DDAO was calculated – in case of the POPE-POPG membrane, Kp = 5,300 ± 400, for the POPE-POPG-TOCL membrane, Kp = 6,500 ± 500.
Collapse
|
16
|
The role of cardiolipin concentration and acyl chain composition on mitochondrial inner membrane molecular organization and function. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1039-1052. [PMID: 30951877 DOI: 10.1016/j.bbalip.2019.03.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/19/2019] [Accepted: 03/30/2019] [Indexed: 12/28/2022]
Abstract
Cardiolipin (CL) is a key phospholipid of the mitochondria. A loss of CL content and remodeling of CL's acyl chains is observed in several pathologies. Strong shifts in CL concentration and acyl chain composition would presumably disrupt mitochondrial inner membrane biophysical organization. However, it remains unclear in the literature as to which is the key regulator of mitochondrial membrane biophysical properties. We review the literature to discriminate the effects of CL concentration and acyl chain composition on mitochondrial membrane organization. A widely applicable theme emerges across several pathologies, including cardiovascular diseases, diabetes, Barth syndrome, and neurodegenerative ailments. The loss of CL, often accompanied by increased levels of lyso-CLs, impairs mitochondrial inner membrane organization. Modest remodeling of CL acyl chains is not a major driver of impairments and only in cases of extreme remodeling is there an influence on membrane properties.
Collapse
|
17
|
Lopes SC, Ivanova G, de Castro B, Gameiro P. Revealing cardiolipins influence in the construction of a significant mitochondrial membrane model. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2465-2477. [PMID: 30040925 DOI: 10.1016/j.bbamem.2018.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/24/2022]
Abstract
Cardiolipins are essential for the integrity and the dynamics of the mitochondria membrane, where they exclusively exist in eukaryotes. Changes in cardiolipins membrane levels have been related to several cardiac health disorders. To evaluate cardiolipins impact on membrane properties a physico-chemical study was conducted using steady-state fluorescence anisotropy, dynamic light scattering and Nuclear Magnetic Resonance (1H and 31P NMR). Different binary and ternary mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and a natural extract of bovine heart cardiolipin were used as models of mitochondrial membrane. The main transition temperatures, obtained by the first two techniques, revealed to be cardiolipins dependent. Cardiolipins also showed to act as a bidirectional regulator of membrane fluidity. 1H and 31P NMR results revealed that cardiolipins affects the conformation, mobility and structural order of the phospholipid molecules. According to 1H NMR results, cardiolipins disturbs the overall structure and packing order of membrane demonstrated with the decrease of the line broadening and shift of all resonances. The 31P NMR line shape analysis confirmed that, at distinct temperatures, different lipid phases coexist in the systems, and their type and quantitative distribution are cardiolipins dependent. In summary, cardiolipins presence/absence dramatically changes the membrane properties and has a major impact in the construction of a mitochondrial membrane model.
Collapse
Affiliation(s)
- S C Lopes
- Requimte, LAQV, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - G Ivanova
- Requimte, LAQV, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - B de Castro
- Requimte, LAQV, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - P Gameiro
- Requimte, LAQV, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
18
|
Sautrey G, El Khoury M, Dos Santos AG, Zimmermann L, Deleu M, Lins L, Décout JL, Mingeot-Leclercq MP. Negatively Charged Lipids as a Potential Target for New Amphiphilic Aminoglycoside Antibiotics: A BIOPHYSICAL STUDY. J Biol Chem 2016; 291:13864-74. [PMID: 27189936 DOI: 10.1074/jbc.m115.665364] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Indexed: 11/06/2022] Open
Abstract
Bacterial membranes are highly organized, containing specific microdomains that facilitate distinct protein and lipid assemblies. Evidence suggests that cardiolipin molecules segregate into such microdomains, probably conferring a negative curvature to the inner plasma membrane during membrane fission upon cell division. 3',6-Dinonyl neamine is an amphiphilic aminoglycoside derivative active against Pseudomonas aeruginosa, including strains resistant to colistin. The mechanisms involved at the molecular level were identified using lipid models (large unilamellar vesicles, giant unilamelllar vesicles, and lipid monolayers) that mimic the inner membrane of P. aeruginosa The study demonstrated the interaction of 3',6-dinonyl neamine with cardiolipin and phosphatidylglycerol, two negatively charged lipids from inner bacterial membranes. This interaction induced membrane permeabilization and depolarization. Lateral segregation of cardiolipin and membrane hemifusion would be critical for explaining the effects induced on lipid membranes by amphiphilic aminoglycoside antibiotics. The findings contribute to an improved understanding of how amphiphilic aminoglycoside antibiotics that bind to negatively charged lipids like cardiolipin could be promising antibacterial compounds.
