1
|
Caridade-Silva R, Araújo B, Martins-Macedo J, Teixeira FG. N-Acetylcysteine Treatment May Compensate Motor Impairments through Dopaminergic Transmission Modulation in a Striatal 6-Hydroxydopamine Parkinson's Disease Rat Model. Antioxidants (Basel) 2023; 12:1257. [PMID: 37371987 DOI: 10.3390/antiox12061257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Preventing degeneration and the loss of dopaminergic neurons (DAn) in the brain while mitigating motor symptoms remains a challenge in Parkinson's Disease (PD) treatment development. In light of this, developing or repositioning potential disease-modifying approaches is imperative to achieve meaningful translational gains in PD research. Under this concept, N-acetylcysteine (NAC) has revealed promising perspectives in preserving the dopaminergic system capability and modulating PD mechanisms. Although NAC has been shown to act as an antioxidant and (neuro)protector of the brain, it has yet to be acknowledged how this repurposed drug can improve motor symptomatology and provide disease-modifying properties in PD. Therefore, in the present work, we assessed the impact of NAC on motor and histological deficits in a striatal 6-hydroxydopamine (6-OHDA) rat model of PD. The results revealed that NAC enhanced DAn viability, as we found that it could restore dopamine transporter (DAT) levels compared to the untreated 6-OHDA group. Such findings were positively correlated with a significant amelioration in the motor outcomes of the 6-OHDA-treated animals, demonstrating that NAC may, somehow, be a modulator of PD degenerative mechanisms. Overall, we postulated a proof-of-concept milestone concerning the therapeutic application of NAC. Nevertheless, it is extremely important to understand the complexity of this drug and how its therapeutical properties interact with the cellular and molecular PD mechanisms.
Collapse
Affiliation(s)
- Rita Caridade-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Center for Translational Health and Medical Biotechnology Research, School of Health, Polytechnic University of Porto, 4200-465 Porto, Portugal
| | - Bruna Araújo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Center for Translational Health and Medical Biotechnology Research, School of Health, Polytechnic University of Porto, 4200-465 Porto, Portugal
| | - Joana Martins-Macedo
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Center for Translational Health and Medical Biotechnology Research, School of Health, Polytechnic University of Porto, 4200-465 Porto, Portugal
| | - Fábio G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Center for Translational Health and Medical Biotechnology Research, School of Health, Polytechnic University of Porto, 4200-465 Porto, Portugal
| |
Collapse
|
2
|
Sharma A, Kumar R, Varadwaj P. Smelling the Disease: Diagnostic Potential of Breath Analysis. Mol Diagn Ther 2023; 27:321-347. [PMID: 36729362 PMCID: PMC9893210 DOI: 10.1007/s40291-023-00640-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 02/03/2023]
Abstract
Breath analysis is a relatively recent field of research with much promise in scientific and clinical studies. Breath contains endogenously produced volatile organic components (VOCs) resulting from metabolites of ingested precursors, gut and air-passage bacteria, environmental contacts, etc. Numerous recent studies have suggested changes in breath composition during the course of many diseases, and breath analysis may lead to the diagnosis of such diseases. Therefore, it is important to identify the disease-specific variations in the concentration of breath to diagnose the diseases. In this review, we explore methods that are used to detect VOCs in laboratory settings, VOC constituents in exhaled air and other body fluids (e.g., sweat, saliva, skin, urine, blood, fecal matter, vaginal secretions, etc.), VOC identification in various diseases, and recently developed electronic (E)-nose-based sensors to detect VOCs. Identifying such VOCs and applying them as disease-specific biomarkers to obtain accurate, reproducible, and fast disease diagnosis could serve as an alternative to traditional invasive diagnosis methods. However, the success of VOC-based identification of diseases is limited to laboratory settings. Large-scale clinical data are warranted for establishing the robustness of disease diagnosis. Also, to identify specific VOCs associated with illness states, extensive clinical trials must be performed using both analytical instruments and electronic noses equipped with stable and precise sensors.
