1
|
A Phase I/II Clinical Trial of Belinostat (PXD101) in Combination with Doxorubicin in Patients with Soft Tissue Sarcomas. Sarcoma 2016; 2016:2090271. [PMID: 27403082 PMCID: PMC4923583 DOI: 10.1155/2016/2090271] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/03/2016] [Indexed: 11/18/2022] Open
Abstract
Background. Belinostat is a novel histone deacetylase inhibitor. Primary Objectives. Maximum tolerated dose (MTD) and dose limiting toxicities (DLTs) of belinostat (Bel) in combination with doxorubicin (Dox) in solid tumours (phase I) and response rate (RR) in soft tissue sarcomas (phase II). Methods. Bel was administered as a 30-minute IV infusion on days 1–5 and on day 5 with Dox. The dose escalation schedule was as follows: cohort 1: Bel 600 mg/m2 and 50 mg/m2 Dox, cohort 2: Bel 600 mg/m2 and 75 mg/m2 Dox, cohort 3: Bel 800 mg/m2 and 75 mg/m2 Dox, and cohort 4: Bel 1000 mg/m2 and 75 mg/m2 Dox. Results. 41 patients were included (25 in phase I, 16 in phase II). Adverse events were fatigue (95%), nausea (76%), and alopecia (63%). There was one DLT, grade 3 rash/hand and foot syndrome. MTD was Bel 1000 mg/m2/d and Dox 75 mg/m2. Four responses were seen: 2 PR in phase I, RR of 8%; in phase II, 1 PR/1 CR, RR of 13%, and 9 patients (56%) with SD. Conclusion. The combination was well tolerated. Response rate was moderate but median time to progression was 6.0 months (95% CI, 1.6–9.7 months) which is superior to some reports of single-agent Dox.
Collapse
|
2
|
Khoury-Haddad H, Nadar-Ponniah PT, Awwad S, Ayoub N. The emerging role of lysine demethylases in DNA damage response: dissecting the recruitment mode of KDM4D/JMJD2D to DNA damage sites. Cell Cycle 2015; 14:950-8. [PMID: 25714495 PMCID: PMC4614868 DOI: 10.1080/15384101.2015.1014147] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 02/06/2023] Open
Abstract
KDM4D is a lysine demethylase that removes tri- and di- methylated residues from H3K9 and is involved in transcriptional regulation and carcinogenesis. We recently showed that KDM4D is recruited to DNA damage sites in a PARP1-dependent manner and facilitates double-strand break repair in human cells. Moreover, we demonstrated that KDM4D is an RNA binding protein and mapped its RNA-binding motifs. Interestingly, KDM4D-RNA interaction is essential for its localization on chromatin and subsequently for efficient demethylation of its histone substrate H3K9me3. Here, we provide new data that shed mechanistic insights into KDM4D accumulation at DNA damage sites. We show for the first time that KDM4D binds poly(ADP-ribose) (PAR) in vitro via its C-terminal region. In addition, we demonstrate that KDM4D-RNA interaction is required for KDM4D accumulation at DNA breakage sites. Finally, we discuss the recruitment mode and the biological functions of additional lysine demethylases including KDM4B, KDM5B, JMJD1C, and LSD1 in DNA damage response.
Collapse
Affiliation(s)
| | | | - Samah Awwad
- Department of Biology; Israel Institute of Technology; Haifa, Israel
| | - Nabieh Ayoub
- Department of Biology; Israel Institute of Technology; Haifa, Israel
| |
Collapse
|
3
|
Khoury-Haddad H, Guttmann-Raviv N, Ipenberg I, Huggins D, Jeyasekharan AD, Ayoub N. PARP1-dependent recruitment of KDM4D histone demethylase to DNA damage sites promotes double-strand break repair. Proc Natl Acad Sci U S A 2014; 111:E728-37. [PMID: 24550317 PMCID: PMC3932863 DOI: 10.1073/pnas.1317585111] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Members of the lysine (K)-specific demethylase 4 (KDM4) A-D family of histone demethylases are dysregulated in several types of cancer. Here, we reveal a previously unrecognized role of KDM4D in the DNA damage response (DDR). We show that the C-terminal region of KDM4D mediates its rapid recruitment to DNA damage sites. Interestingly, this recruitment is independent of the DDR sensor ataxia telangiectasia mutated (ATM), but dependent on poly (ADP-ribose) polymerase 1 (PARP1), which ADP ribosylates KDM4D after damage. We demonstrate that KDM4D is required for efficient phosphorylation of a subset of ATM substrates. We note that KDM4D depletion impairs the DNA damage-induced association of ATM with chromatin, explaining its effect on ATM substrate phosphorylation. Consistent with an upstream role in DDR, KDM4D knockdown disrupts the damage-induced recombinase Rad51 and tumor protein P53 binding protein foci formation. Consequently, the integrity of homology-directed repair and nonhomologous end joining of DNA breaks is impaired in KDM4D-deficient cells. Altogether, our findings implicate KDM4D in DDR, furthering the links between the cancer-relevant networks of epigenetic regulation and genome stability.