Collapse
Affiliation(s)
- Guillaume Sautrey
- From the Université Catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05 Bruxelles, Belgium
| | - Micheline El Khoury
- From the Université Catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05 Bruxelles, Belgium
| | - Andreia Giro Dos Santos
- From the Université Catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05 Bruxelles, Belgium
| | - Louis Zimmermann
- the Département de Pharmacochimie Moléculaire, Université de Grenoble, Alpes/CNRS, UMR 5063, ICMG FR 2607, 470 Rue de la Chimie, BP 53, F-38041 Grenoble, France, and
| | - Magali Deleu
- the Laboratoire de Biophysique Moleculaire aux Interfaces, Université de Liège, Gembloux Agro-Bio Tech, Passage des Déportés, 2, B-5030 Gembloux, Belgium
| | - Laurence Lins
- the Laboratoire de Biophysique Moleculaire aux Interfaces, Université de Liège, Gembloux Agro-Bio Tech, Passage des Déportés, 2, B-5030 Gembloux, Belgium
| | - Jean-Luc Décout
- the Département de Pharmacochimie Moléculaire, Université de Grenoble, Alpes/CNRS, UMR 5063, ICMG FR 2607, 470 Rue de la Chimie, BP 53, F-38041 Grenoble, France, and
| | - Marie-Paule Mingeot-Leclercq
- From the Université Catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05 Bruxelles, Belgium,
| |
Collapse
|
19
|
Lind TK, Wacklin H, Schiller J, Moulin M, Haertlein M, Pomorski TG, Cárdenas M. Formation and Characterization of Supported Lipid Bilayers Composed of Hydrogenated and Deuterated Escherichia coli Lipids. PLoS One 2015; 10:e0144671. [PMID: 26658241 PMCID: PMC4676697 DOI: 10.1371/journal.pone.0144671] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/20/2015] [Indexed: 01/26/2023] Open
Abstract
Supported lipid bilayers are widely used for sensing and deciphering biomolecular interactions with model cell membranes. In this paper, we present a method to form supported lipid bilayers from total lipid extracts of Escherichia coli by vesicle fusion. We show the validity of this method for different types of extracts including those from deuterated biomass using a combination of complementary surface sensitive techniques; quartz crystal microbalance, neutron reflection and atomic force microscopy. We find that the head group composition of the deuterated and the hydrogenated lipid extracts is similar (approximately 75% phosphatidylethanolamine, 13% phosphatidylglycerol and 12% cardiolipin) and that both samples can be used to reconstitute high-coverage supported lipid bilayers with a total thickness of 41 ± 3 Å, common for fluid membranes. The formation of supported lipid bilayers composed of natural extracts of Escherichia coli allow for following biomolecular interactions, thus advancing the field towards bacterial-specific membrane biomimics.
