1
|
Karami L. Interaction of neutral and protonated Tamoxifen with the DPPC lipid bilayer using molecular dynamics simulation. Steroids 2023; 194:109225. [PMID: 36948347 DOI: 10.1016/j.steroids.2023.109225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 03/12/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023]
Abstract
Tamoxifen as an antiestrogen is successfully applied for the clinical treatment of breast cancer in pre- and post-menopausal women. Due to the side effects related to the oral administration of Tamoxifen (such as deep vein thrombosis, pulmonary embolism, hot flushes, ocular disturbances and some types of cancer), liposomal drug delivery is recommended for taking this drug. Drug encapsulation in a liposomal or lipid drug delivery system improves the pharmacokinetic and pharmacodynamic properties. In this regard, we carried out 200-ns molecular dynamics (MD) simulations for three systems (pure DPPC and neutral and protonated Tamoxifen-loaded DPPC). Here, DPPC is a model lipid bilayer to provide us with conditions like liposomal drug delivery systems to investigate the interactions between Tamoxifen and DPPC lipid bilayers and to estimate the preferred location and orientation of the drug molecule inside the bilayer membrane. Properties such as area per lipid, membrane thickness, lateral diffusion coefficient, order parameters and mass density, were surveyed. With insertion of neutral and protonated Tamoxifen inside the DPPC lipid bilayers, area per lipid and membrane thickness increased slightly. Also, Tamoxifen induce ordering of the hydrocarbon chains in DPPC bilayer. Analysis of MD trajectories shows that neutral Tamoxifen is predominantly found in the hydrophobic tail region, whereas protonated Tamoxifen is located at the lipid-water interface (polar region of DPPC lipid bilayers).
Collapse
Affiliation(s)
- Leila Karami
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| |
Collapse
|
2
|
Topical carvedilol delivery prevents UV-induced skin cancer with negligible systemic absorption. Int J Pharm 2022; 611:121302. [PMID: 34793935 PMCID: PMC8692451 DOI: 10.1016/j.ijpharm.2021.121302] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 01/07/2023]
Abstract
The β-blocker carvedilol prevents ultraviolet (UV)-induced skin cancer, but systemic drug administration may cause unwanted cadiovascular effects. To overcome this limitation, a topical delivery system based on transfersome (T-CAR) was characterized ex vivo and in vivo. T-CAR was visualized by Transmission Electron Microscopy as nanoparticles of spherical and unilamellar structure. T-CAR incorporated into carbopol gel and in suspension showed similar drug permeation and deposition profiles in Franz diffusion cells loaded with porcine ear skin. In mice exposed to a single dose UV, topical T-CAR gel (10 µM) significantly reduced UV-induced skin edema and cyclobutane pyrimidine dimer formation. In mice exposed to chronic UV radiation for 25 weeks, topical T-CAR gel (10 µM) significantly delayed the incidence of tumors, reduced tumor number and burden, and attenuated Ki-67 and COX-2 expression. The T-CAR gel was subsequently examined for skin deposition, systemic absorption and cardiovascular effects in mice. In mice treated with repeated doses of T-CAR gel (100 µM), the drug was undetectable in plasma, the heart rate was unaffected, but skin deposition was significantly higher than mice treated with oral carvedilol (32 mg/kg/day). These data indicate that the carbopol-based T-CAR gel holds great promise for skin cancer prevention with negligible systemic effects.