Collapse
Affiliation(s)
- Anju Sharma
- Systems Biology Lab, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Pritish Varadwaj
- Systems Biology Lab, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India.
| |
Collapse
|
3
|
Stott S, Broza YY, Gharra A, Wang Z, Barker RA, Haick H. The Utility of Breath Analysis in the Diagnosis and Staging of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:993-1002. [PMID: 35147553 DOI: 10.3233/jpd-213133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND The analysis of volatile organic compounds (VOCs) collected in breath samples has the potential to be a rapid, non-invasive test to aid in the clinical diagnosis and tracking of chronic conditions such as Parkinson's disease (PD). OBJECTIVE To assess the feasibility and utility of breath sample analysis done, both at point of collection in clinic and when sent away to be analyzed remotely, to diagnose, stratify and monitor disease course in a moderately large cohort of patients with PD. METHODS Breath samples were collected from 177 people with PD and 37 healthy matched control individuals followed over time. Standard clinical data (MDS-UPDRS & cognitive assessments) from the PD patients were collected at the same time as the breath sample was taken, these measures were then correlated with the breath test analysis of exhaled VOCs. RESULTS The breath test was able to distinguish patients with PD from healthy control participants and correlated with disease stage. The off-line system (remote analysis) gave good results with overall classification accuracies across a range of clinical measures of between 73.6% to 95.6%. The on-line (in clinic) system showed comparable results but with lower levels of correlation, varying between 33.5% to 82.4%. Chemical analysis identified 29 potential molecules that were different and which may relate to pathogenic pathways in PD. CONCLUSION Breath analysis shows potential for PD diagnostics and monitoring. Both off-line and on-line sensor systems were easy to do and provided comparable results which will enable this technique to be easily adopted in clinic if larger studies confirm our findings.
Collapse
Affiliation(s)
- Simon Stott
- John van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Forvie Site, Cambridge, UK
| | - Yoav Y Broza
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Alaa Gharra
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zhen Wang
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Forvie Site, Cambridge, UK.,Wellcome-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
4
|
Hupfeld KE, Hyatt HW, Alvarez Jerez P, Mikkelsen M, Hass CJ, Edden RAE, Seidler RD, Porges EC. In Vivo Brain Glutathione is Higher in Older Age and Correlates with Mobility. Cereb Cortex 2021; 31:4576-4594. [PMID: 33959751 PMCID: PMC8408448 DOI: 10.1093/cercor/bhab107] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 12/12/2022] Open
Abstract
Brain markers of oxidative damage increase with advancing age. In response, brain antioxidant levels may also increase with age, although this has not been well investigated. Here, we used edited magnetic resonance spectroscopy to quantify endogenous levels of glutathione (GSH, one of the most abundant brain antioxidants) in 37 young [mean: 21.8 (2.5) years; 19 female] and 23 older adults [mean: 72.8 (8.9) years; 19 female]. Accounting for age-related atrophy, we identified higher frontal and sensorimotor GSH levels for the older compared with the younger adults. For the older adults only, higher sensorimotor (but not frontal) GSH was correlated with poorer balance and gait. This suggests a regionally specific relationship between higher brain oxidative stress levels and motor performance declines with age. We suggest these findings reflect an upregulation of GSH in response to increasing brain oxidative stress with normal aging. Together, these results provide insight into age differences in brain antioxidant levels and implications for motor function.
Collapse
Affiliation(s)
- K E Hupfeld
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32603, USA
| | - H W Hyatt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32603, USA
| | - P Alvarez Jerez
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32603, USA
| | - M Mikkelsen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - C J Hass
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32603, USA
| | - R A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - R D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32603, USA
- Department of Neurology, University of Florida, Gainesville, FL 32611, USA
| | - E C Porges
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL 32603, USA
| |
Collapse
|
5
|
Finberg JPM, Schwartz M, Jeries R, Badarny S, Nakhleh MK, Abu Daoud E, Ayubkhanov Y, Aboud-Hawa M, Broza YY, Haick H. Sensor Array for Detection of Early Stage Parkinson's Disease before Medication. ACS Chem Neurosci 2018; 9:2548-2553. [PMID: 29989795 DOI: 10.1021/acschemneuro.8b00245] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Early diagnosis of Parkinson's disease (PD) is important because it affects the choice of therapy and is subject to a relatively high degree of error. In addition, early detection of PD can potentially enable the start of neuroprotective therapy before extensive loss of dopaminergic neurons of the substantia nigra occurs. However, until now, studies for early detection of PD using volatile biomarkers sampled only treated and medicated patients. Therefore, there is a great need to evaluate untreated patients for establishing a real world screening and diagnostic technology. Here we describe for the first time a clinical trial to distinguish between de novo PD and control subjects using an electronic system for detection of volatile molecules in exhaled breath (sensor array). We further determine for the first time the association to other common tests for PD diagnostics as smell, ultrasound, and nonmotor symptoms. The test group consisted of 29 PD patients after initial diagnosis by an experienced neurologist, compared with 19 control subjects of similar age. The sensitivity, specificity, and accuracy values of the sensor array to detect PD from controls were 79%, 84%, and 81% respectively, in comparison with midbrain ultrasonography (93%, 90%, 92%) and smell detection (62%, 89%, 73%). The results confirm previous data showing the potential of sensor arrays to detect PD.
