1
|
Zheng F, Ke J, Lin S, Ye W, Wu Z, Xu Y, Mai S, Chen Y, Guo Z, Hu H, Zhang S, Pang J, Zhang Q, Zhao Z. Discovery of cyanidin-3-O-galactoside as a novel CNT2 inhibitor for the treatment of hyperuricemia. Bioorg Chem 2025; 154:108108. [PMID: 39753042 DOI: 10.1016/j.bioorg.2024.108108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025]
Abstract
Inhibition of human concentrative nucleoside transporter 2 (CNT2) could suppress increases in serum urate levels derived from dietary purines. However, the structural basis for substrate recognition of CNT2 is still unknown and only a few inhibitors have been reported. In this study, a homology model of CNT2 was constructed and residues T315, E316, N426, N491, E492, F536 and N538 were identified as binding sites for adenosine through site-directed mutagenesis and a 3H-adenosine uptake assay. To explore potential CNT2 inhibitors, a database containing 4704 saccharides and glycosides was constructed, followed by high-throughput virtual screening. The top 20 compounds with the highest docking scores were then evaluated their in vitro activity. Among them, cyanidin-3-O-galactoside (Cy3Gal) demonstrated the most potent inhibitory activity against CNT2, exhibiting an IC50 value of 9.40 μM. Docking analysis revealed that residues M314, T315, T347, N422, F536 and S541 contributed to a strong binding affinity with Cy3Gal. In addition, Cy3Gal exhibited minimal inhibitory effects on CNT3 and equilibrative nucleoside transporters (ENTs) in vitro. At doses of 5-20 mg/kg, Cy3Gal effectively reduced serum and urine levels of uric acid and adenosine in vivo. The CCK-8 assay revealed that Cy3Gal displayed minimal cytotoxicity to mTEC and hIEC cells at a concentration of 100 μM. The serum CR and BUN levels indicate that Cy3Gal does not exhibit any apparent renal toxicity compared to lesinurad and allopurinol. HE examination showed no noticeable pathological changes in the kidneys or colons after treatment with Cy3Gal. In summary, Cy3Gal could be a CNT2 inhibitor with favorable drugability for the treatment of hyperuricemia.
Collapse
Affiliation(s)
- Fengxin Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiale Ke
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shiqin Lin
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Wenjie Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhenkun Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuexin Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Suiqing Mai
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yishuang Chen
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Zitao Guo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huazhong Hu
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Shuqin Zhang
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jianxin Pang
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China; NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Qun Zhang
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - Zean Zhao
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Marin JJG, Cives-Losada C, Macias RIR, Romero MR, Marijuan RP, Hortelano-Hernandez N, Delgado-Calvo K, Villar C, Gonzalez-Santiago JM, Monte MJ, Asensio M. Impact of liver diseases and pharmacological interactions on the transportome involved in hepatic drug disposition. Biochem Pharmacol 2024; 228:116166. [PMID: 38527556 DOI: 10.1016/j.bcp.2024.116166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
The liver plays a pivotal role in drug disposition owing to the expression of transporters accounting for the uptake at the sinusoidal membrane and the efflux across the basolateral and canalicular membranes of hepatocytes of many different compounds. Moreover, intracellular mechanisms of phases I and II biotransformation generate, in general, inactive compounds that are more polar and easier to eliminate into bile or refluxed back toward the blood for their elimination by the kidneys, which becomes crucial when the biliary route is hampered. The set of transporters expressed at a given time, i.e., the so-called transportome, is encoded by genes belonging to two gene superfamilies named Solute Carriers (SLC) and ATP-Binding Cassette (ABC), which account mainly, but not exclusively, for the uptake and efflux of endogenous substances and xenobiotics, which include many different drugs. Besides the existence of genetic variants, which determines a marked interindividual heterogeneity regarding liver drug disposition among patients, prevalent diseases, such as cirrhosis, non-alcoholic steatohepatitis, primary sclerosing cholangitis, primary biliary cirrhosis, viral hepatitis, hepatocellular carcinoma, cholangiocarcinoma, and several cholestatic liver diseases, can alter the transportome and hence affect the pharmacokinetics of drugs used to treat these patients. Moreover, hepatic drug transporters are involved in many drug-drug interactions (DDI) that challenge the safety of using a combination of agents handled by these proteins. Updated information on these questions has been organized in this article by superfamilies and families of members of the transportome involved in hepatic drug disposition.
Collapse
Affiliation(s)
- Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.
| | - Candela Cives-Losada
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Marta R Romero
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rebeca P Marijuan
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | | | - Kevin Delgado-Calvo
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Carmen Villar
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Department of Gastroenterology and Hepatology, University Hospital of Salamanca, Salamanca, Spain
| | - Jesus M Gonzalez-Santiago
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain; Department of Gastroenterology and Hepatology, University Hospital of Salamanca, Salamanca, Spain
| | - Maria J Monte
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
3
|
Marin JJG, Serrano MA, Herraez E, Lozano E, Ortiz-Rivero S, Perez-Silva L, Reviejo M, Briz O. Impact of genetic variants in the solute carrier ( SLC) genes encoding drug uptake transporters on the response to anticancer chemotherapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:27. [PMID: 39143954 PMCID: PMC11322974 DOI: 10.20517/cdr.2024.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 08/16/2024]
Abstract
Cancer drug resistance constitutes a severe limitation for the satisfactory outcome of these patients. This is a complex problem due to the co-existence in cancer cells of multiple and synergistic mechanisms of chemoresistance (MOC). These mechanisms are accounted for by the expression of a set of genes included in the so-called resistome, whose effectiveness often leads to a lack of response to pharmacological treatment. Additionally, genetic variants affecting these genes further increase the complexity of the question. This review focuses on a set of genes encoding members of the transportome involved in drug uptake, which have been classified into the MOC-1A subgroup of the resistome. These proteins belong to the solute carrier (SLC) superfamily. More precisely, we have considered here several members of families SLC2, SLC7, SLC19, SLC22, SLCO, SLC28, SLC29, SLC31, SLC46, and SLC47 due to the impact of their expression and genetic variants in anticancer drug uptake by tumor cells or, in some cases, general bioavailability. Changes in their expression levels and the appearance of genetic variants can contribute to the Darwinian selection of more resistant clones and, hence, to the development of a more malignant phenotype. Accordingly, to address this issue in future personalized medicine, it is necessary to characterize both changes in resistome genes that can affect their function. It is also essential to consider the time-dependent dimension of these features, as the genetic expression and the appearance of genetic variants can change during tumor progression and in response to treatment.
Collapse
Affiliation(s)
- Jose J. G. Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, Madrid 28029, Spain
| | - Maria A. Serrano
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, Madrid 28029, Spain
| | - Elisa Herraez
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, Madrid 28029, Spain
| | - Elisa Lozano
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, Madrid 28029, Spain
| | - Sara Ortiz-Rivero
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, Madrid 28029, Spain
| | - Laura Perez-Silva
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
| | - Maria Reviejo
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, Madrid 28029, Spain
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, Madrid 28029, Spain
| |
Collapse
|
4
|
Persaud AK, Bernier MC, Massey MA, Agrawal S, Kaur T, Nayak D, Xie Z, Weadick B, Raj R, Hill K, Abbott N, Joshi A, Anabtawi N, Bryant C, Somogyi A, Cruz-Monserrate Z, Amari F, Coppola V, Sparreboom A, Baker SD, Unadkat JD, Phelps MA, Govindarajan R. Increased renal elimination of endogenous and synthetic pyrimidine nucleosides in concentrative nucleoside transporter 1 deficient mice. Nat Commun 2023; 14:3175. [PMID: 37264059 PMCID: PMC10235067 DOI: 10.1038/s41467-023-38789-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Concentrative nucleoside transporters (CNTs) are active nucleoside influx systems, but their in vivo roles are poorly defined. By generating CNT1 knockout (KO) mice, here we identify a role of CNT1 in the renal reabsorption of nucleosides. Deletion of CNT1 in mice increases the urinary excretion of endogenous pyrimidine nucleosides with compensatory alterations in purine nucleoside metabolism. In addition, CNT1 KO mice exhibits high urinary excretion of the nucleoside analog gemcitabine (dFdC), which results in poor tumor growth control in CNT1 KO mice harboring syngeneic pancreatic tumors. Interestingly, increasing the dFdC dose to attain an area under the concentration-time curve level equivalent to that achieved by wild-type (WT) mice rescues antitumor efficacy. The findings provide new insights into how CNT1 regulates reabsorption of endogenous and synthetic nucleosides in murine kidneys and suggest that the functional status of CNTs may account for the optimal action of pyrimidine nucleoside analog therapeutics in humans.
Collapse
Affiliation(s)
- Avinash K Persaud
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Matthew C Bernier
- Campus Chemical Instrument Center Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH, 43210, USA
| | - Michael A Massey
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
- The Center for Life Sciences Education, College of Arts and Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Shipra Agrawal
- Division of Nephrology & Hypertension, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Tejinder Kaur
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Debasis Nayak
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhiliang Xie
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Brenna Weadick
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Ruchika Raj
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Kasey Hill
- Pharmacoanalytic Shared Resource (PhASR), The Ohio State University, Columbus, OH, 43205, USA
| | - Nicole Abbott
- Pharmacoanalytic Shared Resource (PhASR), The Ohio State University, Columbus, OH, 43205, USA
| | - Arnav Joshi
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Nadeen Anabtawi
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Claire Bryant
- Center for Clinical & Translational Research, Nationwide Children's Hospital, Columbus, OH, 43210, USA
| | - Arpad Somogyi
- Campus Chemical Instrument Center Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH, 43210, USA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Foued Amari
- Genetically Engineered Mouse Modeling Core, Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Vincenzo Coppola
- Genetically Engineered Mouse Modeling Core, Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Alex Sparreboom
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Sharyn D Baker
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Jashvant D Unadkat
- Department of Pharmaceutics, College of Pharmacy, University of Washington, Seattle, WA, 98195, USA
- Translational Therapeutics, Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH, 43210, USA
| | - Mitch A Phelps
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
- Pharmacoanalytic Shared Resource (PhASR), The Ohio State University, Columbus, OH, 43205, USA
| | - Rajgopal Govindarajan
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA.