Collapse
|
3
|
Critical quality attributes in the development of therapeutic nanomedicines toward clinical translation. Drug Deliv Transl Res 2021; 10:766-790. [PMID: 32170656 DOI: 10.1007/s13346-020-00744-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanomedicine is a rapidly emerging field with several breakthroughs in the therapeutic drug delivery application. The unique properties of the nanoscale delivery systems offer huge advantages to their payload such as solubilization, increased bioavailability, and improved pharmacokinetics with an overall goal of enhanced therapeutic index. Nanomedicine has the potential for integrating and enabling new therapeutic modalities. Several nanoparticle-based drug delivery systems have been granted approval for clinical use based on their outstanding clinical outcomes. Nanomedicine faces several challenges that hinder the realization of its full potential. In this review, we discuss the critical formulation- and biological-related quality features that significantly influence the performance of nanoparticulate systems in vivo. We also discuss the quality-by-design approach in the pharmaceutical manufacturing and its implementation in the nanomedicine. A deep understanding of these nanomedicine quality checkpoints and a systematic design that takes them into consideration will hopefully expedite the clinical translation process. Graphical abstract.
Collapse
|
4
|
Ye Y, Wang J, Sun W, Bomba HN, Gu Z. Topical and Transdermal Nanomedicines for Cancer Therapy. Bioanalysis 2019. [DOI: 10.1007/978-3-030-01775-0_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
5
|
Genetic dissection of clonal lineage relationships with hydroxytamoxifen liposomes. Nat Commun 2018; 9:2971. [PMID: 30061668 PMCID: PMC6065311 DOI: 10.1038/s41467-018-05436-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/03/2018] [Indexed: 11/08/2022] Open
Abstract
Targeted genetic dissection of tissues to identify precise cell populations has vast biological and therapeutic applications. Here we develop an approach, through the packaging and delivery of 4-hydroxytamoxifen liposomes (LiTMX), that enables localized induction of CreERT2 recombinase in mice. Our method permits precise, in vivo, tissue-specific clonal analysis with both spatial and temporal control. This technology is effective using mice with both specific and ubiquitous Cre drivers in a variety of tissue types, under conditions of homeostasis and post-injury repair, and is highly efficient for lineage tracing and genetic analysis. This methodology is directly and immediately applicable to the developmental biology, stem cell biology and regenerative medicine, and cancer biology fields.
Collapse
|
6
|
PAD2 overexpression in transgenic mice augments malignancy and tumor-associated inflammation in chemically initiated skin tumors. Cell Tissue Res 2017; 370:275-283. [PMID: 28766045 DOI: 10.1007/s00441-017-2669-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/12/2017] [Indexed: 10/19/2022]
Abstract
We previously found that transgenic mice overexpressing MMTV-FLAG-hPAD2 (PAD2OE) developed spontaneous skin lesions, with a subset of these lesions progressing to invasive squamous cell carcinoma (SCC). The goal of this report was to better understand the potential mechanisms by which PAD2 overexpression promotes skin cancer. Here, PAD2OE mice were treated with the carcinogen, 9,10-dimethyl-1,2-benzanthracene and with O-tetradecanoylphorbol-13-acetate and then scored for papilloma formation. Additionally, tumor sections were evaluated for evidence of tumor cell invasion and inflammation. We found that the total number of papillomas was significantly increased in PAD2OE mice compared to controls. Histopathologic analysis of the lesions found that in PAD2OE skin tumors progressed to invasive SCC more frequently than controls. Additionally, we found that PAD2OE lesions were highly inflamed, with a dense inflammatory cell infiltrate and an associated increase in nuclear phospho-STAT3 (signal transducer and activator of transcription 3) in the transgenic tumors. These data suggest that overexpression of the hPAD2 transgene in the epidermis increases the malignant conversion rate of benign tumors by promoting an inflammatory microenvironment.