Collapse
Affiliation(s)
- John P. M. Finberg
- Neuroscience Department, Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Miguel Schwartz
- Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Raneen Jeries
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Samih Badarny
- Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Morad K. Nakhleh
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Enas Abu Daoud
- Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Yelena Ayubkhanov
- Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Manal Aboud-Hawa
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Yoav Y Broza
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Hossam Haick
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
6
|
Finberg JPM, Aluf Y, Loboda Y, Nakhleh MK, Jeries R, Abud-Hawa M, Zubedat S, Avital A, Khatib S, Vaya J, Haick H. Altered Volatile Organic Compound Profile in Transgenic Rats Bearing A53T Mutation of Human α-Synuclein: Comparison with Dopaminergic and Serotonergic Denervation. ACS Chem Neurosci 2018; 9:291-297. [PMID: 29017011 DOI: 10.1021/acschemneuro.7b00318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Early diagnosis of Parkinson's disease (PD) is of great importance due its progressive phenotype. Neuroprotective drugs could potentially slow down disease progression if used at early stages. Previously, we have reported an altered content of volatile organic compounds (VOCs) in the breath of rats following a 50% reduction in striatal dopamine (DA) content induced by 6-hydroxydopamine. We now report on the difference in the breath-print and content of VOCs between rats with mild and severe lesions of DA neurons, serotonergic neuronal lesions, and transgenic (Tg) rats carrying the PD-producing A53T mutation of the SNCA (α-synuclein) gene. The Tg rats had an increased content of 3-octen-1-ol and 4-chloro-3-methyl phenol in blood, while in brain tissue, hexanal, hexanol, and 2,3-octanedione were present in controls but absent in Tg rats. Levels of 1-heptyl-2-methyl cyclopropane were increased in brain tissue of Tg rats. The data confirm the potential of breath analysis for detection of human idiosyncratic as well as autosomal dominant PD.
Collapse
Affiliation(s)
- John P. M. Finberg
- Neuroscience Department,
Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Yuval Aluf
- Neuroscience Department,
Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Yelena Loboda
- Neuroscience Department,
Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Morad K. Nakhleh
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Raneen Jeries
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Manal Abud-Hawa
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Salman Zubedat
- Neuroscience Department,
Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Avi Avital
- Neuroscience Department,
Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Soliman Khatib
- Laboratory of Natural Medicinal Compounds, Migal-Galilee Research
Institute, Kiryat Shmona and Tel Hai College, Qiryat Shemona, 1220800, Israel
| | - Jacob Vaya
- Laboratory of Natural Medicinal Compounds, Migal-Galilee Research
Institute, Kiryat Shmona and Tel Hai College, Qiryat Shemona, 1220800, Israel
| | - Hossam Haick
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
7
|
Tong J, Fitzmaurice PS, Moszczynska A, Mattina K, Ang LC, Boileau I, Furukawa Y, Sailasuta N, Kish SJ. Do glutathione levels decline in aging human brain? Free Radic Biol Med 2016; 93:110-7. [PMID: 26845616 DOI: 10.1016/j.freeradbiomed.2016.01.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/28/2016] [Accepted: 01/31/2016] [Indexed: 11/22/2022]
Abstract
For the past 60 years a major theory of "aging" is that age-related damage is largely caused by excessive uncompensated oxidative stress. The ubiquitous tripeptide glutathione is a major antioxidant defense mechanism against reactive free radicals and has also served as a marker of changes in oxidative stress. Some (albeit conflicting) animal data suggest a loss of glutathione in brain senescence, which might compromise the ability of the aging brain to meet the demands of oxidative stress. Our objective was to establish whether advancing age is associated with glutathione deficiency in human brain. We measured reduced glutathione (GSH) levels in multiple regions of autopsied brain of normal subjects (n=74) aged one day to 99 years. Brain GSH levels during the infancy/teenage years were generally similar to those in the oldest examined adult group (76-99 years). During adulthood (23-99 years) GSH levels remained either stable (occipital cortex) or increased (caudate nucleus, frontal and cerebellar cortices). To the extent that GSH levels represent glutathione antioxidant capacity, our postmortem data suggest that human brain aging is not associated with declining glutathione status. We suggest that aged healthy human brains can maintain antioxidant capacity related to glutathione and that an age-related increase in GSH levels in some brain regions might possibly be a compensatory response to increased oxidative stress. Since our findings, although suggestive, suffer from the generic limitations of all postmortem brain studies, we also suggest the need for "replication" investigations employing the new (1)H MRS imaging procedures in living human brain.