- Translational Therapeutics, Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
5
|
Chen HP, Chen CI, Liu KW, Chen TJ, Tian YF, Kuo YH, Li WS, Tsai HH, Wu LC, Yeh CF, Li CF, Chou CL, Lai HY. High SLC28A2 expression endows an inferior survival for rectal cancer patients managed by neoadjuvant CCRT. Pathol Res Pract 2022; 239:154158. [PMID: 36244249 DOI: 10.1016/j.prp.2022.154158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/14/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022]
|
6
|
Ali SS, Raj R, Kaur T, Weadick B, Nayak D, No M, Protos J, Odom H, Desai K, Persaud AK, Wang J, Govindarajan R. Solute Carrier Nucleoside Transporters in Hematopoiesis and Hematological Drug Toxicities: A Perspective. Cancers (Basel) 2022; 14:cancers14133113. [PMID: 35804885 PMCID: PMC9264962 DOI: 10.3390/cancers14133113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Anticancer nucleoside analogs are promising treatments that often result in damaging toxicities and therefore ineffective treatment. Mechanisms of this are not well-researched, but cellular nucleoside transport research in mice might provide additional insight given transport’s role in mammalian hematopoiesis. Cellular nucleoside transport is a notable component of mammalian hematopoiesis due to how mutations within it relate to hematological abnormities. This review encompasses nucleoside transporters, focusing on their inherent properties, hematopoietic role, and their interplay in nucleoside drug treatment side effects. We then propose potential mechanisms to explain nucleoside transport involvement in blood disorders. Finally, we point out and advocate for future research areas that would improve therapeutic outcomes for patients taking nucleoside analog therapies. Abstract Anticancer nucleoside analogs produce adverse, and at times, dose-limiting hematological toxicities that can compromise treatment efficacy, yet the mechanisms of such toxicities are poorly understood. Recently, cellular nucleoside transport has been implicated in normal blood cell formation with studies from nucleoside transporter-deficient mice providing additional insights into the regulation of mammalian hematopoiesis. Furthermore, several idiopathic human genetic disorders have revealed nucleoside transport as an important component of mammalian hematopoiesis because mutations in individual nucleoside transporter genes are linked to various hematological abnormalities, including anemia. Here, we review recent developments in nucleoside transporters, including their transport characteristics, their role in the regulation of hematopoiesis, and their potential involvement in the occurrence of adverse hematological side effects due to nucleoside drug treatment. Furthermore, we discuss the putative mechanisms by which aberrant nucleoside transport may contribute to hematological abnormalities and identify the knowledge gaps where future research may positively impact treatment outcomes for patients undergoing various nucleoside analog therapies.
Collapse
Affiliation(s)
- Syed Saqib Ali
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.S.A.); (R.R.); (T.K.); (B.W.); (D.N.); (M.N.); (J.P.); (H.O.); (K.D.); (A.K.P.)
| | - Ruchika Raj
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.S.A.); (R.R.); (T.K.); (B.W.); (D.N.); (M.N.); (J.P.); (H.O.); (K.D.); (A.K.P.)
| | - Tejinder Kaur
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.S.A.); (R.R.); (T.K.); (B.W.); (D.N.); (M.N.); (J.P.); (H.O.); (K.D.); (A.K.P.)
| | - Brenna Weadick
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.S.A.); (R.R.); (T.K.); (B.W.); (D.N.); (M.N.); (J.P.); (H.O.); (K.D.); (A.K.P.)
| | - Debasis Nayak
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.S.A.); (R.R.); (T.K.); (B.W.); (D.N.); (M.N.); (J.P.); (H.O.); (K.D.); (A.K.P.)
| | - Minnsung No
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.S.A.); (R.R.); (T.K.); (B.W.); (D.N.); (M.N.); (J.P.); (H.O.); (K.D.); (A.K.P.)
| | - Jane Protos
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.S.A.); (R.R.); (T.K.); (B.W.); (D.N.); (M.N.); (J.P.); (H.O.); (K.D.); (A.K.P.)
| | - Hannah Odom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.S.A.); (R.R.); (T.K.); (B.W.); (D.N.); (M.N.); (J.P.); (H.O.); (K.D.); (A.K.P.)
| | - Kajal Desai
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.S.A.); (R.R.); (T.K.); (B.W.); (D.N.); (M.N.); (J.P.); (H.O.); (K.D.); (A.K.P.)
| | - Avinash K. Persaud
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.S.A.); (R.R.); (T.K.); (B.W.); (D.N.); (M.N.); (J.P.); (H.O.); (K.D.); (A.K.P.)
| | - Joanne Wang
- Department of Pharmaceutics, College of Pharmacy, University of Washington, Seattle, WA 98195, USA;
| | - Rajgopal Govindarajan
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.S.A.); (R.R.); (T.K.); (B.W.); (D.N.); (M.N.); (J.P.); (H.O.); (K.D.); (A.K.P.)
- Translational Therapeutics, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +1-614-247-8269; Fax: +1-614-292-2588
| |
Collapse
|
7
|
Walter M, Herr P. Re-Discovery of Pyrimidine Salvage as Target in Cancer Therapy. Cells 2022; 11:cells11040739. [PMID: 35203388 PMCID: PMC8870348 DOI: 10.3390/cells11040739] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Nucleotides are synthesized through two distinct pathways: de novo synthesis and nucleoside salvage. Whereas the de novo pathway synthesizes nucleotides from amino acids and glucose, the salvage pathway recovers nucleosides or bases formed during DNA or RNA degradation. In contrast to high proliferating non-malignant cells, which are highly dependent on the de novo synthesis, cancer cells can switch to the nucleoside salvage pathways to maintain efficient DNA replication. Pyrimidine de novo synthesis remains the target of interest in cancer therapy and several inhibitors showed promising results in cancer cells and in vivo models. In the 1980s and 1990s, poor responses were however observed in clinical trials with several of the currently existing pyrimidine synthesis inhibitors. To overcome the observed limitations in clinical trials, targeting pyrimidine salvage alone or in combination with pyrimidine de novo inhibitors was suggested. Even though this approach showed initially promising results, it received fresh attention only recently. Here we discuss the re-discovery of targeting pyrimidine salvage pathways for DNA replication alone or in combination with inhibitors of pyrimidine de novo synthesis to overcome limitations of commonly used antimetabolites in various preclinical cancer models and clinical trials. We also highlight newly emerged targets in pyrimidine synthesis as well as pyrimidine salvage as a promising target in immunotherapy.
Collapse
|
8
|
Segrist E, Dittmar M, Gold B, Cherry S. Orally acquired cyclic dinucleotides drive dSTING-dependent antiviral immunity in enterocytes. Cell Rep 2021; 37:110150. [PMID: 34965418 DOI: 10.1016/j.celrep.2021.110150] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 11/19/2022] Open
Abstract
Enteric pathogens overcome barrier immunity within the intestinal environment that includes the endogenous flora. The microbiota produces diverse ligands, and the full spectrum of microbial products that are sensed by the epithelium and prime protective immunity is unknown. Using Drosophila, we find that the gut presents a high barrier to infection, which is partially due to signals from the microbiota, as loss of the microbiota enhances oral viral infection. We report cyclic dinucleotide (CDN) feeding is sufficient to protect microbiota-deficient flies from enhanced oral infection, suggesting that bacterial-derived CDNs induce immunity. Mechanistically, we find CDN protection is dSTING- and dTBK1-dependent, leading to NF-kB-dependent gene expression. Furthermore, we identify the apical nucleoside transporter, CNT2, as required for oral CDN protection. Altogether, our studies define a role for bacterial products in priming immune defenses in the gut.
Collapse
Affiliation(s)
- Elisha Segrist
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark Dittmar
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beth Gold
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Abstract
Nucleosides play central roles in all facets of life, from metabolism to cellular signaling. Because of their physiochemical properties, nucleosides are lipid bilayer impermeable and thus rely on dedicated transport systems to cross biological membranes. In humans, two unrelated protein families mediate nucleoside membrane transport: the concentrative and equilibrative nucleoside transporter families. The objective of this review is to provide a broad outlook on the current status of nucleoside transport research. We will discuss the role played by nucleoside transporters in human health and disease, with emphasis placed on recent structural advancements that have revealed detailed molecular principles of these important cellular transport systems and exploitable pharmacological features.
Collapse
Affiliation(s)
- Nicholas J. Wright
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, North Carolina, 27710, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, North Carolina, 27710, USA
- Correspondence and requests for materials should be addressed to: S.-Y. Lee., , tel: 919-684-1005, fax: 919-684-8885
| |
Collapse
|
10
|
Attia F, Fathy S, Anani M, Hassan A, Attia F, Ibrahim G, Elazab M. Human equilibrative nucleoside transporter-1 and deoxycytidine kinase can predict gemcitabine effectiveness in Egyptian patients with Hepatocellular carcinoma. J Clin Lab Anal 2020; 34:e23457. [PMID: 32671914 PMCID: PMC7676182 DOI: 10.1002/jcla.23457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 01/30/2023] Open
Abstract
Background Several biomarkers of gemcitabine effectiveness have been studied in cancers, but less so in hepatocellular carcinoma (HCC), which is identified as the fifth most common cancer worldwide. Investigation of human equilibrative nucleoside transporter‐1 (HENT‐1) and deoxycytidine kinase (DCK), genes involved in gemcitabine uptake and metabolism, can be beneficial in the selection of potential cancer patients who could be responding to the treatment. Aim To study HENT‐1 and DCK gene expression in HCC patients with different protocols of treatment. Methods Using real‐time PCR, we analyzed expression levels of HENT‐1 and DCK genes from peripheral blood samples of 109 patients (20 controls & 89 HCC patients) between March 2015 and March 2017. All the 89 HCC patients received the antioxidants selenium (Se) and vitamin E (Vit.E) either alone (45 patients) or in combination with gemcitabine (24 patients) or radiofrequency ablation (RFA) (20 patients). Results There was a significant increase in HENT‐1 expression levels in HCC patients treated with Se and Vit.E alone as compared to controls (P ˂ .0001), while there was no significant difference between HCC patients treated with gemcitabine or RFA as compared to controls. In contrast, expression of DCK was significantly increased in all groups of HCC patients as compared to controls (P ˂ .0001). Conclusions HENT‐1 and DCK mRNA expressions are important markers of HCC and for GEM effect and GEM sensitivity in patients with HCC. This could be beneficial in the selection of HCC patients sensitive to gemcitabine to avoid subjecting resistant patients to unnecessary chemotherapy.
Collapse
Affiliation(s)
- Fadia Attia
- Departments of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Sara Fathy
- Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Maha Anani
- Departments of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Adel Hassan
- Infectious and Endemic Disease Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Fawzy Attia
- Internal Medicine Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Gehan Ibrahim
- Departments of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mona Elazab
- Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
11
|
Kano H, Saito C, Yamada N, Fukuuchi T, Yamaoka N, Kaneko K, Asami Y. Species-dependent patterns of incorporation of purine mononucleotides and nucleosides by lactic acid bacteria. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:1440-1448. [PMID: 32397874 DOI: 10.1080/15257770.2020.1733604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Although most lactic acid bacteria do not directly incorporate purine nucleotides, the strain Lactobacillus gasseri PA-3 was found to incorporate purine mononucleotides. To determine whether the direct uptake of purine mononucleotides is dependent on the species or strain of lactic acid bacteria, incorporation of purine mononucleotides was assessed in L. gasseri, Lactcoccus lactis sbsp. lactis, Streptococcus thermophilus and other species of lactic acid bacteria. Each bacterial strain was incubated with 32P-AMP or 14C-adenosine and the incorporation of each purine was evaluated by measuring their radioactivity. All investigated strains of L. gasseri incorporated 32P-AMP, whereas strains of S. thermophilus and most strains of L. lactis did not. Incorporation of 32P-AMP into strains of Pediococcus was dependent on the strain or species of that genus of bacteria. All investigated strains, except for one strain of L. gasseri, incorporated 14C-adenosine, with S. thermophilus, L. lactis and Pediococcus generally displaying greater incorporation of 14C-adenosine than L. gasseri. Although most lactic acid bacteria such as S. thermophiles and L. lactis do not incorporate purine mononucleotides, some species such as L. gasseri directly incorporate purine mononucleotides. These findings indicate that the preferential incorporation of purine mononucleotides or nucleosides by lactic acid bacteria is dependent on the species or strain.