Collapse
|
7
|
Akhtar N, Khan RA. Liposomal systems as viable drug delivery technology for skin cancer sites with an outlook on lipid-based delivery vehicles and diagnostic imaging inputs for skin conditions'. Prog Lipid Res 2016; 64:192-230. [DOI: 10.1016/j.plipres.2016.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/15/2016] [Accepted: 08/09/2016] [Indexed: 12/19/2022]
|
8
|
NEAGU MONICA, CARUNTU CONSTANTIN, CONSTANTIN CAROLINA, BODA DANIEL, ZURAC SABINA, SPANDIDOS DEMETRIOSA, TSATSAKIS ARISTIDISM. Chemically induced skin carcinogenesis: Updates in experimental models (Review). Oncol Rep 2016; 35:2516-28. [PMID: 26986013 PMCID: PMC4811393 DOI: 10.3892/or.2016.4683] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/16/2016] [Indexed: 02/06/2023] Open
Abstract
Skin cancer is one of the most common malignancies affecting humans worldwide, and its incidence is rapidly increasing. The study of skin carcinogenesis is of major interest for both scientific research and clinical practice and the use of in vivo systems may facilitate the investigation of early alterations in the skin and of the mechanisms involved, and may also lead to the development of novel therapeutic strategies for skin cancer. This review outlines several aspects regarding the skin toxicity testing domain in mouse models of chemically induced skin carcinogenesis. There are important strain differences in view of the histological type, development and clinical evolution of the skin tumor, differences reported decades ago and confirmed by our hands‑on experience. Using mouse models in preclinical testing is important due to the fact that, at the molecular level, common mechanisms with human cutaneous tumorigenesis are depicted. These animal models resemble human skin cancer development, in that genetic changes caused by carcinogens and pro‑inflammatory cytokines, and simultaneous inflammation sustained by pro‑inflammatory cytokines and chemokines favor tumor progression. Drugs and environmental conditions can be tested using these animal models. keeping in mind the differences between human and rodent skin physiology.
Collapse
Affiliation(s)
- MONICA NEAGU
- 'Victor Babes' National Institute of Pathology, Bucharest 050096, Romania
- Faculty of Biology, University of Bucharest, Bucharest 76201, Romania
| | - CONSTANTIN CARUNTU
- Department of Physiology, 'Carol Davila' University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Dermatology, 'Prof. N. Paulescu' National Institute of Diabetes, Nutrition and Metabolic Diseases, Bucharest 79811, Romania
| | | | - DANIEL BODA
- Department of Dermatology, 'Prof. N. Paulescu' National Institute of Diabetes, Nutrition and Metabolic Diseases, Bucharest 79811, Romania
| | - SABINA ZURAC
- Department of Pathology, 'Colentina' Clinical Hospital, Bucharest 72202, Romania
| | - DEMETRIOS A. SPANDIDOS
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71409, Greece
| | - ARISTIDIS M. TSATSAKIS
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Heraklion 71003, Greece
| |
Collapse
|
9
|
Khan AA, Alanazi AM, Jabeen M, Hassan I, Bhat MA. Targeted nano-delivery of novel omega-3 conjugate against hepatocellular carcinoma: Regulating COX-2/bcl-2 expression in an animal model. Biomed Pharmacother 2016; 81:394-401. [PMID: 27261618 DOI: 10.1016/j.biopha.2016.04.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/14/2016] [Accepted: 04/17/2016] [Indexed: 12/30/2022] Open
Abstract
The present approach enumerates the effectiveness of tuftsin tagged nano-liposome for the cytosolic transport of 2,6-di-isopropylphenol-linolenic acid conjugate against liver cancer in mice. Initially, the conjugate in its free form was examined for anticancer potential on HepG2 liver cancer cells. Induction of apoptosis and suppression of migration and adhesion of HepG2 cells confirmed the effectiveness of conjugate as an anticancer agent. After this, role of the conjugate entrapped in a nano-carrier was evaluated in animal model. The nano-formulation comprising of conjugate bearing tuftsin tagged liposome was firsly characterized and then its therapeutic effect was determined. The nano-formulation had 100-130nm size nanoparticles and showed sustained release of the conjugate in the surrounding milieu. The nano-formulation distinctly reduced the expression of COX-2, an important molecule that is vastly expressed in hepatocellular carcinoma. The utilization of in-house engineered nano-formulation was also successful in significantly up-regulating Bax and down-regulating bcl-2 gene expression eventually helping in better survival of treated mice. Histopathological analysis also revealed positive recovery of the general architecture and the violent death of cancer cells by apoptosis at tumor specific site. The site specific delivery of conjugate entrapped in tuftsin tagged liposomes was highly safe as well as efficaceous. Nano-formulation based approach showed a visible chemotherapeutic effect on liver cancer progression in experimental mice thereby making it a potential candidate for treatment of liver cancer in clinical settings.