Collapse
Affiliation(s)
- Hanan Khoury-Haddad
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Noga Guttmann-Raviv
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Inbal Ipenberg
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - David Huggins
- Department of Oncology, Hutchison/Medical Research Council Research Centre, Cambridge CB2 0XZ, United Kingdom
| | - Anand D. Jeyasekharan
- Department of Haematology-Oncology, National University Hospital, Singapore 119228; and
- Cancer Science Institute, National University of Singapore, Singapore 119077
| | - Nabieh Ayoub
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
4
|
Grassadonia A, Cioffi P, Simiele F, Iezzi L, Zilli M, Natoli C. Role of Hydroxamate-Based Histone Deacetylase Inhibitors (Hb-HDACIs) in the Treatment of Solid Malignancies. Cancers (Basel) 2013; 5:919-42. [PMID: 24202327 PMCID: PMC3795372 DOI: 10.3390/cancers5030919] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/03/2013] [Accepted: 07/12/2013] [Indexed: 02/06/2023] Open
Abstract
Hydroxamate-based histone deacetylase inhibitors (Hb-HDACIs), such as vorinostat, belinostat and panobinostat, have been previously shown to have a wide range of activity in hematologic malignancies such as cutaneous T-cell lymphoma and multiple myeloma. Recent data show that they synergize with a variety of cytotoxic and molecular targeted agents in many different solid tumors, including breast, prostate, pancreatic, lung and ovarian cancer. Hb-HDACIs have a quite good toxicity profile and are now being tested in phase I and II clinical trials in solid tumors with promising results in selected neoplasms, such as hepatocarcinoma. This review will focus on their clinical activity and safety in patients with advanced solid neoplasms.
Collapse
Affiliation(s)
- Antonino Grassadonia
- Department of Experimental and Clinical Sciences, University ’G. d’Annunzio’, I-66013 Chieti, Italy; E-Mail:
| | - Pasquale Cioffi
- Hospital Pharmacy, “SS. Annunziata” Hospital, I-66013 Chieti, Italy; E-Mails: (P.C.); (F.S.)
| | - Felice Simiele
- Hospital Pharmacy, “SS. Annunziata” Hospital, I-66013 Chieti, Italy; E-Mails: (P.C.); (F.S.)
| | - Laura Iezzi
- Oncology Department, “SS. Annunziata” Hospital, I-66013 Chieti, Italy; E-Mails: (L.I.); (M.Z.)
| | - Marinella Zilli
- Oncology Department, “SS. Annunziata” Hospital, I-66013 Chieti, Italy; E-Mails: (L.I.); (M.Z.)
| | - Clara Natoli
- Department of Experimental and Clinical Sciences, University ’G. d’Annunzio’, I-66013 Chieti, Italy; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-0871-355-6708; Fax: +39-0871-355-6732
| |
Collapse
|
5
|
Cai B, Lyu H, Huang J, Wang S, Lee CK, Gao C, Liu B. Combination of bendamustine and entinostat synergistically inhibits proliferation of multiple myeloma cells via induction of apoptosis and DNA damage response. Cancer Lett 2013; 335:343-50. [PMID: 23459296 DOI: 10.1016/j.canlet.2013.02.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/19/2013] [Accepted: 02/22/2013] [Indexed: 01/06/2023]
Abstract
Bendamustine, a hybrid molecule of purine analog and alkylator, induces cell death by activation of apoptosis, DNA damage response, and mitotic catastrophe. Entinostat, a selective class I inhibitor of histone deacetylase (HDAC), exerts anti-tumor activity in various cancer types, including multiple myeloma (MM). We sought to determine the combinatorial effects of bendamustine and entinostat on MM cells. Cell growth assays showed that bendamustine or entinostat inhibited proliferation in a dose-dependent manner, and their combinations synergistically induced growth inhibition in all MM cells tested. An apoptotic-ELISA and western blot assays on PARP cleavage and caspase-8 and caspase-3 revealed that bendamustine in combination with entinostat exhibited a much more potent activity than either agent alone to promote the MM cells undergoing apoptosis in a dose-dependent manner. Flow cytometric analysis found that entinostat exhibited distinct effects on cell cycle progression in different lines and bendamustine mainly arrested the cells at S phase, whereas their combinations dramatically blocked the S cells entering G2/M phase. Furthermore, studies on DNA damage response indicated that phospho-histone H2A.X (P-H2A.X), a hall marker of DNA double strand break, along with phosphorylated CHK2 (P-CHK2) was significantly enhanced by the combinations of bendamustine and entinostat as compared to either agent alone. These molecular changes were correlated with the increases in mitotic catastrophe. Collectively, our data demonstrate that bendamustine in combination with entinostat exhibit potent anti-proliferative/anti-survival activity in MM cells via induction of apoptosis and DNA damage response. Regimens consisting of bendamustine and/or entinostat may represent novel therapeutic strategies against MM.