Collapse
Affiliation(s)
- H Kano
- Food Microbiology Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan
| | - C Saito
- Food Microbiology Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan
| | - N Yamada
- Food Microbiology Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan
| | - T Fukuuchi
- Faculty of Pharma Sciences, Teikyo University, Tokyo, Japan
| | - N Yamaoka
- Faculty of Pharma Sciences, Teikyo University, Tokyo, Japan
| | - K Kaneko
- Faculty of Pharma Sciences, Teikyo University, Tokyo, Japan
| | - Y Asami
- Food Microbiology Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan
| |
Collapse
|
12
|
Altaweraqi RA, Yao SYM, Smith KM, Cass CE, Young JD. HPLC reveals novel features of nucleoside and nucleobase homeostasis, nucleoside metabolism and nucleoside transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183247. [PMID: 32126230 DOI: 10.1016/j.bbamem.2020.183247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 12/31/2022]
Abstract
Humans possess three members of the cation-coupled concentrative nucleoside transporter CNT (SLC 28) family, hCNT1-3: hCNT1 is selective for pyrimidine nucleosides but also transports adenosine, hCNT2 transports purine nucleosides and uridine, and hCNT3 transports both pyrimidine and purine nucleosides. hCNT1/2 transport nucleosides using the transmembrane Na+ electrochemical gradient, while hCNT3 is both Na+- and H+-coupled. By producing recombinant hCNT3 in Xenopus laevis oocytes, we have used radiochemical high performance liquid chromatography (HPLC) analysis to investigate the metabolic fate of transported [3H] or [14C] pyrimidine and purine nucleosides once inside cells. With the exception of adenosine, transported nucleosides were generally subject to minimal intracellular metabolism. We also used radiochemical HPLC analysis to study the mechanism by which adenosine functions as a low Km, low Vmax permeant of hCNT1. hCNT1-producing oocytes were pre-loaded with [3H] uridine, after which efflux of accumulated radioactivity was measured in transport medium alone, or in the presence of extracellular non-radiolabelled adenosine or uridine. hCNT1-mediated [3H]-efflux was stimulated by extracellular uridine, but inhibited by extracellular adenosine, with >95% of the radioactivity exiting cells being unmetabolized uridine, consistent with a low transmembrane mobility of the hCNT1/adenosine complex. Humans also possess four members of the equilibrative nucleoside transporter ENT (SLC 29) family, hENT1-4. Of these, hENT1 and hENT2 transport both nucleosides and nucleobases into and out of cells, but their relative contributions to nucleoside and nucleobase homeostasis and, in particular, to adenosine signaling via purinoreceptors, are not known. We therefore used HPLC to determine plasma nucleoside and nucleobase concentrations in wild-type, mENT1-, mENT2- and mENT1/mENT2-knockout (KO) mice, and to compare the findings with knockout of mCNT3. Results demonstrated that ENT1 was more important than ENT2 or CNT3 in determining plasma adenosine concentrations, indicated modest roles of ENT1 in the homeostasis of other nucleosides, and suggested that none of the transporters is a major participant in handling of nucleobases.
Collapse
Affiliation(s)
- Reema A Altaweraqi
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Sylvia Y M Yao
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Kyla M Smith
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Carol E Cass
- Membrane Protein Disease Research Group, Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - James D Young
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
13
|
Al-Abdulla R, Perez-Silva L, Abete L, Romero MR, Briz O, Marin JJG. Unraveling ‘The Cancer Genome Atlas’ information on the role of SLC transporters in anticancer drug uptake. Expert Rev Clin Pharmacol 2019; 12:329-341. [DOI: 10.1080/17512433.2019.1581605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ruba Al-Abdulla
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Laura Perez-Silva
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Lorena Abete
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Marta R. Romero
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Jose J. G. Marin
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
14
|
Mayati A, Moreau A, Jouan E, Febvre-James M, Denizot C, Parmentier Y, Fardel O. mRNA Expression and Activity of Nucleoside Transporters in Human Hepatoma HepaRG Cells. Pharmaceutics 2018; 10:pharmaceutics10040246. [PMID: 30469356 PMCID: PMC6320972 DOI: 10.3390/pharmaceutics10040246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 12/31/2022] Open
Abstract
The HepaRG cell line is a highly differentiated human hepatoma cell line, displaying the expression of various drug transporters. However, functional expression of nucleoside transporters remains poorly characterized in HepaRG cells, although these transporters play a key role in hepatic uptake of antiviral and anticancer drugs. The present study was, therefore, designed to characterize the expression, activity and regulation of equilibrative (ENT) and concentrative (CNT) nucleoside transporter isoforms in differentiated HepaRG cells. These cells were found to exhibit a profile of nucleoside transporter mRNAs similar to that found in human hepatocytes, i.e., notable expression of ENT1, ENT2 and CNT1, with very low or no expression of CNT2 and CNT3. ENT1 activity was, next, demonstrated to be the main uridine transport activity present in HepaRG cells, like in cultured human hepatocytes. Various physiological factors, such as protein kinase C (PKC) activation or treatment by inflammatory cytokines or hepatocyte growth factor (HGF), were additionally found to regulate expression of ENT1, ENT2 and CNT1; PKC activation and HGF notably concomitantly induced mRNA expression and activity of ENT1 in HepaRG cells. Overall, these data suggest that HepaRG cells may be useful for analyzing cellular pharmacokinetics of nucleoside-like drugs in human hepatic cells, especially of those handled by ENT1.
Collapse
Affiliation(s)
- Abdullah Mayati
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Amélie Moreau
- Centre de Pharmacocinétique, Technologie Servier, F-45000 Orléans, France.
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Marie Febvre-James
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Claire Denizot
- Centre de Pharmacocinétique, Technologie Servier, F-45000 Orléans, France.
| | - Yannick Parmentier
- Centre de Pharmacocinétique, Technologie Servier, F-45000 Orléans, France.
| | - Olivier Fardel
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France.
- Pôle Biologie, Centre Hospitalier Universitaire, F-35033 Rennes, France.
| |
Collapse
|
15
|
Pastor-Anglada M, Urtasun N, Pérez-Torras S. Intestinal Nucleoside Transporters: Function, Expression, and Regulation. Compr Physiol 2018; 8:1003-1017. [PMID: 29978890 DOI: 10.1002/cphy.c170039] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The gastrointestinal tract is the absorptive organ for nutrients found in foods after digestion. Nucleosides and, to a lesser extent nucleobases, are the late products of nucleoprotein digestion. These metabolites are absorbed by nucleoside (and nucleobase) transporter (NT) proteins. NTs are differentially distributed along the gastrointestinal tract showing also polarized expression in epithelial cells. Concentrative nucleoside transporters (CNTs) are mainly located at the apical side of enterocytes, whereas equilibrative nucleoside transporters (ENTs) facilitate the basolateral efflux of nucleosides and nucleobases to the bloodstream. Moreover, selected nucleotides and the bioactive nucleoside adenosine act directly on intestinal cells modulating purinergic signaling. NT-polarized insertion is tightly regulated. However, not much is known about the modulation of intestinal NT function in humans, probably due to the lack of appropriate cell models retaining CNT functional expression. Thus, the possibility of nutritional regulation of intestinal NTs has been addressed using animal models. Besides the nutrition-related role of NT proteins, orally administered drugs also need to cross the intestinal barrier, this event being a major determinant of drug bioavailability. In this regard, NT proteins might also play a role in pharmacology, thereby allowing the absorption of nucleoside- and nucleobase-derived drugs. The relative broad selectivity of these membrane transporters also suggests clinically relevant drug-drug interactions when using combined therapies. This review focuses on all these physiological and pharmacological aspects of NT protein biology. © 2017 American Physiological Society. Compr Physiol 8:1003-1017, 2018.
Collapse
Affiliation(s)
- Marçal Pastor-Anglada
- Biochemistry and Molecular Pharmacology Section, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,Oncology Program, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER EHD), Instituto de Salud Carlos III, Barcelona, Spain.,Genetics, Molecular Biology and Gene Therapy Program, Institut de Recerca Sant Joan de Déu (IR SJD), Esplugues de Llobregat, Barcelona, Spain
| | - Nerea Urtasun
- Biochemistry and Molecular Pharmacology Section, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,Oncology Program, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER EHD), Instituto de Salud Carlos III, Barcelona, Spain.,Genetics, Molecular Biology and Gene Therapy Program, Institut de Recerca Sant Joan de Déu (IR SJD), Esplugues de Llobregat, Barcelona, Spain
| | - Sandra Pérez-Torras
- Biochemistry and Molecular Pharmacology Section, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,Oncology Program, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER EHD), Instituto de Salud Carlos III, Barcelona, Spain.,Genetics, Molecular Biology and Gene Therapy Program, Institut de Recerca Sant Joan de Déu (IR SJD), Esplugues de Llobregat, Barcelona, Spain
| |
Collapse
|
16
|
Pastor-Anglada M, Pérez-Torras S. Emerging Roles of Nucleoside Transporters. Front Pharmacol 2018; 9:606. [PMID: 29928232 PMCID: PMC5997781 DOI: 10.3389/fphar.2018.00606] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/21/2018] [Indexed: 01/02/2023] Open
Abstract
Since human Nucleoside Transporters (hNTs) were identified by their activity as transport systems, extensive work has been done to fully characterize them at the molecular and physiological level. Many efforts have been addressed to the identification of their selectivity for natural substrates and nucleoside analogs used to treat several diseases. hNTs belong to two different gene families, SLC28 and SLC29, encoding human Concentrative Nucleoside Transporters (hCNTs) and human Equilibrative Nucleoside Transporters (hENTs), respectively. hCNTs and hENTs are integral membrane proteins, albeit structurally unrelated. Both families share common features as substrate selectivity and often tissue localization. This apparent biological redundancy may anticipate some different roles for hCNTs and hENTs in cell physiology. Thus, hENTs may have a major role in maintaining nucleoside homeostasis, whereas hCNTs could contribute to nucleoside sensing and signal transduction. In this sense, the ascription of hCNT1 to a transceptor reinforces this hypothesis. Moreover, some evidences could suggest a putative role of hCNT2 and hCNT3 as transceptors. The interacting proteins identified for hCNT2 suggest a link to energy metabolism. Moreover, the ability of hCNT2 and hCNT3 to transport adenosine links both proteins to purinergic signaling. On the other hand, the broad selectivity transporters hENTs have a crucial role in salvage pathways and purinergic signaling by means of nucleoside pools regulation. In particular, the two new hENT2 isoforms recently described together with hENT2 seem to be key elements controlling nucleoside and nucleotide pools for DNA synthesis. This review focuses on all these NTs functions beyond their mere translocation ability.
