1
|
Simon P, Török É, Szalontai K, Kari B, Neuperger P, Zavala N, Kanizsai I, Puskás LG, Török S, Szebeni GJ. Nutritional Support of Chronic Obstructive Pulmonary Disease. Nutrients 2025; 17:1149. [PMID: 40218907 PMCID: PMC11990120 DOI: 10.3390/nu17071149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Background: COPD is a heterogenous disease of the respiratory tract caused by diverse genetic factors along with environmental and lifestyle-related effects such as industrial dust inhalation and, most frequently, cigarette smoking. These factors lead to airflow obstruction and chronic respiratory symptoms. Additionally, the increased risk of infections exacerbates airway inflammation in COPD patients. As a consequence of the complex pathomechanisms and difficulty in treatment, COPD is among the leading causes of mortality both in the western countries and in the developing world. Results: The management of COPD is still a challenge for the clinicians; however, alternative interventions such as smoking cessation and lifestyle changes from a sedentary life to moderate physical activity with special attention to the diet may ameliorate patients' health. Here, we reviewed the effects of different dietary components and supplements on the conditions of COPD. Conclusions: COPD patients are continuously exposed to heavy metals, which are commonly present in cigarette smoke and polluted air. Meanwhile, they often experience significant nutrient deficiencies, which affect the detoxification of these toxic metals. This in turn can further disrupt nutritional balance by interfering with the absorption, metabolism, and utilization of essential micronutrients. Therefore, awareness and deliberate efforts should be made to check levels of micronutrients, with special attention to ensuring adequate levels of antioxidants, vitamin D, vitamin K2, magnesium, and iron, as these may be particularly important in reducing the risk of COPD development and limiting disease severity.
Collapse
Grants
- 2023-1.1.1-PIACI_FÓKUSZ-2024-00036 National Research, Development, and Innovation Office (NKFI), Hungary
- 2020-1.1.6-JÖVŐ-2021-00003 National Research, Development, and Innovation Office (NKFI), Hungary
- 2022-1.2.6-TÉT-IPARI-TR-2022-00023 National Research, Development, and Innovation Office (NKFI), Hungary
- 142877 FK22 National Research, Development, and Innovation Office (NKFI), Hungary.
- BO/00582/22/8 János Bolyai Research Scholarship of the Hungarian Academy of Sciences
Collapse
Affiliation(s)
- Péter Simon
- National Korányi Institute of Pulmonology, 1121 Budapest, Hungary;
| | - Éva Török
- Gastroenterology Center Buda, 1117 Budapest, Hungary;
| | - Klára Szalontai
- Department of Pulmonology, Szent-Györgyi Albert Medical Center, University of Szeged, 6772 Deszk, Hungary;
| | - Beáta Kari
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (B.K.); (P.N.); (N.Z.); (L.G.P.)
| | - Patrícia Neuperger
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (B.K.); (P.N.); (N.Z.); (L.G.P.)
| | - Norma Zavala
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (B.K.); (P.N.); (N.Z.); (L.G.P.)
| | | | - László G. Puskás
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (B.K.); (P.N.); (N.Z.); (L.G.P.)
- Anthelos Ltd., 6726 Szeged, Hungary
| | - Szilvia Török
- National Korányi Institute of Pulmonology, 1121 Budapest, Hungary;
| | - Gabor J. Szebeni
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (B.K.); (P.N.); (N.Z.); (L.G.P.)
- Department of Internal Medicine, Hematology Centre, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary
| |
Collapse
|
2
|
Latib F, Zafendi MAI, Mohd Lazaldin MA. The use of vitamin E in ocular health: Bridging omics approaches with Tocopherol and Tocotrienol in the management of glaucoma. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100224. [PMID: 39415777 PMCID: PMC11481750 DOI: 10.1016/j.fochms.2024.100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/30/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024]
Abstract
Vitamin E, encompassing tocopherols and tocotrienols is celebrated for its powerful antioxidant properties, which help neutralize free radicals and protect cells from oxidative damage. Over the years, research has shown that both tocopherols and tocotrienols offer significant benefits, including protection against radiation damage, cholesterol regulation, cardiovascular health, and neurological disorders. This wide range of benefits highlights the need for further exploration of vitamin E's role in managing various diseases. One particularly promising area is its potential application in treating ocular diseases like glaucoma. Despite advances in treatment, current options have limitations, making the investigation of alternative approaches crucial. Omics technologies, which allow for a detailed examination of biological systems, could provide valuable insights into how tocopherols and tocotrienols work at a molecular level. Their neuroprotective and antioxidative properties make them promising candidates for glaucoma management. Additionally, the sustainability of vitamin E is noteworthy, as by-products from its production can be repurposed into valuable resources for nutraceuticals and pharmaceuticals. As research continues, integrating omics technologies with the study of vitamin E derivatives could unveil new therapeutic possibilities, further enhancing our understanding of its diverse health benefits and its potential role in preventing and managing diseases.