Collapse
Affiliation(s)
- Bo Cai
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
6
|
A new non-catalytic role for ubiquitin ligase RNF8 in unfolding higher-order chromatin structure. EMBO J 2012; 31:2511-27. [PMID: 22531782 DOI: 10.1038/emboj.2012.104] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 03/23/2012] [Indexed: 11/08/2022] Open
Abstract
The ubiquitin ligases RNF8 and RNF168 orchestrate DNA damage signalling through the ubiquitylation of histone H2A and the recruitment of downstream repair factors. Here, we demonstrate that RNF8, but not RNF168 or the canonical H2A ubiquitin ligase RNF2, mediates extensive chromatin decondensation. Our data show that CHD4, the catalytic subunit of the NuRD complex, interacts with RNF8 and is essential for RNF8-mediated chromatin unfolding. The chromatin remodelling activity of CHD4 promotes efficient ubiquitin conjugation and assembly of RNF168 and BRCA1 at DNA double-strand breaks. Interestingly, RNF8-mediated recruitment of CHD4 and subsequent chromatin remodelling were independent of the ubiquitin-ligase activity of RNF8, but involved a non-canonical interaction with the forkhead-associated (FHA) domain. Our study reveals a new mechanism of chromatin remodelling-assisted ubiquitylation, which involves the cooperation between CHD4 and RNF8 to create a local chromatin environment that is permissive to the assembly of checkpoint and repair machineries at DNA lesions.
Collapse
|
7
|
Bhatti S, Kozlov S, Farooqi AA, Naqi A, Lavin M, Khanna KK. ATM protein kinase: the linchpin of cellular defenses to stress. Cell Mol Life Sci 2011; 68:2977-3006. [PMID: 21533982 PMCID: PMC11115042 DOI: 10.1007/s00018-011-0683-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/24/2011] [Accepted: 03/29/2011] [Indexed: 01/23/2023]
Abstract
ATM is the most significant molecule involved in monitoring the genomic integrity of the cell. Any damage done to DNA relentlessly challenges the cellular machinery involved in recognition, processing and repair of these insults. ATM kinase is activated early to detect and signal lesions in DNA, arrest the cell cycle, establish DNA repair signaling and faithfully restore the damaged chromatin. ATM activation plays an important role as a barrier to tumorigenesis, metabolic syndrome and neurodegeneration. Therefore, studies of ATM-dependent DNA damage signaling pathways hold promise for treatment of a variety of debilitating diseases through the development of new therapeutics capable of modulating cellular responses to stress. In this review, we have tried to untangle the complex web of ATM signaling pathways with the purpose of pinpointing multiple roles of ATM underlying the complex phenotypes observed in AT patients.
Collapse
Affiliation(s)
- Shahzad Bhatti
- Institute of Molecular Biology and Biotechnology, The University of Lahore, 1 Km Raiwind Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Sergei Kozlov
- Queensland Institute of Medical Research, QIMR, 300 Herston Rd, Herston, Brisbane, 4029 Australia
| | - Ammad Ahmad Farooqi
- Institute of Molecular Biology and Biotechnology, The University of Lahore, 1 Km Raiwind Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Ali Naqi
- Institute of Molecular Biology and Biotechnology, The University of Lahore, 1 Km Raiwind Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Martin Lavin
- Queensland Institute of Medical Research, QIMR, 300 Herston Rd, Herston, Brisbane, 4029 Australia
| | - Kum Kum Khanna
- Queensland Institute of Medical Research, QIMR, 300 Herston Rd, Herston, Brisbane, 4029 Australia
| |
Collapse
|
8
|
Sirbu BM, Couch FB, Feigerle JT, Bhaskara S, Hiebert SW, Cortez D. Analysis of protein dynamics at active, stalled, and collapsed replication forks. Genes Dev 2011; 25:1320-7. [PMID: 21685366 DOI: 10.1101/gad.2053211] [Citation(s) in RCA: 356] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Successful DNA replication and packaging of newly synthesized DNA into chromatin are essential to maintain genome integrity. Defects in the DNA template challenge genetic and epigenetic inheritance. Unfortunately, tracking DNA damage responses (DDRs), histone deposition, and chromatin maturation at replication forks is difficult in mammalian cells. Here we describe a technology called iPOND (isolation of proteins on nascent DNA) to analyze proteins at active and damaged replication forks at high resolution. Using this methodology, we define the timing of histone deposition and chromatin maturation. Class 1 histone deacetylases are enriched at replisomes and remove predeposition marks on histone H4. Chromatin maturation continues even when decoupled from replisome movement. Furthermore, fork stalling causes changes in the recruitment and phosphorylation of proteins at the damaged fork. Checkpoint kinases catalyze H2AX phosphorylation, which spreads from the stalled fork to include a large chromatin domain even prior to fork collapse and double-strand break formation. Finally, we demonstrate a switch in the DDR at persistently stalled forks that includes MRE11-dependent RAD51 assembly. These data reveal a dynamic recruitment of proteins and post-translational modifications at damaged forks and surrounding chromatin. Furthermore, our studies establish iPOND as a useful methodology to study DNA replication and chromatin maturation.