Collapse
Affiliation(s)
- Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Amer M Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mumtaz Jabeen
- Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Iftekhar Hassan
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mashooq Ahmad Bhat
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Swaminathan S, Cavalli R, Trotta F. Cyclodextrin-based nanosponges: a versatile platform for cancer nanotherapeutics development. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:579-601. [PMID: 26800431 DOI: 10.1002/wnan.1384] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/19/2015] [Indexed: 01/09/2023]
Abstract
Nanosponges (NSs) are a new age branched cyclodextrin (CD) polymeric systems exhibiting tremendous potential in pharmaceutical, agro science, and biomedical applications. Over the past decade, different varieties of NS based on the type of CD and the crosslinker have been developed tailored for specific applications. NS technology has been instrumental in achieving solubilization, stabilization, sustained release, enhancement of activity, permeability enhancement, protein delivery, ocular delivery, stimuli sensitive drug release, enhancement of bioavailability, etc. There is a major explosion of research in the area of NS-aided cancer therapeutics. A wide of anticancer molecules both from a pharmacological and physicochemical perspective have been developed as NS formulations by several groups including ours. Our objective in this review is to capture a systematic and comprehensive snapshot of the state-of-the-art of NS-aided cancer therapeutics reported so far. This review will provide an ideal platform for both the formulation scientists working on new polymeric/drug development and cancer biologists/scientists to understand the current nanotechnologies in CD-based NS-aided cancer therapeutics. The scope of the review is limited to small molecules and CD-based NS. The review covers in detail the problems associated with anticancer small molecules, and the solution provided by CD-based NS specifically for camptothecin, curcumin, paclitaxel, tamoxifen, resveratrol, quercetin, oxygen-NS, temozolomide, doxorubicin, and 5-Fluorouracil. WIREs Nanomed Nanobiotechnol 2016, 8:579-601. doi: 10.1002/wnan.1384 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Shankar Swaminathan
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Torino, Turin, Italy
| | | |
Collapse
|
11
|
Wadhwa S, Singh B, Sharma G, Raza K, Katare OP. Liposomal fusidic acid as a potential delivery system: a new paradigm in the treatment of chronic plaque psoriasis. Drug Deliv 2015; 23:1204-13. [PMID: 26592918 DOI: 10.3109/10717544.2015.1110845] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chronic plaque psoriasis is an inflammatory skin disease affecting 2-3% of the world population. With increasing understanding of the progress of disease and its causes, bacterial infection is reported to be one of the potential reasons. In this regard, fusidic acid (FA), a steroidal antibiotic, has been a drug of choice which could play an important role by virtue of its unique mechanism of action. Despite many topical formulations of FA in practice, drug-delivery issues like permeability in the prevailing infectious conditions and stability of the drug are yet the challenges not been covered so far from the formulation development perspective. For these issues, liposomes, on account of their carrier-specific properties, have been suggested as delivery tools to fulfill the expectations. In the present work, FA liposomes (FA-LP) were prepared and characterized for its varied traits such as size (420-740 nm), surface charge, morphology, percent skin permeation (>75%), and retention (1.620 ± 0.8 mg/cm(2)). Confocal laser scanning microscope (CLSM) images revealed appreciable cell-uptake of fluorescent dye-loaded liposomes. In stability, FA-LP proved to be stable with respect to drug leakage and vesicle size. In vivo studies using the mouse tail model, FA-LP, are found significantly better (p < 0.05) vis-à-vis conventional one with improved efficacy in and around the target site by the carrier-effect. Hence, the work suggests for the possibility of a better FA liposome-based formulation as a potential option in addressing the infectious challenges of psoriasis.