Collapse
Affiliation(s)
- Tania Kjellerup Lind
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- European Spallation Source ESS AB, Lund, Sweden
| | - Hanna Wacklin
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- European Spallation Source ESS AB, Lund, Sweden
| | - Jürgen Schiller
- Institute of Medical Physics and Biophysics, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Martine Moulin
- Institut Laue-Langevin, Life Science Group, Grenoble, France
| | | | - Thomas Günther Pomorski
- Centre for Membrane Pumps in Cells and Disease—PUMPKIN, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marité Cárdenas
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- Malmoe University, Department of Biomedical Sciences, Health & Society, 20500 Malmoe, Sweden
| |
Collapse
|
20
|
Nowotarska SW, Nowotarski KJ, Friedman M, Situ C. Effect of structure on the interactions between five natural antimicrobial compounds and phospholipids of bacterial cell membrane on model monolayers. Molecules 2014; 19:7497-515. [PMID: 24914896 PMCID: PMC6271777 DOI: 10.3390/molecules19067497] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 05/29/2014] [Accepted: 06/03/2014] [Indexed: 11/29/2022] Open
Abstract
Monolayers composed of bacterial phospholipids were used as model membranes to study interactions of the naturally occurring phenolic compounds 2,5-dihydroxybenzaldehyde and 2-hydroxy-5-methoxybenzaldehyde, and the plant essential oil compounds carvacrol, cinnamaldehyde, and geraniol, previously found to be active against both Gram-positive and Gram-negative pathogenic microorganisms. The lipid monolayers consist of 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DPPE), 1,2-dihexa- decanoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG), and 1,1',2,2'-tetratetradecanoyl cardiolipin (cardiolipin). Surface pressure–area (π-A) and surface potential–area (Δψ-A) isotherms were measured to monitor changes in the thermodynamic and physical properties of the lipid monolayers. Results of the study indicated that the five compounds modified the three lipid monolayer structures by integrating into the monolayer, forming aggregates of antimicrobial –lipid complexes, reducing the packing effectiveness of the lipids, increasing the membrane fluidity, and altering the total dipole moment in the monolayer membrane model. The interactions of the five antimicrobial compounds with bacterial phospholipids depended on both the structure of the antimicrobials and the composition of the monolayers. The observed experimental results provide insight into the mechanism of the molecular interactions between naturally-occurring antimicrobial compounds and phospholipids of the bacterial cell membrane that govern activities.
Collapse
Affiliation(s)
- Stella W Nowotarska
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK.
| | - Krzysztof J Nowotarski
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Mendel Friedman
- Agricultural Research Service, United States Department of Agriculture, Western Regional Research Center, Albany, CA 94710, USA.
| | - Chen Situ
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK.
| |
Collapse
|
21
|
Lery LMS, Frangeul L, Tomas A, Passet V, Almeida AS, Bialek-Davenet S, Barbe V, Bengoechea JA, Sansonetti P, Brisse S, Tournebize R. Comparative analysis of Klebsiella pneumoniae genomes identifies a phospholipase D family protein as a novel virulence factor. BMC Biol 2014; 12:41. [PMID: 24885329 PMCID: PMC4068068 DOI: 10.1186/1741-7007-12-41] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 12/17/2022] Open
Abstract
Background Klebsiella pneumoniae strains are pathogenic to animals and humans, in which they are both a frequent cause of nosocomial infections and a re-emerging cause of severe community-acquired infections. K. pneumoniae isolates of the capsular serotype K2 are among the most virulent. In order to identify novel putative virulence factors that may account for the severity of K2 infections, the genome sequence of the K2 reference strain Kp52.145 was determined and compared to two K1 and K2 strains of low virulence and to the reference strains MGH 78578 and NTUH-K2044. Results In addition to diverse functions related to host colonization and virulence encoded in genomic regions common to the four strains, four genomic islands specific for Kp52.145 were identified. These regions encoded genes for the synthesis of colibactin toxin, a putative cytotoxin outer membrane protein, secretion systems, nucleases and eukaryotic-like proteins. In addition, an insertion within a type VI secretion system locus included sel1 domain containing proteins and a phospholipase D family protein (PLD1). The pld1 mutant was avirulent in a pneumonia model in mouse. The pld1 mRNA was expressed in vivo and the pld1 gene was associated with K. pneumoniae isolates from severe infections. Analysis of lipid composition of a defective E. coli strain complemented with pld1 suggests an involvement of PLD1 in cardiolipin metabolism. Conclusions Determination of the complete genome of the K2 reference strain identified several genomic islands comprising putative elements of pathogenicity. The role of PLD1 in pathogenesis was demonstrated for the first time and suggests that lipid metabolism is a novel virulence mechanism of K. pneumoniae.
Collapse
Affiliation(s)
- Letícia M S Lery
- Institut Pasteur - Pathogénie Microbienne Moléculaire, Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lopes SC, Ribeiro C, Gameiro P. A New Approach to Counteract Bacteria Resistance: A Comparative Study Between Moxifloxacin and a New Moxifloxacin Derivative in Different Model Systems of Bacterial Membrane. Chem Biol Drug Des 2012; 81:265-74. [DOI: 10.1111/cbdd.12071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|