Collapse
Affiliation(s)
- Marçal Pastor-Anglada
- Biochemistry and Molecular Pharmacology Section, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Sandra Pérez-Torras
- Biochemistry and Molecular Pharmacology Section, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
The SLC28 (CNT) and SLC29 (ENT) nucleoside transporter families: a 30-year collaborative odyssey. Biochem Soc Trans 2017; 44:869-76. [PMID: 27284054 DOI: 10.1042/bst20160038] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Indexed: 01/18/2023]
Abstract
Specialized nucleoside transporter (NT) proteins are required for passage of nucleosides and hydrophilic nucleoside analogues across biological membranes. Physiologic nucleosides serve as central salvage metabolites in nucleotide biosynthesis, and nucleoside analogues are used as chemotherapeutic agents in the treatment of cancer and antiviral diseases. The nucleoside adenosine modulates numerous cellular events via purino-receptor cell signalling pathways. Human NTs are divided into two structurally unrelated protein families: the SLC28 concentrative nucleoside transporter (CNT) family and the SLC29 equilibrative nucleoside transporter (ENT) family. Human CNTs are inwardly directed Na(+)-dependent nucleoside transporters found predominantly in intestinal and renal epithelial and other specialized cell types. Human ENTs mediate bidirectional fluxes of purine and pyrimidine nucleosides down their concentration gradients and are ubiquitously found in most, possibly all, cell types. Both protein families are evolutionarily old: CNTs are present in both eukaryotes and prokaryotes; ENTs are widely distributed in mammalian, lower vertebrate and other eukaryote species. This mini-review describes a 30-year collaboration with Professor Stephen Baldwin to identify and understand the structures and functions of these physiologically and clinically important transport proteins.
Collapse
|
18
|
Mulinta R, Yao SYM, Ng AML, Cass CE, Young JD. Substituted cysteine accessibility method (SCAM) analysis of the transport domain of human concentrative nucleoside transporter 3 (hCNT3) and other family members reveals features of structural and functional importance. J Biol Chem 2017; 292:9505-9522. [PMID: 28385889 PMCID: PMC5465479 DOI: 10.1074/jbc.m116.743997] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 03/31/2017] [Indexed: 12/13/2022] Open
Abstract
The human SLC28 family of concentrative nucleoside transporter (CNT) proteins has three members: hCNT1, hCNT2, and hCNT3. Na+-coupled hCNT1 and hCNT2 transport pyrimidine and purine nucleosides, respectively, whereas hCNT3 transports both pyrimidine and purine nucleosides utilizing Na+ and/or H+ electrochemical gradients. Escherichia coli CNT family member NupC resembles hCNT1 in permeant selectivity but is H+-coupled. Using heterologous expression in Xenopus oocytes and the engineered cysteine-less hCNT3 protein hCNT3(C-), substituted cysteine accessibility method analysis with the membrane-impermeant thiol reactive reagent p-chloromercuribenzene sulfonate was performed on the transport domain (interfacial helix 2, hairpin 1, putative transmembrane domain (TM) 7, and TM8), as well as TM9 of the scaffold domain of the protein. This systematic scan of the entire C-terminal half of hCNT3(C-) together with parallel studies of the transport domain of wild-type hCNT1 and the corresponding TMs of cysteine-less NupC(C-) yielded results that validate the newly developed structural homology model of CNT membrane architecture for human CNTs, revealed extended conformationally mobile regions within transport-domain TMs, identified pore-lining residues of functional importance, and provided evidence of an emerging novel elevator-type mechanism of transporter function.
Collapse
Affiliation(s)
- Ras Mulinta
- From the Membrane Protein Disease Research Group, Departments of Physiology and
| | - Sylvia Y M Yao
- From the Membrane Protein Disease Research Group, Departments of Physiology and
| | - Amy M L Ng
- From the Membrane Protein Disease Research Group, Departments of Physiology and
| | - Carol E Cass
- Oncology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and.,the Cross Cancer Institute, Edmonton, Alberta T6G 2H7, Canada
| | - James D Young
- From the Membrane Protein Disease Research Group, Departments of Physiology and
| |
Collapse
|
19
|
Zhu Y, Hamlow LA, He CC, Strobehn SF, Lee JK, Gao J, Berden G, Oomens J, Rodgers MT. Influence of Sodium Cationization versus Protonation on the Gas-Phase Conformations and Glycosidic Bond Stabilities of 2'-Deoxyadenosine and Adenosine. J Phys Chem B 2016; 120:8892-904. [PMID: 27494378 DOI: 10.1021/acs.jpcb.6b06105] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The influence of noncovalent interactions with a sodium cation on the gas-phase structures and N-glycosidic bond stabilities of 2'-deoxyadenosine (dAdo) and adenosine (Ado), [dAdo+Na](+) and [Ado+Na](+), are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and energy-resolved collision-induced dissociation (ER-CID) experiments. ER-CID experiments are also performed on the protonated forms of these nucleosides, [dAdo+H](+) and [Ado+H](+), for comparison purposes. Complementary electronic structure calculations are performed to determine the structures and relative stabilities of the stable low-energy conformations of the sodium cationized nucleoside complexes and to predict their IR spectra. Comparison between the measured IRMPD action spectra and calculated IR spectra enables the conformations of the sodium cationized nucleosides present in the experiments to be elucidated. The influence of sodium cationization versus protonation on the structures and IR spectra is elucidated by comparison to IRMPD and theoretical results previously reported for the protonated forms of these nucleosides. The influence of sodium cationization versus protonation on the glycosidic bond stability of the adenine nucleosides is determined by comparison of the ER-CID behavior of these systems. All structures present in the experiments are found to involve tridentate binding of Na(+) to the N3, O4', and O5' atoms forming favorable 5- and 6-membered chelation rings, which requires that adenine rotate to a syn configuration. This mode of sodium cation binding results in moderate flexibility of the sugar moiety such that the sugar puckering of the conformations present varies between C2'-endo and O4'-endo. Sodium cationization is found to be less effective toward activating the N-glycosidic bond than protonation for both dAdo and Ado. Both the IRMPD yields and ER-CID behavior indicate that the 2'-hydroxyl substituent of Ado stabilizes the N-glycosidic bond relative to that of dAdo.
Collapse
Affiliation(s)
- Y Zhu
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - L A Hamlow
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - C C He
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - S F Strobehn
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - J K Lee
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - J Gao
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - G Berden
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - J Oomens
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| |
Collapse
|
20
|
Mukhopadhya I, Murray GI, Duncan L, Yuecel R, Shattock R, Kelly C, Iannelli F, Pozzi G, El-Omar EM, Hold GL, Hijazi K. Transporters for Antiretroviral Drugs in Colorectal CD4+ T Cells and Circulating α4β7 Integrin CD4+ T Cells: Implications for HIV Microbicides. Mol Pharm 2016; 13:3334-40. [PMID: 27467446 DOI: 10.1021/acs.molpharmaceut.6b00351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CD4+ T lymphocytes in the colorectal mucosa are key in HIV-1 transmission and dissemination. As such they are also the primary target for antiretroviral (ARV)-based rectal microbicides for pre-exposure prophylaxis. Drug transporters expressed in mucosal CD4+ T cells determine ARV distribution across the cell membrane and, most likely, efficacy of microbicides. We describe transporters for antiretroviral drugs in colorectal mucosal CD4+ T lymphocytes and compare gene expression with circulating α4β7+CD4+ T cells, which traffic to the intestine and have been shown to be preferentially infected by HIV-1. Purified total CD4+ T cells were obtained from colorectal tissue and blood samples by magnetic separation. CD4+ T cells expressing α4β7 integrin were isolated by fluorescence-activated cell sorting from peripheral blood mononuclear cells of healthy volunteers. Expressions of 15 efflux and uptake drug transporter genes were quantified using Taqman qPCR assays. Expression of efflux transporters MRP3, MRP5, and BCRP and uptake transporter CNT2 were significantly higher in colorectal CD4+ T cells compared to circulating CD4+ T cells (p = 0.01-0.03). Conversely, circulating α4β7+CD4+ T cells demonstrated significantly higher expression of OATPD compared to colorectal CD4+ T cells (p = 0.001). To the best of our knowledge this is the first report of drug transporter gene expression in colorectal CD4+ and peripheral α4β7+CD4+ T cells. The qualitative and quantitative differences in drug transporter gene expression profiles between α4β7+CD4+ T cells and total mucosal CD4+ T cells may have significant implications for the efficacy of rectally delivered ARV-microbicides. Most notably, we have identified efflux drug transporters that could be targeted by selective inhibitors or beneficial drug-drug interactions to enhance intracellular accumulation of antiretroviral drugs.
Collapse
Affiliation(s)
- Indrani Mukhopadhya
- University of Aberdeen Dental School and Hospital , Aberdeen AB25 2ZR, U.K.,Institute of Medical Sciences, University of Aberdeen , Aberdeen AB25 2ZD, U.K
| | - Graeme I Murray
- Department of Pathology, School of Medicine & Dentistry, University of Aberdeen , Aberdeen AB25 2ZD, U.K
| | - Linda Duncan
- Institute of Medical Sciences, University of Aberdeen , Aberdeen AB25 2ZD, U.K
| | - Raif Yuecel
- Institute of Medical Sciences, University of Aberdeen , Aberdeen AB25 2ZD, U.K
| | - Robin Shattock
- Mucosal Infection & Immunity Group, Section of Infectious Diseases, Imperial College , London W2 1PG, U.K
| | - Charles Kelly
- Mucosal & Salivary Biology, King's College London, Dental Institute , London SE1 1UL, U.K
| | - Francesco Iannelli
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena , Siena 53100, Italy
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena , Siena 53100, Italy
| | - Emad M El-Omar
- Institute of Medical Sciences, University of Aberdeen , Aberdeen AB25 2ZD, U.K
| | - Georgina L Hold
- Institute of Medical Sciences, University of Aberdeen , Aberdeen AB25 2ZD, U.K
| | - Karolin Hijazi
- University of Aberdeen Dental School and Hospital , Aberdeen AB25 2ZR, U.K.,Institute of Medical Sciences, University of Aberdeen , Aberdeen AB25 2ZD, U.K
| |
Collapse
|
21
|
Alam C, Whyte-Allman SK, Omeragic A, Bendayan R. Role and modulation of drug transporters in HIV-1 therapy. Adv Drug Deliv Rev 2016; 103:121-143. [PMID: 27181050 DOI: 10.1016/j.addr.2016.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 12/15/2022]
Abstract
Current treatment of human immunodeficiency virus type-1 (HIV-1) infection involves a combination of antiretroviral drugs (ARVs) that target different stages of the HIV-1 life cycle. This strategy is commonly referred to as highly active antiretroviral therapy (HAART) or combined antiretroviral therapy (cART). Membrane-associated drug transporters expressed ubiquitously in mammalian systems play a crucial role in modulating ARV disposition during HIV-1 infection. Members of the ATP-binding cassette (ABC) and solute carrier (SLC) transporter superfamilies have been shown to interact with ARVs, including those that are used as part of first-line treatment regimens. As a result, the functional expression of drug transporters can influence the distribution of ARVs at specific sites of infection. In addition, pathological factors related to HIV-1 infection and/or ARV therapy itself can alter transporter expression and activity, thus further contributing to changes in ARV disposition and the effectiveness of HAART. This review summarizes current knowledge on the role of drug transporters in regulating ARV transport in the context of HIV-1 infection.