Collapse
Affiliation(s)
- Junchao Tong
- Human Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Addiction Imaging Research Group, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | | | - Anna Moszczynska
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Katie Mattina
- Human Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Addiction Imaging Research Group, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Lee-Cyn Ang
- Division of Neuropathology, London Health Sciences Centre, University of Western Ontario, London, Ontario, Canada
| | - Isabelle Boileau
- Addiction Imaging Research Group, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Yoshiaki Furukawa
- Department of Neurology, Juntendo Tokyo Koto Geriatric Medical Center, and Faculty of Medicine, University and Post Graduate University of Juntendo, Tokyo, Japan
| | - Napapon Sailasuta
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Stephen J Kish
- Human Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8
| |
Collapse
|
8
|
Nouraei N, Zarger L, Weilnau JN, Han J, Mason DM, Leak RK. Investigation of the therapeutic potential of N-acetyl cysteine and the tools used to define nigrostriatal degeneration in vivo. Toxicol Appl Pharmacol 2016; 296:19-30. [PMID: 26879220 DOI: 10.1016/j.taap.2016.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/02/2016] [Accepted: 02/10/2016] [Indexed: 12/22/2022]
Abstract
The glutathione precursor N-acetyl-L-cysteine (NAC) is currently being tested on Parkinson's patients for its neuroprotective properties. Our studies have shown that NAC can elicit protection in glutathione-independent manners in vitro. Thus, the goal of the present study was to establish an animal model of NAC-mediated protection in which to dissect the underlying mechanism. Mice were infused intrastriatally with the oxidative neurotoxicant 6-hydroxydopamine (6-OHDA; 4 μg) and administered NAC intraperitoneally (100mg/kg). NAC-treated animals exhibited higher levels of the dopaminergic terminal marker tyrosine hydroxylase (TH) in the striatum 10d after 6-OHDA. As TH expression is subject to stress-induced modulation, we infused the tracer FluoroGold into the striatum to retrogradely label nigrostriatal projection neurons. As expected, nigral FluoroGold staining and cell counts of FluoroGold(+) profiles were both more sensitive measures of nigrostriatal degeneration than measurements relying on TH alone. However, NAC failed to protect dopaminergic neurons 3 weeks following 6-OHDA, an effect verified by four measures: striatal TH levels, nigral TH levels, nigral TH(+) cell counts, and nigral FluoroGold levels. Some degree of mild toxicity of FluoroGold and NAC was evident, suggesting that caution must be exercised when relying on FluoroGold as a neuron-counting tool and when designing experiments with long-term delivery of NAC--such as clinical trials on patients with chronic disorders. Finally, the strengths and limitations of the tools used to define nigrostriatal degeneration are discussed.
Collapse
Affiliation(s)
- Negin Nouraei
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Lauren Zarger
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Justin N Weilnau
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Jimin Han
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Daniel M Mason
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States.
