1
|
Yuan HH, Yin H, Marincas M, Xie LL, Bu LL, Guo MH, Zheng XL. From DNA Repair to Redox Signaling: The Multifaceted Role of APEX1 (Apurinic/Apyrimidinic Endonuclease 1) in Cardiovascular Health and Disease. Int J Mol Sci 2025; 26:3034. [PMID: 40243693 PMCID: PMC11988304 DOI: 10.3390/ijms26073034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 (APEX1) serves as a potent regulatory factor in innate immunity, exhibiting both redox and endonuclease activities. Its redox function enables the regulation of transcription factors such as NF-κB or STAT3, whereas its endonuclease activity recognizes apurinic/apyrimidinic (AP) sites in damaged DNA lesions during base excision repair (BER) and double-stranded DNA repair, thereby I confirm.anti-inflammatory, antioxidative stress and antiapoptotic effects. APEX1 is expressed in a variety of cell types that constitute the cardiovascular system, including cardiomyocytes, endothelial cells, smooth muscle cells, and immune cells. Emerging genetic and experimental evidence points towards the functional roles of APEX1 in the pathophysiology of cardiovascular diseases, including neointimal formation and atherosclerosis. This review aims to present comprehensive coverage of the up-to-date literature concerning the molecular and cellular functions of APEX1, with a particular focus on how APEX1 contributes to the (dys)functions of different cell types during the pathogenesis of cardiovascular diseases. Furthermore, we underscore the potential of APEX1 as a therapeutic target for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Huan-Huan Yuan
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Hao Yin
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Mara Marincas
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Ling-Li Xie
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Lan-Lan Bu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Min-Hua Guo
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xi-Long Zheng
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| |
Collapse
|
2
|
Zhao H, Song L, Ma N, Liu C, Dun Y, Zhou Z, Yuan D, Zhang C. The dynamic changes of Nrf2 mediated oxidative stress, DNA damage and base excision repair in testis of rats during aging. Exp Gerontol 2021; 152:111460. [PMID: 34175407 DOI: 10.1016/j.exger.2021.111460] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/30/2021] [Accepted: 06/20/2021] [Indexed: 11/15/2022]
Abstract
Accumulation of oxidative stress, DNA damage and impaired DNA repair appear to play critical roles in the decline of testicular function with aging. However, when those factors begin to lose control in testis during aging has not yet been well understood. This study was designed to assess the changes of oxidative stress and DNA damage status, and DNA repair capacity in testis during aging. Thus, male Sprague-Dawley rats at 3, 9, 15 and 24 months of age were used to delineate the dynamic changes in testicular weight and index, testosterone concentration, testicular histology, Nrf2-mediated oxidative stress, DNA damage, DNA repair and apoptosis. Results showed that testicular weight and index, testosterone concentration and spermatid number progressively declined from 9 to 24 months of age. Similarly, seminiferous tubule diameters and seminiferous epithelium heights gradually diminished with aging. Nrf2-mediated antioxidant defense ability was significantly impaired in testis with increasing age including decreased the activity of SOD and the expression levels of Nrf2, HO-1 and NQO-1, and increased the contents of MDA. In addition, DNA damage including DNA single-strand breaks (SSBs) and DNA double-strand breaks (DSBs) also progressively increased accompanied by increased levels of 8-hydroxydeoxyguanosine (8-OHdG) and γ-H2AX, and activated ATM/Chk2 and ATR/Chk1 pathway. Consistent with the results of Nrf2 pathway, the expression levels of APE1, OGG1 and XRCC1 involved in base excision DNA repair (BER) pathway increased from 3 to 9 months of age, and then gradually decreased after 9 months of age. Finally, TUNEL and Western blot results further confirmed germ cell apoptosis progressively increased from 3 to 24 months of age as evidenced by decreased ratio of Bcl-2/Bax and levels of Bcl-2 expression, and increased Bax expression levels. Taken together, our results suggest that downregulation of antioxidant ability mediated by Nrf2 pathway and impairment of BER capacity might correlate with increased DNA damage, and then induce declining testicular function during aging after adult.
Collapse
Affiliation(s)
- Haixia Zhao
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China; Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Laixin Song
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Na Ma
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Chaoqi Liu
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Yaoyan Dun
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Zhiyong Zhou
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Ding Yuan
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China.
| | - Changcheng Zhang
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China; Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei 443002, PR China.