Collapse
Affiliation(s)
- Camille Alam
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Sana-Kay Whyte-Allman
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Amila Omeragic
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada.
| |
Collapse
|
22
|
Graci JD, Cameron CE. Challenges for the Development of Ribonucleoside Analogues as Inducers of Error Catastrophe. ACTA ACUST UNITED AC 2016; 15:1-13. [PMID: 15074710 DOI: 10.1177/095632020401500101] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
RNA viruses are responsible for numerous human diseases; some of these viruses are also potential agents of bioterrorism. In general, the replication of RNA viruses results in the incorporation of at least one mutation per round of replication, leading to a heterogeneous population, termed a qua-sispecies. The antiviral nucleoside ribavirin has been shown to cause an increase in the mutation frequency of RNA viruses. This increase in mutation frequency leads to a loss of viability due to error catastrophe. In this article, we review lethal mutagenesis as an antiviral strategy, emphasizing the challenges remaining for the development of lethal mutagenesis into a practical clinical approach.
Collapse
Affiliation(s)
- Jason D Graci
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, Pa., USA
| | | |
Collapse
|
23
|
Tatani K, Hiratochi M, Kikuchi N, Kuramochi Y, Watanabe S, Yamauchi Y, Itoh F, Isaji M, Shuto S. Identification of Adenine and Benzimidazole Nucleosides as Potent Human Concentrative Nucleoside Transporter 2 Inhibitors: Potential Treatment for Hyperuricemia and Gout. J Med Chem 2016; 59:3719-31. [DOI: 10.1021/acs.jmedchem.5b01884] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kazuya Tatani
- Central
Research Laboratories, Kissei Pharmaceutical Co., Ltd., 4365-1, Hotakakashiwabara, Azumino, Nagano 399-8304, Japan
| | - Masahiro Hiratochi
- Central
Research Laboratories, Kissei Pharmaceutical Co., Ltd., 4365-1, Hotakakashiwabara, Azumino, Nagano 399-8304, Japan
| | - Norihiko Kikuchi
- Central
Research Laboratories, Kissei Pharmaceutical Co., Ltd., 4365-1, Hotakakashiwabara, Azumino, Nagano 399-8304, Japan
| | - Yu Kuramochi
- Central
Research Laboratories, Kissei Pharmaceutical Co., Ltd., 4365-1, Hotakakashiwabara, Azumino, Nagano 399-8304, Japan
| | - Shinjiro Watanabe
- Central
Research Laboratories, Kissei Pharmaceutical Co., Ltd., 4365-1, Hotakakashiwabara, Azumino, Nagano 399-8304, Japan
| | - Yuji Yamauchi
- Central
Research Laboratories, Kissei Pharmaceutical Co., Ltd., 4365-1, Hotakakashiwabara, Azumino, Nagano 399-8304, Japan
| | - Fumiaki Itoh
- Central
Research Laboratories, Kissei Pharmaceutical Co., Ltd., 4365-1, Hotakakashiwabara, Azumino, Nagano 399-8304, Japan
| | - Masayuki Isaji
- Central
Research Laboratories, Kissei Pharmaceutical Co., Ltd., 4365-1, Hotakakashiwabara, Azumino, Nagano 399-8304, Japan
| | | |
Collapse
|
24
|
Chen J, Li K, Swavey S, Church KM. Synthesis, characterization and DNA binding activity of PtCl 2 [DMSO][N4[N-3(4-pyridylmethyl)thymidine]]. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.01.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Hu M, Patel SK, Zhou T, Rohan LC. Drug transporters in tissues and cells relevant to sexual transmission of HIV: Implications for drug delivery. J Control Release 2015; 219:681-696. [PMID: 26278511 PMCID: PMC4656065 DOI: 10.1016/j.jconrel.2015.08.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 01/11/2023]
Abstract
Efflux and uptake transporters of drugs are key regulators of the pharmacokinetics of many antiretroviral drugs. A growing body of literature has revealed the expression and functionality of multiple transporters in female genital tract (FGT), colorectal tissue, and immune cells. Drug transporters could play a significant role in the efficacy of preventative strategies for HIV-1 acquisition. Pre-exposure prophylaxis (PrEP) is a promising strategy, which utilizes topically (vaginally or rectally), orally or other systemically administered antiretroviral drugs to prevent the sexual transmission of HIV to receptive partners. The drug concentration in the receptive mucosal tissues and target immune cells for HIV is critical for PrEP effectiveness. Hence, there is an emerging interest in utilizing transporter information to explain tissue disposition patterns of PrEP drugs, to interpret inter-individual variability in PrEP drug pharmacokinetics and effectiveness, and to improve tissue drug exposure through modulation of the cervicovaginal, colorectal, or immune cell transporters. In this review, the existing literature on transporter expression, functionality and regulation in the transmission-related tissues and cells is summarized. In addition, the relevance of transporter function for drug delivery and strategies that could exploit transporters for increased drug concentration at target locales is discussed. The overall goal is to facilitate an understanding of drug transporters for PrEP optimization.
Collapse
Affiliation(s)
- Minlu Hu
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Sravan Kumar Patel
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Tian Zhou
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Lisa C Rohan
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; Magee-Womens Research Institute, Pittsburgh, PA, USA; School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
26
|
Choi JS, Maity A, Gray T, Berdis AJ. A metal-containing nucleoside that possesses both therapeutic and diagnostic activity against cancer. J Biol Chem 2015; 290:9714-26. [PMID: 25713072 DOI: 10.1074/jbc.m114.620294] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Indexed: 12/29/2022] Open
Abstract
Nucleoside transport is an essential process that helps maintain the hyperproliferative state of most cancer cells. As such, it represents an important target for developing diagnostic and therapeutic agents that can effectively detect and treat cancer, respectively. This report describes the development of a metal-containing nucleoside designated Ir(III)-PPY nucleoside that displays both therapeutic and diagnostic properties against the human epidermal carcinoma cell line KB3-1. The cytotoxic effects of Ir(III)-PPY nucleoside are both time- and dose-dependent. Flow cytometry analyses validate that the nucleoside analog causes apoptosis by blocking cell cycle progression at G2/M. Fluorescent microscopy studies show rapid accumulation in the cytoplasm within 4 h. However, more significant accumulation is observed in the nucleus and mitochondria after 24 h. This localization is consistent with the ability of the metal-containing nucleoside to influence cell cycle progression at G2/M. Mitochondrial depletion is also observed after longer incubations (Δt ∼48 h), and this effect may produce additional cytotoxic effects. siRNA knockdown experiments demonstrate that the nucleoside transporter, hENT1, plays a key role in the cellular entry of Ir(III)-PPY nucleoside. Collectively, these data provide evidence for the development of a metal-containing nucleoside that functions as a combined therapeutic and diagnostic agent against cancer.
Collapse
Affiliation(s)
- Jung-Suk Choi
- From the Department of Chemistry and the Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio 44115 and
| | - Ayan Maity
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Thomas Gray
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Anthony J Berdis
- From the Department of Chemistry and the Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio 44115 and
| |
Collapse
|
27
|
Pastor-Anglada M, Pérez-Torras S. Nucleoside transporter proteins as biomarkers of drug responsiveness and drug targets. Front Pharmacol 2015; 6:13. [PMID: 25713533 PMCID: PMC4322540 DOI: 10.3389/fphar.2015.00013] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/13/2015] [Indexed: 12/13/2022] Open
Abstract
Nucleoside and nucleobase analogs are currently used in the treatment of solid tumors, lymphoproliferative diseases, viral infections such as hepatitis and AIDS, and some inflammatory diseases such as Crohn. Two gene families are implicated in the uptake of nucleosides and nucleoside analogs into cells, SCL28 and SLC29. The former encodes hCNT1, hCNT2, and hCNT3 proteins. They translocate nucleosides in a Na+ coupled manner with high affinity and some substrate selectivity, being hCNT1 and hCNT2 pyrimidine- and purine-preferring, respectively, and hCNT3 a broad selectivity transporter. SLC29 genes encode four members, being hENT1 and hENT2 the only two which are unequivocally implicated in the translocation of nucleosides and nucleobases (the latter mostly via hENT2) at the cell plasma membrane. Some nucleoside-derived drugs can also interact with and be translocated by members of the SLC22 gene family, particularly hOCT and hOAT proteins. Inter-individual differences in transporter function and perhaps, more importantly, altered expression associated with the disease itself might modulate the transporter profile of target cells, thereby determining drug bioavailability and action. Drug transporter pharmacology has been periodically reviewed. Thus, with this contribution we aim at providing a state-of-the-art overview of the clinical evidence generated so far supporting the concept that these membrane proteins can indeed be biomarkers suitable for diagnosis and/or prognosis. Last but not least, some of these transporter proteins can also be envisaged as drug targets, as long as they can show “transceptor” functions, in some cases related to their role as modulators of extracellular adenosine levels, thereby providing a functional link between P1 receptors and transporters.