Collapse
Affiliation(s)
- Fazira Latib
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | | | | |
Collapse
|
3
|
Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol 2023; 97:2499-2574. [PMID: 37597078 PMCID: PMC10475008 DOI: 10.1007/s00204-023-03562-9] [Citation(s) in RCA: 665] [Impact Index Per Article: 332.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
A physiological level of oxygen/nitrogen free radicals and non-radical reactive species (collectively known as ROS/RNS) is termed oxidative eustress or "good stress" and is characterized by low to mild levels of oxidants involved in the regulation of various biochemical transformations such as carboxylation, hydroxylation, peroxidation, or modulation of signal transduction pathways such as Nuclear factor-κB (NF-κB), Mitogen-activated protein kinase (MAPK) cascade, phosphoinositide-3-kinase, nuclear factor erythroid 2-related factor 2 (Nrf2) and other processes. Increased levels of ROS/RNS, generated from both endogenous (mitochondria, NADPH oxidases) and/or exogenous sources (radiation, certain drugs, foods, cigarette smoking, pollution) result in a harmful condition termed oxidative stress ("bad stress"). Although it is widely accepted, that many chronic diseases are multifactorial in origin, they share oxidative stress as a common denominator. Here we review the importance of oxidative stress and the mechanisms through which oxidative stress contributes to the pathological states of an organism. Attention is focused on the chemistry of ROS and RNS (e.g. superoxide radical, hydrogen peroxide, hydroxyl radicals, peroxyl radicals, nitric oxide, peroxynitrite), and their role in oxidative damage of DNA, proteins, and membrane lipids. Quantitative and qualitative assessment of oxidative stress biomarkers is also discussed. Oxidative stress contributes to the pathology of cancer, cardiovascular diseases, diabetes, neurological disorders (Alzheimer's and Parkinson's diseases, Down syndrome), psychiatric diseases (depression, schizophrenia, bipolar disorder), renal disease, lung disease (chronic pulmonary obstruction, lung cancer), and aging. The concerted action of antioxidants to ameliorate the harmful effect of oxidative stress is achieved by antioxidant enzymes (Superoxide dismutases-SODs, catalase, glutathione peroxidase-GPx), and small molecular weight antioxidants (vitamins C and E, flavonoids, carotenoids, melatonin, ergothioneine, and others). Perhaps one of the most effective low molecular weight antioxidants is vitamin E, the first line of defense against the peroxidation of lipids. A promising approach appears to be the use of certain antioxidants (e.g. flavonoids), showing weak prooxidant properties that may boost cellular antioxidant systems and thus act as preventive anticancer agents. Redox metal-based enzyme mimetic compounds as potential pharmaceutical interventions and sirtuins as promising therapeutic targets for age-related diseases and anti-aging strategies are discussed.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Renata Raptova
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia.
| |
Collapse
|
4
|
Niki E, Noguchi N. Antioxidant action of vitamin E in vivo as assessed from its reaction products with multiple biological oxidants. Free Radic Res 2021; 55:352-363. [PMID: 33327809 DOI: 10.1080/10715762.2020.1866181] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Vitamin E acts as essential antioxidant against detrimental oxidation of biological molecules induced by multiple reactive species. To gain more insight into the physiological role of vitamin E, the levels of its oxidation products in humans under normal and pathological conditions were compared. α-Tocopherol quinone (α-TQ) and 5-nitro-γ-tocopherol (5-NgT) were focused. α-TQ is produced by multiple oxidants including oxygen radicals, peroxynitrite, hypochlorite, singlet oxygen, and ozone, while 5-NgT is produced by nitrogen dioxide radical derived from peroxynitrite and the reaction of nitrite and hypochlorite. The reported concentrations of α-TQ and 5-NgT in healthy human plasma are highly variable ranging from 15 to 360 and 4 to 170 nM, respectively. In general, the molar ratio 5-NgT/γ-tocopherol was higher than the ratio α-TQ/α-tocopherol. Both absolute concentrations of α-TQ and 5-NgT and the molar ratios to the parent tocopherols were elevated significantly in the plasma of patients with various diseases compared with healthy subjects except neurological diseases. The molar ratios of the products to the respective parent compounds decreased in the order of 5-NgT/γ-tocopherol > α-TQ/α-tocopherol > hydroxyoctadecadienoate/linoleate > 3-nitrotyrosine/tyrosine > isoprostane/arachidonate. The molar ratios of nitrated products to the respective parent compounds in human plasma are approximately 10-2 for 5-NgT and 10-5 for 3-nitrotyrosine, nitro-oleic acid, and 8-nitroguaine. These data indicate that vitamin E acts as an important physiological antioxidant and that α-TQ and 5-NgT represent biomarker for oxidative stress and nitrative stress respectively.