Collapse
Affiliation(s)
- Bianca M Sirbu
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
9
|
Therapeutic strategies to enhance the anticancer efficacy of histone deacetylase inhibitors. J Biomed Biotechnol 2011; 2011:514261. [PMID: 21765634 PMCID: PMC3134392 DOI: 10.1155/2011/514261] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 03/11/2011] [Indexed: 12/23/2022] Open
Abstract
Histone acetylation is a posttranslational modification that plays a role in regulating gene expression. More recently, other nonhistone proteins have been identified to be acetylated which can regulate their function, stability, localization, or interaction with other molecules. Modulating acetylation with histone deacetylase inhibitors (HDACi) has been validated to have anticancer effects in preclinical and clinical cancer models. This has led to development and approval of the first HDACi, vorinostat, for the treatment of cutaneous T cell lymphoma. However, to date, targeting acetylation with HDACi as a monotherapy has shown modest activity against other cancers. To improve their efficacy, HDACi have been paired with other antitumor agents. Here, we discuss several combination therapies, highlighting various epigenetic drugs, ROS-generating agents, proteasome inhibitors, and DNA-damaging compounds that together may provide a therapeutic advantage over single-agent strategies.
Collapse
|
10
|
Rajendran P, Williams DE, Ho E, Dashwood RH. Metabolism as a key to histone deacetylase inhibition. Crit Rev Biochem Mol Biol 2011; 46:181-99. [PMID: 21599534 DOI: 10.3109/10409238.2011.557713] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
There is growing interest in the epigenetic mechanisms that are dysregulated in cancer and other human pathologies. Under this broad umbrella, modulators of histone deacetylase (HDAC) activity have gained interest as both cancer chemopreventive and therapeutic agents. Of the first generation, FDA-approved HDAC inhibitors to have progressed to clinical trials, vorinostat represents a "direct acting" compound with structural features suitable for docking into the HDAC pocket, whereas romidepsin can be considered a prodrug that undergoes reductive metabolism to generate the active intermediate (a zinc-binding thiol). It is now evident that other agents, including those in the human diet, can be converted by metabolism to intermediates that affect HDAC activity. Examples are cited of short-chain fatty acids, seleno-α-keto acids, small molecule thiols, mercapturic acid metabolites, indoles, and polyphenols. The findings are discussed in the context of putative endogenous HDAC inhibitors generated by intermediary metabolism (e.g. pyruvate), the yin-yang of HDAC inhibition versus HDAC activation, and the screening assays that might be most appropriate for discovery of novel HDAC inhibitors in the future.
Collapse
Affiliation(s)
- Praveen Rajendran
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | | | | | | |
Collapse
|
11
|
BMI1 is recruited to DNA breaks and contributes to DNA damage-induced H2A ubiquitination and repair. Mol Cell Biol 2011; 31:1972-82. [PMID: 21383063 DOI: 10.1128/mcb.00981-10] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA damage activates signaling pathways that lead to modification of local chromatin and recruitment of DNA repair proteins. Multiple DNA repair proteins having ubiquitin ligase activity are recruited to sites of DNA damage, where they ubiquitinate histones and other substrates. This DNA damage-induced histone ubiquitination is thought to play a critical role in mediating the DNA damage response. We now report that the polycomb protein BMI1 is rapidly recruited to sites of DNA damage, where it persists for more than 8 h. The sustained localization of BMI1 to damage sites is dependent on intact ATM and ATR and requires H2AX phosphorylation and recruitment of RNF8. BMI1 is required for DNA damage-induced ubiquitination of histone H2A at lysine 119. Loss of BMI1 leads to impaired repair of DNA double-strand breaks by homologous recombination and the accumulation of cells in G(2)/M. These data support a crucial role for BMI1 in the cellular response to DNA damage.
Collapse
|