Collapse
Affiliation(s)
- Marçal Pastor-Anglada
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biology, Institute of Biomedicine, University of Barcelona, Barcelona Spain ; Oncology Program, CIBER ehd, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Barcelona Spain
| | - Sandra Pérez-Torras
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biology, Institute of Biomedicine, University of Barcelona, Barcelona Spain ; Oncology Program, CIBER ehd, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Barcelona Spain
| |
Collapse
|
28
|
Sanchez-Covarrubias L, Slosky LM, Thompson BJ, Davis TP, Ronaldson PT. Transporters at CNS barrier sites: obstacles or opportunities for drug delivery? Curr Pharm Des 2014; 20:1422-49. [PMID: 23789948 DOI: 10.2174/13816128113199990463] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/18/2013] [Indexed: 01/11/2023]
Abstract
The blood-brain barrier (BBB) and blood-cerebrospinal fluid (BCSF) barriers are critical determinants of CNS homeostasis. Additionally, the BBB and BCSF barriers are formidable obstacles to effective CNS drug delivery. These brain barrier sites express putative influx and efflux transporters that precisely control permeation of circulating solutes including drugs. The study of transporters has enabled a shift away from "brute force" approaches to delivering drugs by physically circumventing brain barriers towards chemical approaches that can target specific compounds of the BBB and/or BCSF barrier. However, our understanding of transporters at the BBB and BCSF barriers has primarily focused on understanding efflux transporters that efficiently prevent drugs from attaining therapeutic concentrations in the CNS. Recently, through the characterization of multiple endogenously expressed uptake transporters, this paradigm has shifted to the study of brain transporter targets that can facilitate drug delivery (i.e., influx transporters). Additionally, signaling pathways and trafficking mechanisms have been identified for several endogenous BBB/BCSF transporters, thereby offering even more opportunities to understand how transporters can be exploited for optimization of CNS drug delivery. This review presents an overview of the BBB and BCSF barrier as well as the many families of transporters functionally expressed at these barrier sites. Furthermore, we present an overview of various strategies that have been designed and utilized to deliver therapeutic agents to the brain with a particular emphasis on those approaches that directly target endogenous BBB/BCSF barrier transporters.
Collapse
Affiliation(s)
| | | | | | | | - Patrick T Ronaldson
- Department of Medical Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050.
| |
Collapse
|
29
|
Sims RE, Dale N. Activity-dependent adenosine release may be linked to activation of Na(+)-K(+) ATPase: an in vitro rat study. PLoS One 2014; 9:e87481. [PMID: 24489921 PMCID: PMC3906196 DOI: 10.1371/journal.pone.0087481] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/23/2013] [Indexed: 01/06/2023] Open
Abstract
In the brain, extracellular adenosine increases as a result of neuronal activity. The mechanisms by which this occurs are only incompletely understood. Here we investigate the hypothesis that the Na+ influxes associated with neuronal signalling activate the Na+-K+ ATPase which, by consuming ATP, generates intracellular adenosine that is then released via transporters. By measuring adenosine release directly with microelectrode biosensors, we have demonstrated that AMPA-receptor evoked adenosine release in basal forebrain and cortex depends on extracellular Na+. We have simultaneously imaged intracellular Na+ and measured adenosine release. The accumulation of intracellular Na+ during AMPA receptor activation preceded adenosine release by some 90 s. By removing extracellular Ca2+, and thus preventing indiscriminate neuronal activation, we used ouabain to test the role of the Na+-K+ ATPase in the release of adenosine. Under conditions which caused a Na+ influx, brief applications of ouabain increased the accumulation of intracellular Na+ but conversely rapidly reduced extracellular adenosine levels. In addition, ouabain greatly reduced the amount of adenosine released during application of AMPA. Our data therefore suggest that activity of the Na+-K+ ATPase is directly linked to the efflux of adenosine and could provide a universal mechanism that couples adenosine release to neuronal activity. The Na+-K+ ATPase-dependent adenosine efflux is likely to provide adenosine-mediated activity-dependent negative feedback that will be important in many diverse functional contexts including the regulation of sleep.
Collapse
Affiliation(s)
- Robert Edward Sims
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- * E-mail:
| | - Nicholas Dale
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
30
|
Damaraju VL, Mowles D, Wilson M, Kuzma M, Cass CE, Sawyer MB. Comparative in vitro evaluation of transportability and toxicity of capecitabine and its metabolites in cells derived from normal human kidney and renal cancers. Biochem Cell Biol 2013; 91:419-27. [DOI: 10.1139/bcb-2013-0041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The goal of this study was to understand roles of nucleoside and nucleobase transport processes in capecitabine pharmacology in cells derived from human renal proximal tubule cells (hRPTCs) and three human renal cell carcinoma (RCC) cell lines, A498, A704, and Caki-1. Human equilibrative nucleoside transporters 1 and 2 (hENT1 and hENT2) mediated activities and a sodium-independent nucleobase activity were present in hRPTCs. In hRPTCs, uptake of 5′-deoxy-5-fluorouridine (DFUR), a nucleoside metabolite of capecitabine, was pH dependent with highest uptake seen at pH 6.0. In RCC cell lines, hENT1 was the major nucleoside transporter. Nucleobase transport activity was variable among the three RCC cell lines, with Caki-1 showing the highest and A498 showing the lowest activities. Treatment of RCC cell lines with interferon alpha (IFN-α) increased thymidine phosphorylase levels and prior treatment of RCC cell lines with IFN-α followed by 5-FU or DFUR resulted in enhanced sensitivity of all cell lines to 5-FU and two of three cell lines to DFUR. We report for the first time a nucleobase transport activity in hRPTCs and RCC cell lines. In addition, our in vitro cytotoxicity results showed that RCC cell lines differed in their response to 5-FU and DFUR and prior treatment with IFN-α potentiated cytotoxic response to metabolites of capecitabine.
Collapse
Affiliation(s)
| | - Delores Mowles
- Department of Experimental Oncology, Edmonton, Alta., Canada
| | - Marnie Wilson
- Department of Experimental Oncology, Edmonton, Alta., Canada
| | - Michelle Kuzma
- Department of Experimental Oncology, Edmonton, Alta., Canada
| | - Carol E. Cass
- Department of Oncology, University of Alberta, Edmonton, Alta., Canada
| | - Michael B. Sawyer
- Department of Oncology, University of Alberta, Edmonton, Alta., Canada
- Department of Medical Oncology, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
31
|
Young JD, Yao SYM, Baldwin JM, Cass CE, Baldwin SA. The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29. Mol Aspects Med 2013; 34:529-47. [PMID: 23506887 DOI: 10.1016/j.mam.2012.05.007] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 04/11/2012] [Indexed: 12/23/2022]
Abstract
Nucleoside transport in humans is mediated by members of two unrelated protein families, the SLC28 family of cation-linked concentrative nucleoside transporters (CNTs) and the SLC29 family of energy-independent, equilibrative nucleoside transporters (ENTs). These families contain three and four members, respectively, which differ both in the stoichiometry of cation coupling and in permeant selectivity. Together, they play key roles in nucleoside and nucleobase uptake for salvage pathways of nucleotide synthesis. Moreover, they facilitate cellular uptake of several nucleoside and nucleobase drugs used in cancer chemotherapy and treatment of viral infections. Thus, the transporter content of target cells can represent a key determinant of the response to treatment. In addition, by regulating the concentration of adenosine available to cell surface receptors, nucleoside transporters modulate many physiological processes ranging from neurotransmission to cardiovascular activity. This review describes the molecular and functional properties of the two transporter families, with a particular focus on their physiological roles in humans and relevance to disease treatment.
Collapse
Affiliation(s)
- James D Young
- Membrane Protein Research Group, Edmonton, Alberta, Canada T6G 2H7.
| | | | | | | | | |
Collapse
|
32
|
Concentrative nucleoside transporter 1 (hCNT1) promotes phenotypic changes relevant to tumor biology in a translocation-independent manner. Cell Death Dis 2013; 4:e648. [PMID: 23722537 PMCID: PMC3674379 DOI: 10.1038/cddis.2013.173] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nucleoside transporters (NTs) mediate the uptake of nucleosides and nucleobases across the plasma membrane, mostly for salvage purposes. The canonical NTs belong to two gene families, SLC29 and SLC28. The former encode equilibrative nucleoside transporter proteins (ENTs), which mediate the facilitative diffusion of natural nucleosides with broad selectivity, whereas the latter encode concentrative nucleoside transporters (CNTs), which are sodium-coupled and show high affinity for substrates with variable selectivity. These proteins are expressed in most cell types, exhibiting apparent functional redundancy. This might indicate that CNTs have specific roles in the physiology of the cell beyond nucleoside salvage. Here, we addressed this possibility using adenoviral vectors to restore tumor cell expression of hCNT1 or a polymorphic variant (hCNT1S546P) lacking nucleoside translocation ability. We found that hCNT1 restoration in pancreatic cancer cells significantly altered cell-cycle progression and phosphorylation status of key signal-transducing kinases, promoted poly-(ADP-ribose) polymerase hyperactivation and cell death and reduced cell migration. Importantly, the translocation-defective transporter triggered these same effects on cell physiology. Moreover, this study also shows that restoration of hCNT1 expression is able to reduce tumor growth in a mouse model of pancreatic adenocarcinoma. These data predict a novel role for a NT protein, hCNT1, which appears to be independent of its role as mediator of nucleoside uptake by cells. Thereby, hCNT1 fits the profile of a transceptor in a substrate translocation-independent manner and is likely to be relevant to tumor biology.
Collapse
|
33
|
Lepist EI, Damaraju VL, Zhang J, Gati WP, Yao SYM, Smith KM, Karpinski E, Young JD, Leung KH, Cass CE. Transport of A1 adenosine receptor agonist tecadenoson by human and mouse nucleoside transporters: evidence for blood-brain barrier transport by murine equilibrative nucleoside transporter 1 mENT1. Drug Metab Dispos 2013; 41:916-22. [PMID: 23388705 DOI: 10.1124/dmd.112.049858] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The high density of A1 adenosine receptors in the brain results in significant potential for central nervous system (CNS)-related adverse effects with A1 agonists. Tecadenoson is a selective A1 adenosine receptor agonist with close similarity to adenosine. We studied the binding and transmembrane transport of tecadenoson by recombinant human equilibrative nucleoside transporters (hENTs) hENT1 and hENT2, and human concentrative nucleoside transporters (hCNTs) hCNT1, hCNT2, and hCNT3 in vitro and by mouse mENT1 in vivo. Binding affinities of the five recombinant human nucleoside transporters for tecadenoson differed (hENT1 > hCNT1 > hCNT3 > hENT2 > hCNT2), and tecadenoson was transported largely by hENT1. Pretreatment of mice with a phosphorylated prodrug of nitrobenzylmercaptopurine riboside, an inhibitor of mENT1, significantly decreased brain exposure to tecadenoson compared with that of the untreated (control) group, suggesting involvement of mENT1 in transport of tecadenoson across the blood-brain barrier (BBB). In summary, ENT1 was shown to mediate the transport of tecadenoson in vitro with recombinant and native human protein and in vivo with mice. The micromolar apparent Km value of tecadenoson for transport by native hENT1 in cultured cells suggests that hENT1 will not be saturated at clinically relevant (i.e., nanomolar) concentrations of tecadenoson, and that hENT1-mediated passage across the BBB may contribute to the adverse CNS effects observed in clinical trials. In contrast, in cases in which a CNS effect is desired, the present results illustrate that synthetic A1 agonists that are transported by hENT1 could be used to target CNS disorders because of enhanced delivery to the brain.