Collapse
Affiliation(s)
- Etsuo Niki
- Research Center for Advanced Science and Technology, University of Tokyo, Komaba, Japan
| | - Noriko Noguchi
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| |
Collapse
|
5
|
Abstract
Alzheimer disease (AD) is a major cause of age-related dementia. We do not fully understand AD aetiology and pathogenesis, but oxidative damage is a key component. The brain mostly uses glucose for energy, but in AD and amnestic mild cognitive impairment glucose metabolism is dramatically decreased, probably owing, at least in part, to oxidative damage to enzymes involved in glycolysis, the tricarboxylic acid cycle and ATP biosynthesis. Consequently, ATP-requiring processes for cognitive function are impaired, and synaptic dysfunction and neuronal death result, with ensuing thinning of key brain areas. We summarize current research on the interplay and sequence of these processes and suggest potential pharmacological interventions to retard AD progression.
Collapse
|
6
|
Thompson MD, Cooney RV. The Potential Physiological Role of γ-Tocopherol in Human Health: A Qualitative Review. Nutr Cancer 2019; 72:808-825. [DOI: 10.1080/01635581.2019.1653472] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mika D. Thompson
- Office of Public Health Studies, University of Hawaiʻi at Mānoa, Honolulu, HI, USA
| | - Robert V. Cooney
- Office of Public Health Studies, University of Hawaiʻi at Mānoa, Honolulu, HI, USA
| |
Collapse
|
7
|
Niki E. Oxidant-specific biomarkers of oxidative stress. Association with atherosclerosis and implication for antioxidant effects. Free Radic Biol Med 2018; 120:425-440. [PMID: 29625172 DOI: 10.1016/j.freeradbiomed.2018.04.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 12/16/2022]
Abstract
The unregulated oxidative modification of lipids, proteins, and nucleic acids induced by multiple oxidants has been implicated in the pathogenesis of many diseases. Antioxidants with diverse functions exert their roles either directly or indirectly in the physiological defense network to inhibit such deleterious oxidative modification of biological molecules and resulting damage. The efficacy of antioxidants depends on the nature of oxidants. Therefore, it is important to identify the oxidants which are responsible for modification of biological molecules. Some oxidation products produced selectively by specific oxidant enable to identify the responsible oxidants, while other products are produced by several oxidants similarly. In this review article, several oxidant-specific products produced selectively by peroxyl radicals, peroxynitrite, hypochlorous acid, lipoxygenase, and singlet oxygen were summarized and their potential role as biomarker is discussed. It is shown that the levels of specific oxidation products including hydroxylinoleate isomers, nitrated and chlorinated products, and oxysterols produced by the above-mentioned oxidants are elevated in the human atherosclerotic lesions, suggesting that all these oxidants may contribute to the development of atherosclerosis. Further, it was shown that the reactivities of physiological antioxidants toward the above-mentioned oxidants vary extensively, suggesting that multiple antioxidants effective against these different oxidants are required, since no single antioxidant alone can cope with these multiple oxidants.
Collapse
Affiliation(s)
- Etsuo Niki
- National Institute of Advanced Industrial Science & Technology, Takamatsu 761-0395, Japan.
| |
Collapse
|
8
|
Dey P, Mah E, Li J, Jalili T, Symons JD, Bruno RS. Improved hepatic γ-tocopherol status limits oxidative and inflammatory stress-mediated liver injury in db/db mice with nonalcoholic steatohepatitis. J Funct Foods 2018; 40:670-678. [DOI: 10.1016/j.jff.2017.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
9
|
Torquato P, Ripa O, Giusepponi D, Galarini R, Bartolini D, Wallert M, Pellegrino R, Cruciani G, Lorkowski S, Birringer M, Mazzini F, Galli F. Analytical strategies to assess the functional metabolome of vitamin E. J Pharm Biomed Anal 2016; 124:399-412. [DOI: 10.1016/j.jpba.2016.01.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 01/23/2016] [Accepted: 01/25/2016] [Indexed: 12/24/2022]
|