| |
Collapse
|
3
|
The antioxidant and DNA-repair enzyme apurinic/apyrimidinic endonuclease 1 limits the development of tubulointerstitial fibrosis partly by modulating the immune system. Sci Rep 2019; 9:7823. [PMID: 31127150 PMCID: PMC6534557 DOI: 10.1038/s41598-019-44241-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/13/2019] [Indexed: 12/13/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional protein that controls the cellular response to oxidative stress and possesses DNA-repair functions. It has important roles in the progression and outcomes of various diseases; however, its function and therapeutic prospects with respect to kidney injury are unknown. To study this, we activated APE1 during kidney injury by constructing an expression vector (pCAG-APE1), using an EGFP expression plasmid (pCAG-EGFP) as a control. We performed unilateral ureteral obstruction (UUO) as a model of tubulointerstitial fibrosis on ICR mice before each vector was administrated via retrograde renal vein injection. In this model, pCAG-APE1 injection did not produce any adverse effects and significantly reduced histological end points including fibrosis, inflammation, tubular injury, and oxidative stress, as compared to those parameters after pCAG-EGFP injection. qPCR analysis showed significantly lower expression of Casp3 and inflammation-related genes in pCAG-APE1-injected animals compared to those in pCAG-EGFP-injected UUO kidneys. RNA-Seq analyses showed that the major transcriptional changes in pCAG-APE1-injected UUO kidneys were related to immune system processes, metabolic processes, catalytic activity, and apoptosis, leading to normal kidney repair. Therefore, APE1 suppressed renal fibrosis, not only via antioxidant and DNA-repair functions, but also partly by modulating the immune system through multiple pathways including Il6, Tnf, and chemokine families. Thus, therapeutic APE1 modulation might be beneficial for the treatment of renal diseases.
Collapse
|
4
|
Zhao H, Song L, Huang W, Liu J, Yuan D, Wang Y, Zhang C. Total flavonoids of Epimedium
reduce ageing-related oxidative DNA damage in testis of rats via p53-dependent pathway. Andrologia 2017; 49. [PMID: 28370226 DOI: 10.1111/and.12756] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2016] [Indexed: 12/11/2022] Open
Affiliation(s)
- H. Zhao
- Medical College of China Three Gorges University; Yichang China
| | - L. Song
- Medical College of China Three Gorges University; Yichang China
| | - W. Huang
- Medical College of China Three Gorges University; Yichang China
| | - J. Liu
- Medical College of China Three Gorges University; Yichang China
| | - D. Yuan
- Renhe Hospital of China Three Gorges University; Yichang China
| | - Y. Wang
- LONGHUA Hospital Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - C. Zhang
- Medical College of China Three Gorges University; Yichang China
- LONGHUA Hospital Shanghai University of Traditional Chinese Medicine; Shanghai China
| |
Collapse
|
5
|
Zhao H, Liu J, Song L, Liu Z, Han G, Yuan D, Wang T, Dun Y, Zhou Z, Liu Z, Wang Y, Zhang C. Oleanolic acid rejuvenates testicular function through attenuating germ cell DNA damage and apoptosis via deactivation of NF-κB, p53 and p38 signalling pathways. J Pharm Pharmacol 2016; 69:295-304. [PMID: 27935635 DOI: 10.1111/jphp.12668] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/16/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Inflammation can cause degenerative changes of reproductive function. Oleanolic acid (OA), the effective component from Ligustrum lucidum Ait., exhibits significantly anti-inflammation and antiageing activity. However, whether OA restores testicular dysfunction via inhibition of inflammation with ageing is unclear. Here, in a natural ageing rat model, we investigated the protection effects of OA and its mechanism of action. METHODS Eighteen-month-old Sprague Dawley (SD) rats were randomly divided into ageing control group and two OA-treated groups (5 and 25 mg/kg). Nine-month-old SD rats were used as adult controls. All rats were received either vehicle or OA for 6 months. Then, histomorphology, weight and index of testis, protein expression and immunohistochemistry were examined. KEY FINDINGS Oleanolic acid significantly restored testicular morphology and improved testicular weight and index. Moreover, OA significantly inhibited phospho-NF-κB p65 and its downstream proinflammatory cytokines' expressions, including IL-1β, COX-2 and TNF-α in testis tissues. Similarly, OA remarkably inhibited IL-1β and TNF-α production. OA significantly attenuated germ cells' DNA damage and apoptosis. Such changes were accompanied by downregulation of γH2AX, p-P53 and Bax expressions, and upregulation of Bcl-2 and Bcl-2/Bax ratio. In addition, OA remarkably inhibited p38 signalling. CONCLUSIONS Oleanolic acid effectively rejuvenates testicular function via attenuating germ cell DNA damage and apoptosis through deactivation of NF-κB, p53 and p38 signalling pathways.
Collapse
Affiliation(s)
- Haixia Zhao
- Medical College of China Three Gorges University, Yichang, China
| | - Jing Liu
- Medical College of China Three Gorges University, Yichang, China
| | - Laixin Song
- Medical College of China Three Gorges University, Yichang, China
| | - Zhencai Liu
- Medical College of China Three Gorges University, Yichang, China
| | - Guifang Han
- Medical College of China Three Gorges University, Yichang, China
| | - Ding Yuan
- RENHE Hospital of China Three Gorges University, Yichang, China
| | - Ting Wang
- Medical College of China Three Gorges University, Yichang, China
| | - Yaoyan Dun
- Medical College of China Three Gorges University, Yichang, China
| | - Zhiyong Zhou
- Medical College of China Three Gorges University, Yichang, China
| | - Zhaoqi Liu
- Medical College of China Three Gorges University, Yichang, China
| | - Yongjun Wang
- LONGHUA Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Changcheng Zhang
- Medical College of China Three Gorges University, Yichang, China.,LONGHUA Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|