| |
Collapse
|
9
|
Khatib S, Finberg J, Artoul F, Lavner Y, Mahmood S, Tisch U, Haick H, Aluf Y, Vaya J. Analysis of volatile organic compounds in rats with dopaminergic lesion: Possible application for early detection of Parkinson’s disease. Neurochem Int 2014; 76:82-90. [DOI: 10.1016/j.neuint.2014.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/22/2014] [Accepted: 06/30/2014] [Indexed: 11/29/2022]
|
10
|
Qi C, Xu M, Gan J, Yang X, Wu N, Song L, Yuan W, Liu Z. Erythropoietin improves neurobehavior by reducing dopaminergic neuron loss in a 6‑hydroxydopamine‑induced rat model. Int J Mol Med 2014; 34:440-50. [PMID: 24939444 PMCID: PMC4094589 DOI: 10.3892/ijmm.2014.1810] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/04/2014] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to determine the effectiveness of the systemic administration of high dose erythropoietin (EPO) in a 6-hydroxydopamine (6-OHDA)- induced rat model. Rats were divided into 7 groups. Groups 1–4 were administered daily EPO doses of 0; 2,500; 5,000 and 10,000 U/kg via intraperitoneal injection (i.p.) for 5 days. The EPO concentration in cerebrospinal fluid (CSF) was determined by enzyme-linked immunosorbent assay (ELISA) and western blot analysis. The dose of 10,000 U/kg was then selected for subsequent experiments. In group 5, rats received saline via medial forebrain bundle (MFB). In group 6, rats received 6-OHDA via MFB. In group 7, an EPO concentration of 10,000 U/kg was constantly administered i.p. for 5 days to rats prior to 6-OHDA injection via MFB. Behavioral analysis was performed for groups 5–7 by rat rotation tests. The number of tyrosine hydroxylase (TH)-immunopositive cells in the substantia nigra (SN) was measured by immunocytochemistry. The activation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinases (MAPKs) and caspase-3 signaling in rats were analyzed using western blotting. The results showed that there was a significant increase in EPO levels in the CSF in 10,000 U/kg group compared with the 2,500 and 5,000 U/kg groups (P<0.01). Significantly fewer rotational counts were obtained in rats that were pretreated with EPO compared with saline-pretreated 6-OHDA-lesioned rats (P<0.001). The dopaminergic neurons in the 6-OHDA-lesioned SN were also increased in the EPO-pretreated rats when compared with control rats (P<0.01). Western blot analysis revealed that EPO inhibited the 6-OHDA-induced activation of JNK, ERK, p38 MAPK and caspase-3 signaling in the rat model. In conclusion, systemic administration of a high dose of EPO exerted neuroprotective effects in reversing behavioral deficits associated with Parkinson’s disease and prevented loss of the dopaminergic neurons through the MAPK pathway.
Collapse
Affiliation(s)
- Chen Qi
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Mingxin Xu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Jing Gan
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Xinxin Yang
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Na Wu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Lu Song
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Weien Yuan
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
11
|
Vaya J. Exogenous markers for the characterization of human diseases associated with oxidative stress. Biochimie 2013; 95:578-84. [DOI: 10.1016/j.biochi.2012.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 03/02/2012] [Indexed: 10/28/2022]
|
12
|
Thomas Tayra J, Kameda M, Yasuhara T, Agari T, Kadota T, Wang F, Kikuchi Y, Liang H, Shinko A, Wakamori T, Vcelar B, Weik R, Date I. The neuroprotective and neurorescue effects of carbamylated erythropoietin Fc fusion protein (CEPO-Fc) in a rat model of Parkinson's disease. Brain Res 2013; 1502:55-70. [PMID: 23380533 DOI: 10.1016/j.brainres.2013.01.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/08/2013] [Accepted: 01/23/2013] [Indexed: 01/10/2023]
Abstract
Parkinson's disease is characterized by progressive degeneration of dopaminergic neurons. Thus the development of therapeutic neuroprotection and neurorescue strategies to mitigate disease progression is important. In this study we evaluated the neuroprotective/rescue effects of erythropoietin Fc fusion protein (EPO-Fc) and carbamylated erythropoietin Fc fusion protein (CEPO-Fc) in a rat model of Parkinson's disease. Adult female Sprague-Dawley rats received intraperitoneal injection of EPO-Fc, CEPO-Fc or PBS. Behavioral evaluations consisted of rota-rod, cylinder and amphetamine-induced rotation tests. In the neuroprotection experiment, the CEPO-Fc group demonstrated significant improvement compared with the EPO-Fc group on the amphetamine-induced rotation test throughout the four-week follow-up period. Histologically, significantly more tyrosine hydroxylase (TH)-positive neurons were recognized in the substantia nigra (SN) pars compacta in the CEPO-Fc group than in the PBS and EPO-Fc groups. In the neurorescue experiment, rats receiving CEPO-Fc showed significantly better behavioural scores than those receiving PBS. The histological data concerning striatum also showed that the CEPO-Fc group had significantly better preservation of TH-positive fibers compared to the PBS and EPO-Fc groups. Importantly, there were no increases in hematocrit or hemoglobin levels in the CEPO-Fc group in either the neuroprotection or the neurorescue experiments. In conclusion, the newly developed CEPO-Fc might confer neuroprotective and neurorescue benefits in a rat model of Parkinson's disease without the side effects associated with polycythemia. CEPO-Fc might be a therapeutic tool for patients with Parkinson's disease.