Collapse
|
34
|
Marin JJG. Plasma membrane transporters in modern liver pharmacology. SCIENTIFICA 2012; 2012:428139. [PMID: 24278693 PMCID: PMC3820525 DOI: 10.6064/2012/428139] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 09/26/2012] [Indexed: 06/02/2023]
Abstract
The liver plays a crucial role in the detoxification of drugs used in the treatment of many diseases. The liver itself is the target for drugs aimed to modify its function or to treat infections and tumours affecting this organ. Both detoxification and pharmacological processes occurring in the liver require the uptake of the drug by hepatic cells and, in some cases, the elimination into bile. These steps have been classified as detoxification phase 0 and phase III, respectively. Since most drugs cannot cross the plasma membrane by simple diffusion, the involvement of transporters is mandatory. Several members of the superfamilies of solute carriers (SLC) and ATP-binding cassette (ABC) proteins, with a minor participation of other families of transporters, account for the uptake and efflux, respectively, of endobiotic and xenobiotic compounds across the basolateral and apical membranes of hepatocytes and cholangiocytes. These transporters are also involved in the sensitivity and refractoriness to the pharmacological treatment of liver tumours. An additional interesting aspect of the role of plasma membrane transporters in liver pharmacology regards the promiscuity of many of these carriers, which accounts for a variety of drug-drug, endogenous substances-drug and food components-drug interactions with clinical relevance.
Collapse
Affiliation(s)
- Jose J. G. Marin
- Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca and CIBERehd, Spain
- Department of Physiology and Pharmacology, Campus Miguel de Unamuno E.D. S09, 37007 Salamanca, Spain
| |
Collapse
|
35
|
Damaraju VL, Mowles D, Yao S, Ng A, Young JD, Cass CE, Tong Z. Role of human nucleoside transporters in the uptake and cytotoxicity of azacitidine and decitabine. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2012; 31:236-55. [PMID: 22356238 DOI: 10.1080/15257770.2011.652330] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The nucleoside analogs 5-azacytidine (azacitidine) and 5-aza-2'-deoxycytidine (decitabine) are active against acute myeloid leukemia and myelodysplastic syndromes. Cellular transport across membranes is crucial for uptake of these highly polar hydrophilic molecules. We assessed the ability of azacitidine, decitabine, and, for comparison, gemcitabine, to interact with human nucleoside transporters (hNTs) in Saccharomyces cerevisiae cells (hENT1/2, hCNT1/2/3) or Xenopus laevis oocytes (hENT3/4). All three drugs inhibited hCNT1/3 potently (K (i) values, 3-26 μM), hENT1/2 and hCNT2 weakly (K (i) values, 0.5-3.1 mM), and hENT3/4 poorly if at all. Rates of transport of [(3)H]gemcitabine, [(14)C]azacitidine, and [(3)H]decitabine observed in Xenopus oocytes expressing individual recombinant hNTs differed substantially. Cytotoxicity of azacitidine and decitabine was assessed in hNT-expressing or hNT-deficient cultured human cell lines in the absence or presence of transport inhibitors where available. The rank order of cytotoxic sensitivities (IC (50) values, μM) conferred by hNTs were hCNT1 (0.1) > hENT1 (0.3) ≫ hCNT2 (8.3), hENT2 (9.0) for azacitidine and hENT1 (0.3) > hCNT1 (0.8) ⋙ hENT2, hCNT2 (>100) for decitabine. Protection against cytotoxicity was observed for both drugs in the presence of inhibitors of nucleoside transport, thus suggesting the importance of hNTs in manifestation of toxicity. In summary, all seven hNTs transported azacitidine, with hCNT3 showing the highest rates, whereas hENT1 and hENT2 showed modest transport and hCNT1 and hCNT3 poor transport of decitabine. Our results show for the first time that azacitidine and decitabine exhibit different human nucleoside transportability profiles and their cytotoxicities are dependent on the presence of hNTs, which could serve as potential biomarkers of clinical response.
Collapse
Affiliation(s)
- Vijaya L Damaraju
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
36
|
Koczor CA, Torres RA, Lewis W. The role of transporters in the toxicity of nucleoside and nucleotide analogs. Expert Opin Drug Metab Toxicol 2012; 8:665-76. [PMID: 22509856 DOI: 10.1517/17425255.2012.680885] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Two families of nucleoside analogs have been developed to treat viral infections and cancer, but these compounds can cause tissue- and cell-specific toxicity related to their uptake and subcellular activity, which are dictated by host enzymes and transporters. Cellular uptake of these compounds requires nucleoside transporters that share functional similarities but differ in substrate specificity. Tissue-specific cellular expression of these transporters enables nucleoside analogs to produce their tissue-specific toxic effects, a limiting factor in the treatment of retroviruses and cancer. AREAS COVERED This review discusses the families of nucleoside transporters and how they mediate cellular uptake of nucleoside analogs. Specific focus is placed on examples of known cases of transporter-mediated cellular toxicity and classification of the toxicities resulting. Efflux transporters are also explored as a contributor to analog toxicity and cell-specific effects. EXPERT OPINION Efforts to modulate transporter uptake/clearance remain long-term goals of oncologists and virologists. Accordingly, subcellular approaches that either increase or decrease intracellular nucleoside analog concentrations are eagerly sought and include transporter inhibitors and targeting transporter expression. However, additional understanding of nucleoside transporter kinetics, tissue expression and genetic polymorphisms is required to design better molecules and better therapies.
Collapse
|
37
|
Fernández-Calotti PX, Colomer D, Pastor-Anglada M. Translocation of nucleoside analogs across the plasma membrane in hematologic malignancies. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2012; 30:1324-40. [PMID: 22132993 DOI: 10.1080/15257770.2011.597372] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nucleoside analogs are currently used in the treatment of various hematologic malignancies due to their ability to induce apoptosis of lymphoid cells. For nucleoside-derived drugs to exert their action, they must enter cells via nucleoside transporters from two gene families, SLC28 and SLC29 (CNT and ENT, respectively). Once inside the cell, these drugs must be phosphorylated to their active forms. In contrast, some members of the ATP-binding cassette (ABC) protein family have been identified as responsible for the efflux of the phosphorylated forms of these nucleoside-derived drugs. Here, we review the main nucleoside analogs used in hematologic malignancies and focus especially on those that are currently used in chronic lymphocytic leukemia (CLL). Moreover, we discuss the pharmacological profile of the nucleoside transporters, which determines the bioavailability of and cell sensitivity to these nucleoside-derived drugs. We also discuss the expression of nucleoside transporters and their activities in CLL as well as the possibility of modulating these transporter activities as a means of modulating intracellular drug availability and, consequently, responsiveness to therapy.
Collapse
Affiliation(s)
- Paula X Fernández-Calotti
- Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona & CIBER EHD, Barcelona, Spain.
| | | | | |
Collapse
|
38
|
Fukuda Y, Schuetz JD. ABC transporters and their role in nucleoside and nucleotide drug resistance. Biochem Pharmacol 2012; 83:1073-83. [PMID: 22285911 DOI: 10.1016/j.bcp.2011.12.042] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 11/30/2011] [Accepted: 12/30/2011] [Indexed: 01/12/2023]
Abstract
ATP-binding cassette (ABC) transporters confer drug resistance against a wide range of chemotherapeutic agents, including nucleoside and nucleotide based drugs. While nucleoside based drugs have been used for many years in the treatment of solid and hematological malignancies as well as viral and autoimmune diseases, the potential contribution of ABC transporters has only recently been recognized. This neglect is likely because activation of nucleoside derivatives require an initial carrier-mediated uptake step followed by phosphorylation by nucleoside kinases, and defects in uptake or kinase activation were considered the primary mechanisms of nucleoside drug resistance. However, recent studies demonstrate that members of the ABCC transporter subfamily reduce the intracellular concentration of monophosphorylated nucleoside drugs. In addition to the ABCC subfamily members, ABCG2 has been shown to transport nucleoside drugs and nucleoside-monophosphate derivatives of clinically relevant nucleoside drugs such as cytarabine, cladribine, and clofarabine to name a few. This review will discuss ABC transporters and how they interact with other processes affecting the efficacy of nucleoside based drugs.
Collapse
Affiliation(s)
- Yu Fukuda
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | |
Collapse
|
39
|
Damaraju VL, Mowles D, Smith KM, Yao SYM, Young JD, Marquez VE, Cass CE. Influence of Sugar Ring Conformation on the Transportability of Nucleosides by Human Nucleoside Transporters. Chembiochem 2011; 12:2774-8. [DOI: 10.1002/cbic.201100567] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Indexed: 11/09/2022]
|
40
|
Miles ED, Xue Y, Strickland JR, Boling JA, Matthews JC. Ergopeptines bromocriptine and ergovaline and the dopamine type-2 receptor inhibitor domperidone inhibit bovine equilibrative nucleoside transporter 1-like activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:9691-9699. [PMID: 21790119 DOI: 10.1021/jf201713m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Neotyphodium coenophialum-infected tall fescue contains ergopeptines. Except for interactions with biogenic amine receptors (e.g., dopamine type-2 receptor, D2R), little is known about how ergopeptines affect animal metabolism. The effect of ergopeptines on bovine nucleoside transporters (NT) was evaluated using Madin-Darby bovine kidney (MDBK) cells. Equilibrative NT1 (ENT1)-like activity accounted for 94% of total NT activity. Inhibitory competition (IC(50)) experiments found that this activity was inhibited by both bromocriptine (a synthetic model ergopeptine and D2R agonist) and ergovaline (a predominant ergopeptine of tall fescue). Kinetic inhibition analysis indicated that bromocriptine inhibited ENT1-like activity through a competitive and noncompetitive mechanism. Domperidone (a D2R antagonist) inhibited ENT1 activity more in the presence than in the absence of bromocriptine and displayed an IC(50) value lower than that of bromocriptine or ergovaline, suggesting that inhibition was not through D2R-mediated events. These novel mechanistic findings imply that cattle consuming endophyte-infected tall fescue have reduced ENT1 activity and, thus, impaired nucleoside metabolism.
Collapse
Affiliation(s)
- Edwena D Miles
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
| | | | | | | | | |
Collapse
|
41
|
Yao SYM, Ng AML, Cass CE, Baldwin SA, Young JD. Nucleobase transport by human equilibrative nucleoside transporter 1 (hENT1). J Biol Chem 2011; 286:32552-62. [PMID: 21795683 DOI: 10.1074/jbc.m111.236117] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The human equilibrative nucleoside transporters hENT1 and hENT2 (each with 456 residues) are 40% identical in amino acid sequence and contain 11 putative transmembrane helices. Both transport purine and pyrimidine nucleosides and are distinguished functionally by a difference in sensitivity to inhibition by nanomolar concentrations of nitrobenzylmercaptopurine ribonucleoside (NBMPR), hENT1 being NBMPR-sensitive. Previously, we used heterologous expression in Xenopus oocytes to demonstrate that recombinant hENT2 and its rat ortholog rENT2 also transport purine and pyrimidine bases, h/rENT2 representing the first identified mammalian nucleobase transporter proteins (Yao, S. Y., Ng, A. M., Vickers, M. F., Sundaram, M., Cass, C. E., Baldwin, S. A., and Young, J. D. (2002) J. Biol. Chem. 277, 24938-24948). The same study also revealed lower, but significant, transport of hypoxanthine by h/rENT1. In the present investigation, we have used the enhanced Xenopus oocyte expression vector pGEMHE to demonstrate that hENT1 additionally transports thymine and adenine and, to a lesser extent, uracil and guanine. Fluxes of hypoxanthine, thymine, and adenine by hENT1 were saturable and inhibited by NBMPR. Ratios of V(max) (pmol/oocyte · min(-1)):K(m) (mm), a measure of transport efficiency, were 86, 177, and 120 for hypoxantine, thymine, and adenine, respectively, compared with 265 for uridine. Hypoxanthine influx was competitively inhibited by uridine, indicating common or overlapping nucleobase and nucleoside permeant binding pockets, and the anticancer nucleobase drugs 5-fluorouracil and 6-mercaptopurine were also transported. Nucleobase transport activity was absent from an engineered cysteine-less version hENT1 (hENT1C-) in which all 10 endogenous cysteine residues were mutated to serine. Site-directed mutagenesis identified Cys-414 in transmembrane helix 10 of hENT1 as the residue conferring nucleobase transport activity to the wild-type transporter.