Collapse
Affiliation(s)
- Sheetu Wadhwa
- a Drug Delivery Research Group, University Institute of Pharmaceutical Sciences - UGC Center of Advanced Study, Panjab University , Chandigarh , India and
| | - Bhupinder Singh
- a Drug Delivery Research Group, University Institute of Pharmaceutical Sciences - UGC Center of Advanced Study, Panjab University , Chandigarh , India and
| | - Gajanand Sharma
- a Drug Delivery Research Group, University Institute of Pharmaceutical Sciences - UGC Center of Advanced Study, Panjab University , Chandigarh , India and
| | - Kaisar Raza
- b Department of Pharmacy , School of Chemical Sciences and Pharmacy, Central University of Rajasthan , Bandar Sindri , Rajasthan , India
| | - Om Prakash Katare
- a Drug Delivery Research Group, University Institute of Pharmaceutical Sciences - UGC Center of Advanced Study, Panjab University , Chandigarh , India and
| |
Collapse
|
12
|
Liu Z, Shen C, Tao Y, Wang S, Wei Z, Cao Y, Wu H, Fan F, Lin C, Shan Y, Zhu P, Sun L, Chen C, Wang A, Zheng S, Lu Y. Chemopreventive efficacy of menthol on carcinogen-induced cutaneous carcinoma through inhibition of inflammation and oxidative stress in mice. Food Chem Toxicol 2015; 82:12-8. [PMID: 25956868 DOI: 10.1016/j.fct.2015.04.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 10/23/2022]
Abstract
Inflammation and oxidative stress have been implicated in various pathological processes including skin tumorigenesis. Skin cancer is the most common form of cancer responsible for considerable morbidity and mortality, the treatment progress of which remains slow though. Therefore, chemoprevention and other strategies are being considered. Menthol has shown high anticancer activity against various human cancers, but its effect on skin cancer has never been evaluated. We herein investigated the chemopreventive potential of menthol against 9,10-dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation, oxidative stress and skin carcinogenesis in female ICR mice. Pretreatment with menthol at various doses significantly suppressed tumor formation and growth, and markedly reduced tumor incidence and volume. Moreover, menthol inhibited TPA-induced skin hyperplasia and inflammation, and significantly suppressed the expression of cyclooxygenase-2 (COX-2). Furthermore, pretreatment with menthol inhibited the formation of reactive oxygen species and affected the activities of a battery of antioxidant enzymes in the skin. The expressions of NF-κB, Erk and p38 were down-regulated by menthol administration. Thus, inflammation and oxidative stress collectively played a crucial role in the chemopreventive efficacy of menthol on the murine skin tumorigenesis.
Collapse
Affiliation(s)
- Zhaoguo Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Cunsi Shen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yu Tao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Siliang Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Zhonghong Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yuzhu Cao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Hongyan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Fangtian Fan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Chao Lin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yunlong Shan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Pingting Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Lihua Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Chen Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Aiyun Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, Nanjing, Jiangsu 210023, China
| | - Shizhong Zheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, Nanjing, Jiangsu 210023, China
| | - Yin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
13
|
Raza K, Kumar M, Kumar P, Malik R, Sharma G, Kaur M, Katare OP. Topical delivery of aceclofenac: challenges and promises of novel drug delivery systems. BIOMED RESEARCH INTERNATIONAL 2014; 2014:406731. [PMID: 25045671 PMCID: PMC4086417 DOI: 10.1155/2014/406731] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 12/16/2022]
Abstract
Osteoarthritis (OA), a common musculoskeletal disorder, is projected to affect about 60 million people of total world population by 2020. The associated pain and disability impair the quality of life and also pose economic burden to the patient. Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely prescribed in OA, while diclofenac is the most prescribed one. Oral NSAIDs are not very patient friendly, as they cause various gastrointestinal adverse effects like bleeding, ulceration, and perforation. To enhance the tolerability of diclofenac and decrease the common side effects, aceclofenac (ACE) was developed by its chemical modification. As expected, ACE is more well-tolerated than diclofenac and possesses superior efficacy but is not completely devoid of the NSAID-tagged side effects. A series of chemical modifications of already planned drug is unjustified as it consumes quanta of time, efforts, and money, and this approach will also pose stringent regulatory challenges. Therefore, it is justified to deliver ACE employing tools of drug delivery and nanotechnology to refine its safety profile. The present review highlights the constraints related to the topical delivery of ACE and the various attempts made so far for the safe and effective topical delivery employing the novel materials and methods.