Collapse
Affiliation(s)
- Judith Thomas Tayra
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tisch U, Schlesinger I, Ionescu R, Nassar M, Axelrod N, Robertman D, Tessler Y, Azar F, Marmur A, Aharon-Peretz J, Haick H. Detection of Alzheimer’s and Parkinson’s disease from exhaled breath using nanomaterial-based sensors. Nanomedicine (Lond) 2013; 8:43-56. [DOI: 10.2217/nnm.12.105] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: To study the feasibility of a novel method in nanomedicine that is based on breath testing for identifying Alzheimer’s disease (AD) and Parkinson’s disease (PD), as representative examples of neurodegenerative conditions. Patients & methods: Alveolar breath was collected from 57 volunteers (AD patients, PD patients and healthy controls) and analyzed using combinations of nanomaterial-based sensors (organically functionalized carbon nanotubes and gold nanoparticles). Discriminant factor analysis was applied to detect statistically significant differences between study groups and classification success was estimated using cross-validation. The pattern identification was supported by chemical analysis of the breath samples using gas chromatography combined with mass spectrometry. Results: The combinations of sensors could clearly distinguish AD from healthy states, PD from healthy states, and AD from PD states, with a classification accuracy of 85, 78 and 84%, respectively. Gas chromatography combined with mass spectrometry analysis showed statistically significant differences in the average abundance of several volatile organic compounds in the breath of AD, PD and healthy subjects, thus supporting the breath prints observed with the sensors. Conclusion: The breath prints that were identified with combinations of nanomaterial-based sensors have future potential as cost-effective, fast and reliable biomarkers for AD and PD. Original submitted 29 January 2012; Revised submitted 8 May 2012; Published online 15 October 2012
Collapse
Affiliation(s)
- Ulrike Tisch
- The Department of Chemical Engineering & Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Ilana Schlesinger
- Department of Neurology, Rambam Health Care Campus, Haifa 31096, Israel
| | - Radu Ionescu
- The Department of Chemical Engineering & Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Maria Nassar
- Department of Neurology, Rambam Health Care Campus, Haifa 31096, Israel
| | - Noa Axelrod
- The Department of Chemical Engineering & Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Dorina Robertman
- The Department of Chemical Engineering & Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Yael Tessler
- The Department of Chemical Engineering & Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Faris Azar
- The Department of Chemical Engineering & Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Abraham Marmur
- The Department of Chemical Engineering & Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | | | - Hossam Haick
- The Department of Chemical Engineering & Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
14
|
Aluf Y, Vaya J, Khatib S, Loboda Y, Finberg JPM. Selective inhibition of monoamine oxidase A or B reduces striatal oxidative stress in rats with partial depletion of the nigro-striatal dopaminergic pathway. Neuropharmacology 2012; 65:48-57. [PMID: 22982254 DOI: 10.1016/j.neuropharm.2012.08.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/22/2012] [Accepted: 08/26/2012] [Indexed: 10/27/2022]
Abstract
Partial lesion (50%) of the nigro-striatal dopaminergic pathway induces compensatory increase in dopamine release from the remaining neurons and increased extracellular oxidative stress (OS(-ec)) in the striatum. The present study was designed to explore the role of monoamine oxidase types A and B (MAO-A, MAO-B) in producing this increased oxidative stress. Lesion of the dopaminergic pathways in the CNS was produced in rats by intra-cerebroventricular injection of 6-hydroxydopamine (6-OHDA; 250 μg) and striatal microdialysis was carried out 5 weeks later. Striatal OS(ec) was determined by measurement of oxidized derivatives of the marker molecule N-linoleyl-tyrosine. Striatal tissue MAO-A activity was unchanged by 6-OHDA lesion but MAO-B activity was increased by 16%, together with a 45% increase in glial cell content. The selective MAO-B inhibitor rasagiline (0.05 mg/kg s.c. daily for 14 days) did not affect microdialysate dopamine concentration [DA(ec)] in sham-operated rats, but decreased OS(ec) by 30%. In lesioned rats, rasagiline decreased [DA(ec)] by 42% with a 49% reduction in OS(ec). The decrease in [DA(ec)] was reversed by the dopamine D2 receptor antagonist sulpiride (10 mg/kg s.c.). The selective MAO-A inhibitor clorgyline (0.2 mg/kg s.c. daily for 14 days) increased striatal [DA(ec)] by 72% in sham-operated rats with no change in OS(ec). In lesioned rats clorgyline increased [DA(ec)] by 66% and decreased OS(ec) by 44%. Rasagiline and clorgyline were effective to a similar extent in reduction of tissue levels of 7-ketocholesterol and the ratio GSSG/GSH, indicative of reduced intracellular oxidative stress level. This data implies that gliosis in our 6-OHDA animals together with inhibition of glial cell MAO-B by rasagiline causes an increase in local levels of dopamine at the presynaptic receptors, and a reduction in dopamine release (and in [DA(ec)]) by presynaptic inhibition. Moreover, inhibition of MAO-A or MAO-B reduces the enhanced level of oxidative stress in the lesioned striatum, and while both clorgyline and rasagiline reduced DA oxidative metabolism, rasagiline possesses an additional antioxidant property, not only that resulting from MAO inhibition.