Collapse
Affiliation(s)
- Sylvia Y M Yao
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
42
|
Yanxiao C, Ruijuan X, Jin Y, Lei C, Qian W, Xuefen Y, Hong T, Xueying Z, Davey AK, Jiping W. Organic anion and cation transporters are possibly involved in renal excretion of entecavir in rats. Life Sci 2011; 89:1-6. [DOI: 10.1016/j.lfs.2011.03.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/22/2011] [Accepted: 03/21/2011] [Indexed: 11/16/2022]
|
43
|
Graham K, Yao S, Johnson L, Mowles D, Ng A, Wilkinson J, Young JD, Cass CE. Nucleoside transporter gene expression in wild-type and mENT1 knockout miceThis paper is one of a selection of papers published in a Special Issue entitled CSBMCB 53rd Annual Meeting — Membrane Proteins in Health and Disease, and has undergone the Journal’s usual peer review process. Biochem Cell Biol 2011; 89:236-45. [DOI: 10.1139/o10-152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Owing to the overlapping and redundant roles of the seven mammalian nucleoside transporters (NTs), which belong to two protein families (ENTs and CNTs), the physiological importance of individual NTs has been difficult to assess. Mice that have NT genes knocked out can be a valuable tool in gaining an understanding of the NT proteins. We have generated a strain of mice that is homozygous for a disruption mutation between exons 2 and 3 of the mouse equilibrative nucleoside transporter, mENT1. We have undertaken a quantitative survey of NT gene expression in 10 tissues, as well as microarray analysis of heart and kidney, from wild-type and mENT1 knockout mice. Rather than a consistent change in expression of NT genes in all tissues of mENT1 knockout mice, a complex pattern of changes was found. Some genes, such as those encoding mCNT1 and mCNT3 in colon tissue, exhibited increased expression, whereas other genes, such as those encoding mCNT2 and mENT4 in lung tissue, exhibited decreased expression. Although mCNT3 has been shown to be important in human and rat kidney tissue, we were unable to detect mCNT3 transcripts in the kidney of either the wild-type or mENT1 knockout mice, suggesting differences in renal nucleoside resorption between species.
Collapse
Affiliation(s)
- Kathryn Graham
- Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
- Department of Oncology, School of Cancer, Engineering & Imaging Sciences, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Physiology, School of Molecular & Systems Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Sylvia Yao
- Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
- Department of Oncology, School of Cancer, Engineering & Imaging Sciences, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Physiology, School of Molecular & Systems Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Lorelei Johnson
- Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
- Department of Oncology, School of Cancer, Engineering & Imaging Sciences, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Physiology, School of Molecular & Systems Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Delores Mowles
- Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
- Department of Oncology, School of Cancer, Engineering & Imaging Sciences, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Physiology, School of Molecular & Systems Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Amy Ng
- Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
- Department of Oncology, School of Cancer, Engineering & Imaging Sciences, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Physiology, School of Molecular & Systems Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Jodi Wilkinson
- Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
- Department of Oncology, School of Cancer, Engineering & Imaging Sciences, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Physiology, School of Molecular & Systems Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - James D. Young
- Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
- Department of Oncology, School of Cancer, Engineering & Imaging Sciences, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Physiology, School of Molecular & Systems Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Carol E. Cass
- Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
- Department of Oncology, School of Cancer, Engineering & Imaging Sciences, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Physiology, School of Molecular & Systems Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
44
|
Cano-Soldado P, Pastor-Anglada M. Transporters that translocate nucleosides and structural similar drugs: structural requirements for substrate recognition. Med Res Rev 2011; 32:428-57. [DOI: 10.1002/med.20221] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Pedro Cano-Soldado
- Departament de Bioquímica i Biologia Molecular; Institut de Biomedicina de la Universitat de Barcelona (IBUB); Universitat de Barcelona and CIBER EHD; Barcelona Spain
| | - Marçal Pastor-Anglada
- Departament de Bioquímica i Biologia Molecular; Institut de Biomedicina de la Universitat de Barcelona (IBUB); Universitat de Barcelona and CIBER EHD; Barcelona Spain
| |
Collapse
|
45
|
Damaraju VL, Smith KM, Mowles D, Nowak I, Karpinski E, Young JD, Robins MJ, Cass CE. Interaction of fused-pyrimidine nucleoside analogs with human concentrative nucleoside transporters: High-affinity inhibitors of human concentrative nucleoside transporter 1. Biochem Pharmacol 2011; 81:82-90. [DOI: 10.1016/j.bcp.2010.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/09/2010] [Accepted: 09/13/2010] [Indexed: 02/03/2023]
|
46
|
Ham M, Mizumori M, Watanabe C, Wang JH, Inoue T, Nakano T, Guth PH, Engel E, Kaunitz JD, Akiba Y. Endogenous luminal surface adenosine signaling regulates duodenal bicarbonate secretion in rats. J Pharmacol Exp Ther 2010; 335:607-13. [PMID: 20805305 PMCID: PMC2993549 DOI: 10.1124/jpet.110.171520] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 08/27/2010] [Indexed: 02/02/2023] Open
Abstract
Luminal ATP increases duodenal bicarbonate secretion (DBS) via brush border P2Y receptors. Because ATP is sequentially dephosphorylated to adenosine (ADO) and the brush border highly expresses adenosine deaminase (ADA), we hypothesized that luminal [ADO] regulators and sensors, including P1 receptors, ADA, and nucleoside transporters (NTs) regulate DBS. We measured DBS with pH and CO(2) electrodes, perfusing ADO ± adenosine receptor agonists or antagonists or the cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor CFTR(inh)-172 on DBS. Furthermore, we examined the effect of inhibitors of ADA or NT on DBS. Perfusion of AMP or ADO (0.1 mM) uniformly increased DBS, whereas inosine had no effect. The A(1/2) receptor agonist 5'-(N-ethylcarboxamido)-adenosine (0.1 mM) increased DBS, whereas ADO-augmented DBS was inhibited by the potent A(2B) receptor antagonist N-(4-cyanophenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)phenoxy]-acetamide (MRS1754) (10 μM). Other selective adenosine receptor agonists or antagonists had no effect. The A(2B) receptor was immunolocalized to the brush border membrane of duodenal villi, whereas the A(2A) receptor was immunolocalized primarily to the vascular endothelium. Furthermore, ADO-induced DBS was enhanced by 2'-deoxycoformycin (1 μM) and formycin B (0.1 mM), but not by S-(4-nitrobenzyl)-6-thioinosine (0.1 mM), and it was abolished by CFTR(inh)-172 pretreatment (1 mg/kg i.p). Moreover, ATP (0.1 mM)-induced DBS was partially reduced by (1R,2S,4S,5S)-4-2-iodo-6-(methylamino)-9H-purin-9-yl]-2-(phosphonooxy)bicyclo[3.1.0]hexane-1-methanol dihydrogen phosphate ester tetraammonium salt (MRS2500) or 8-[4-[4-(4-chlorophenzyl)piperazide-1-sulfonyl)phenyl]]-1-propylxanthine (PSB603) and abolished by both, suggesting that ATP is sequentially degraded to ADO. Luminal ADO stimulates DBS via A(2B) receptors and CFTR. ATP release, ecto-phosphohydrolases, ADA, and concentrative NT may coordinately regulate luminal surface ADO concentration to modulate ADO-P1 receptor signaling in rat duodenum.
Collapse
Affiliation(s)
- Maggie Ham
- Department of Medicine, School of Medicine, University of California, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Damaraju VL, Sawyer MB, Mackey JR, Young JD, Cass CE. Human nucleoside transporters: biomarkers for response to nucleoside drugs. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 28:450-63. [PMID: 20183595 DOI: 10.1080/15257770903044499] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This review describes recent advances in developing human nucleoside transporters (hNTs) as biomarkers to predict response to nucleoside analog drugs with clinical activity. Understanding processes that contribute to drug response or lack thereof will provide strategies to potentiate efficacy or avoid toxicities of nucleoside analog drugs. hNT abundance, evaluated by immunohistochemical methods, has shown promise as a predictive marker to assess clinical drug response that could be used to identify patients who would most likely benefit from nucleoside analog drug treatment.
Collapse
Affiliation(s)
- Vijaya L Damaraju
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
48
|
Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 2010; 62:1-96. [PMID: 20103563 PMCID: PMC2835398 DOI: 10.1124/pr.109.002014] [Citation(s) in RCA: 578] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting beta polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) alpha and beta] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory factors that influence transporter expression and function, including transcriptional activation and post-translational modifications as well as subcellular trafficking. Sex differences, ontogeny, and pharmacological and toxicological regulation of transporters are also addressed. Transporters are important transmembrane proteins that mediate the cellular entry and exit of a wide range of substrates throughout the body and thereby play important roles in human physiology, pharmacology, pathology, and toxicology.
Collapse
Affiliation(s)
- Curtis D Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7417, USA.
| | | |
Collapse
|
49
|
Yamamoto T, Sugawara M, Kikukawa T, Miyauchi S, Yamaguchi M, Tero A, Takagi S, Nakagaki T. Kinetic study of anti-viral ribavirin uptake mediated by hCNT3 and hENT1 in Xenopus laevis oocytes. Biophys Chem 2010; 147:59-65. [DOI: 10.1016/j.bpc.2009.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 12/25/2009] [Accepted: 12/28/2009] [Indexed: 01/09/2023]
|
50
|
Interaction of benzopyranone derivatives and related compounds with human concentrative nucleoside transporters 1, 2 and 3 heterologously expressed in porcine PK15 nucleoside transporter deficient cells. Structure–activity relationships and determinants of transporter affinity and selectivity. Biochem Pharmacol 2010; 79:307-20. [DOI: 10.1016/j.bcp.2009.08.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 08/26/2009] [Accepted: 08/28/2009] [Indexed: 11/23/2022]
|