Collapse
Affiliation(s)
- Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences & Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer District, Rajasthan 305 801, India
| | - Manish Kumar
- Department of Pharmacy, School of Chemical Sciences & Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer District, Rajasthan 305 801, India
| | - Pramod Kumar
- Department of Pharmacy, School of Chemical Sciences & Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer District, Rajasthan 305 801, India
| | - Ruchi Malik
- Department of Pharmacy, School of Chemical Sciences & Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer District, Rajasthan 305 801, India
| | - Gajanand Sharma
- Division of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160 014, India
| | - Manmeet Kaur
- Division of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160 014, India
| | - O. P. Katare
- Division of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160 014, India
| |
Collapse
|
14
|
Shen C, Wang S, Shan Y, Liu Z, Fan F, Tao L, Liu Y, Zhou L, Pei C, Wu H, Tian C, Ruan J, Chen W, Wang A, Zheng S, Lu Y. Chemomodulatory efficacy of lycopene on antioxidant enzymes and carcinogen-induced cutaneum carcinoma in mice. Food Funct 2014; 5:1422-31. [DOI: 10.1039/c4fo00035h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Wong BS, Yoong SL, Jagusiak A, Panczyk T, Ho HK, Ang WH, Pastorin G. Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev 2013; 65:1964-2015. [PMID: 23954402 DOI: 10.1016/j.addr.2013.08.005] [Citation(s) in RCA: 349] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/01/2013] [Accepted: 08/05/2013] [Indexed: 11/30/2022]
Abstract
In the realm of drug delivery, carbon nanotubes (CNTs) have gained tremendous attention as promising nanocarriers, owing to their distinct characteristics, such as high surface area, enhanced cellular uptake and the possibility to be easily conjugated with many therapeutics, including both small molecules and biologics, displaying superior efficacy, enhanced specificity and diminished side effects. While most CNT-based drug delivery system (DDS) had been engineered to combat cancers, there are also emerging reports that employ CNTs as either the main carrier or adjunct material for the delivery of various non-anticancer drugs. In this review, the delivery of small molecule drugs is expounded, with special attention paid to the current progress of in vitro and in vivo research involving CNT-based DDSs, before finally concluding with some consideration on inevitable complications that hamper successful disease intervention with CNTs.
Collapse
Affiliation(s)
- Bin Sheng Wong
- Department of Pharmacy, National University of Singapore, S4 Science Drive 4, Singapore 117543, Singapore.
| | | | | | | | | | | | | |
Collapse
|
16
|
Güngör S, Delgado-Charro MB, Masini-Etévé V, Potts RO, Guy RH. Transdermal flux predictions for selected selective oestrogen receptor modulators (SERMs): Comparison with experimental results. J Control Release 2013; 172:601-6. [DOI: 10.1016/j.jconrel.2013.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/03/2013] [Accepted: 09/19/2013] [Indexed: 11/28/2022]
|
17
|
Bhatia A, Singh B, Wadhwa S, Raza K, Katare OP. Novel phospholipid-based topical formulations of tamoxifen: evaluation for antipsoriatic activity using mouse-tail model. Pharm Dev Technol 2013; 19:160-3. [DOI: 10.3109/10837450.2013.763260] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|