Collapse
Affiliation(s)
- Yuval Aluf
- Department of Molecular Pharmacology, Rappaport Medical Faculty, Technion, Haifa, Israel
| | | | | | | | | |
Collapse
|
15
|
Tisch U, Aluf Y, Ionescu R, Nakhleh M, Bassal R, Axelrod N, Robertman D, Tessler Y, Finberg JPM, Haick H. Detection of asymptomatic nigrostriatal dopaminergic lesion in rats by exhaled air analysis using carbon nanotube sensors. ACS Chem Neurosci 2012; 3:161-6. [PMID: 22860185 PMCID: PMC3369793 DOI: 10.1021/cn200093r] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/18/2011] [Indexed: 01/21/2023] Open
Abstract
The ante-mortem diagnosis of Parkinson's disease (PD) still relies on clinical symptoms. Biomarkers could in principle be used for the early detection of PD-related neuronal damage, but no validated, inexpensive, and simple biomarkers are available yet. Here we report on the breath-print of presymptomatic PD in rats, using a model with 50% lesion of dopaminergic neurons in substantia nigra. Exhaled breath was collected from 19 rats (10 lesioned and 9 sham operated) and analyzed using organically functionalized carbon nanotube sensors. Discriminant factor analysis detected statistically significant differences between the study groups and a classification accuracy of 90% was achieved using leave-one-out cross-validation. The sensors' breath-print was supported by determining statistically significant differences of several volatile organic compounds in the breath of the lesioned rats and the sham operated rats, using gas chromatography combined with mass spectrometry. The observed breath-print shows potential for cost-effective, fast, and reliable early PD detection.
Collapse
Affiliation(s)
- Ulrike Tisch
- Department of Chemical Engineering, Technion −
Israel Institute of Technology, Haifa
32000, Israel
| | - Yuval Aluf
- Department
of Molecular Pharmacology,
Bruce Rappaport Faculty of Medicine, Technion −
Israel Institute of Technology, Haifa 31096, Israel
| | - Radu Ionescu
- Department of Chemical Engineering, Technion −
Israel Institute of Technology, Haifa
32000, Israel
| | - Morad Nakhleh
- Department of Chemical Engineering, Technion −
Israel Institute of Technology, Haifa
32000, Israel
| | - Rana Bassal
- Department of Chemical Engineering, Technion −
Israel Institute of Technology, Haifa
32000, Israel
| | - Noa Axelrod
- Department of Chemical Engineering, Technion −
Israel Institute of Technology, Haifa
32000, Israel
| | - Dorina Robertman
- Department of Chemical Engineering, Technion −
Israel Institute of Technology, Haifa
32000, Israel
| | - Yael Tessler
- Department of Chemical Engineering, Technion −
Israel Institute of Technology, Haifa
32000, Israel
| | - John P. M. Finberg
- Department
of Molecular Pharmacology,
Bruce Rappaport Faculty of Medicine, Technion −
Israel Institute of Technology, Haifa 31096, Israel
| | - Hossam Haick
- Department of Chemical Engineering, Technion −
Israel Institute of Technology, Haifa
32000, Israel
- Russell Berrie Nanotechnology
Institute, Technion − Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
16
|
Vaya J, Szuchman A, Tavori H, Aluf Y. Oxysterols formation as a reflection of biochemical pathways: summary of in vitro and in vivo studies. Chem Phys Lipids 2011; 164:438-42. [DOI: 10.1016/j.chemphyslip.2011.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/12/2011] [Accepted: 03/16/2011] [Indexed: 02/05/2023]
|
17
|
Aluf Y, Vaya J, Khatib S, Finberg JPM. Alterations in striatal oxidative stress level produced by pharmacological manipulation of dopamine as shown by a novel synthetic marker molecule. Neuropharmacology 2011; 61:87-94. [PMID: 21414328 DOI: 10.1016/j.neuropharm.2011.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 02/18/2011] [Accepted: 03/07/2011] [Indexed: 11/17/2022]
Abstract
Oxidative stress (OS) is thought to participate in neurodegenerative diseases such as Parkinson's disease, but the contribution of dopamine metabolism and auto-oxidation to OS in Parkinson's and other diseases is not clear. Oxidative stress in rat striatum was measured by microdialysis using a novel synthetic compound composed of tyrosine and linoleic acid (LT), and determination of the oxidation products LT-OOH and LT-epoxy by HPLC-MS. Since LT is non-diffusible through the microdialysis membrane, the oxidized products formed in microdialyzate reflect oxidation state in the extracellular compartment. The extracellular oxidative stress (OS(ec)) was compared with intracellular oxidative stress (OS(ic)) as measured by tissue levels of oxidized and reduced glutathione and 7-ketocholesterol. Reserpinization caused an increase in OS(ic) but a reduction in OS(ec). Inhibition of both subtypes of monoamine oxidase (MAO-A and MAO-B) with tranylcypromine caused a reduction in both OS(ic) and OS(ec) whereas selective inhibition of MAO-A with clorgyline caused a reduction in Os(ic) but no change in OS(ec). A high dose (10 mg/kg) of amphetamine caused an increase in OS(ec) whereas a smaller dose (4 mg/kg) caused a reduction in OS(ec). Both doses of amphetamine reduced OS(ic). The present findings are consistent with a role of monoamine oxidase as well as dopamine auto-oxidation in production of striatal OS.
Collapse
Affiliation(s)
- Y Aluf
- Department of Molecular Pharmacology, Rappaport Medical Faculty, Technion, Haifa, Israel
| | | | | | | |
Collapse
|
18
|
Zhou QH, Hui EKW, Lu JZ, Boado RJ, Pardridge WM. Brain penetrating IgG-erythropoietin fusion protein is neuroprotective following intravenous treatment in Parkinson's disease in the mouse. Brain Res 2011; 1382:315-20. [PMID: 21276430 DOI: 10.1016/j.brainres.2011.01.061] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/19/2011] [Accepted: 01/19/2011] [Indexed: 01/10/2023]
Abstract
Parkinson's disease (PD) is caused by oxidative stress, and erythropoietin (EPO) reduces oxidative stress in the brain. However, EPO cannot be developed as a treatment for PD, because EPO does not cross the blood-brain barrier (BBB). A brain penetrating form of human EPO has been developed wherein EPO is fused to a chimeric monoclonal antibody (MAb) against the mouse transferrin receptor (TfR), which is designated as the cTfRMAb-EPO fusion protein. The TfRMAb acts as a molecular Trojan horse to transport the fused EPO into brain via transport on the BBB TfR. Experimental PD was induced in adult mice by the intra-striatal injection of 6-hydroxydopamine, and PD mice were treated with 1mg/kg of the cTfRMAb-EPO fusion protein intravenously (IV) every other day starting 1 h after toxin injection. Following 3weeks of treatment mice were euthanized for measurement of striatal tyrosine hydroxylase (TH) enzyme activity. Mice treated with the cTfRMAb-EPO fusion protein showed a 306% increase in striatal TH enzyme activity, which correlated with improvement in three assays of neurobehavior. The blood hematocrit increased 10% at 2weeks, with no further changes at 3weeks of treatment. A sandwich ELISA showed the immune reaction against the cTfRMAb-EPO fusion protein was variable and low titer. In conclusion, the present study demonstrates that a brain penetrating form of EPO is neuroprotective in PD following IV administration with minimal effects on erythropoiesis.
Collapse
Affiliation(s)
- Qing-Hui Zhou
- Department of Medicine, UCLA Warren Hall 13-164, 900 Veteran Ave., Los Angeles, CA 90024, USA
| | | | | | | | | |
Collapse
|