1
|
Arcusa R, Carillo JÁ, Cerdá B, Durand T, Gil-Izquierdo Á, Medina S, Galano JM, Zafrilla MP, Marhuenda J. Ability of a Polyphenol-Rich Nutraceutical to Reduce Central Nervous System Lipid Peroxidation by Analysis of Oxylipins in Urine: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Antioxidants (Basel) 2023; 12:antiox12030721. [PMID: 36978969 PMCID: PMC10045327 DOI: 10.3390/antiox12030721] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
Isoprostanes (IsoPs) are lipid peroxidation biomarkers that reveal the oxidative status of the organism without specifying which organs or tissues it occurs in. Similar compounds have recently been identified that can assess central nervous system (CNS) lipid peroxidation status, usually oxidated by reactive oxygen species. These compounds are the neuroprostanes (NeuroPs) derived from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and the F2t-dihomo-isoprotanes derived from adrenic acid (AdA). The aim of the present investigation was to evaluate whether the long-term nutraceutical consumption of high polyphenolic contents (600 mg) from fruits (such as berries) and vegetables shows efficacy against CNS lipid peroxidation in urine biomarkers. A total of 92 subjects (47 females, 45 males, age 34 ± 11 years old, weight 73.10 ± 14.29 kg, height 1.72 ± 9 cm, body mass index (BMI) 24.40 ± 3.43 kg/m2) completed a randomized, cross-over, double-blind study after an intervention of two periods of 16 weeks consuming either extract (EXT) or placebo (PLA) separated by a 4-week washout period. The results showed significant reductions in three AdA-derived metabolites, namely, 17-epi-17-F2t-dihomo-IsoPs (Δ −1.65 ng/mL; p < 0.001), 17-F2t-dihomo-IsoPs (Δ −0.17 ng/mL; p < 0.015), and ent-7(RS)-7-F2t-dihomo-IsoPs (Δ −1.97 ng/mL; p < 0.001), and one DHA-derived metabolite, namely, 4-F4t-NeuroP (Δ −7.94 ng/mL; p < 0.001), after EXT consumption, which was not observed after PLA consumption. These data seem to show the effectiveness of the extract for preventing CNS lipid peroxidation, as determined by measurements of oxylipins in urine through Ultra-High-Performance Liquid Chromatography triple quadrupole tandem mass spectrometry (UHPLC-QqQ-ESI-MS/MS).
Collapse
Affiliation(s)
- Raúl Arcusa
- Faculty of Health Sciences, Universidad Católica de San Antonio, 30107 Murcia, Spain; (R.A.); (J.Á.C.); (B.C.); (J.M.)
| | - Juan Ángel Carillo
- Faculty of Health Sciences, Universidad Católica de San Antonio, 30107 Murcia, Spain; (R.A.); (J.Á.C.); (B.C.); (J.M.)
| | - Begoña Cerdá
- Faculty of Health Sciences, Universidad Católica de San Antonio, 30107 Murcia, Spain; (R.A.); (J.Á.C.); (B.C.); (J.M.)
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR 5247, CNRS, Université de Montpellier, ENSCM 1919 Route de Mende, CEDEX 05, 34293 Montpellier, France; (T.D.); (J.-M.G.)
| | - Ángel Gil-Izquierdo
- Research Group on Quality Safety and Bioactivity of Plant Foods, Food Science and Technology Department, CEBAS-CSIC, 30100 Murcia, Spain; (Á.G.-I.); (S.M.)
| | - Sonia Medina
- Research Group on Quality Safety and Bioactivity of Plant Foods, Food Science and Technology Department, CEBAS-CSIC, 30100 Murcia, Spain; (Á.G.-I.); (S.M.)
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR 5247, CNRS, Université de Montpellier, ENSCM 1919 Route de Mende, CEDEX 05, 34293 Montpellier, France; (T.D.); (J.-M.G.)
| | - María Pilar Zafrilla
- Faculty of Health Sciences, Universidad Católica de San Antonio, 30107 Murcia, Spain; (R.A.); (J.Á.C.); (B.C.); (J.M.)
- Correspondence: ; Tel.: +34-685-607-716
| | - Javier Marhuenda
- Faculty of Health Sciences, Universidad Católica de San Antonio, 30107 Murcia, Spain; (R.A.); (J.Á.C.); (B.C.); (J.M.)
| |
Collapse
|
2
|
Mrakic-Sposta S, Biagini D, Bondi D, Pietrangelo T, Vezzoli A, Lomonaco T, Di Francesco F, Verratti V. OxInflammation at High Altitudes: A Proof of Concept from the Himalayas. Antioxidants (Basel) 2022; 11:antiox11020368. [PMID: 35204250 PMCID: PMC8869289 DOI: 10.3390/antiox11020368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/14/2022] Open
Abstract
High-altitude locations are fascinating for investigating biological and physiological responses in humans. In this work, we studied the high-altitude response in the plasma and urine of six healthy adult trekkers, who participated in a trek in Nepal that covered 300 km in 19 days along a route in the Kanchenjunga Mountain and up to a maximum altitude of 5140 m. Post-trek results showed an unbalance in redox status, with an upregulation of ROS (+19%), NOx (+28%), neopterin (+50%), and pro-inflammatory prostanoids, such as PGE2 (+120%) and 15-deoxy-delta12,14-PGJ2 (+233%). The isoprostane 15-F2t-IsoP was associated with low levels of TAC (−18%), amino-thiols, omega-3 PUFAs, and anti-inflammatory CYP450 EPA-derived mediators, such as DiHETEs. The deterioration of antioxidant systems paves the way to the overload of redox and inflammative markers, as triggered by the combined physical and hypoxic stressors. Our data underline the link between oxidative stress and inflammation, which is related to the concept of OxInflammation into the altitude hypoxia fashion.
Collapse
Affiliation(s)
- Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20162 Milan, Italy; (S.M.-S.); (A.V.)
| | - Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56126 Pisa, Italy; (T.L.); (F.D.F.)
- Correspondence:
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti, 66100 Chieti, Italy; (D.B.); (T.P.)
| | - Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti, 66100 Chieti, Italy; (D.B.); (T.P.)
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20162 Milan, Italy; (S.M.-S.); (A.V.)
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56126 Pisa, Italy; (T.L.); (F.D.F.)
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56126 Pisa, Italy; (T.L.); (F.D.F.)
| | - Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University “G. d’Annunzio” of Chieti, 66100 Chieti, Italy;
| |
Collapse
|
3
|
El-Ansary A, Chirumbolo S, Bhat RS, Dadar M, Ibrahim EM, Bjørklund G. The Role of Lipidomics in Autism Spectrum Disorder. Mol Diagn Ther 2021; 24:31-48. [PMID: 31691195 DOI: 10.1007/s40291-019-00430-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental syndrome commonly diagnosed in early childhood; it is usually characterized by impairment in reciprocal communication and speech, repetitive behaviors, and social withdrawal with loss in communication skills. Its development may be affected by a variety of environmental and genetic factors. Trained physicians diagnose and evaluate the severity of ASD based on clinical evaluations of observed behaviors. As such, this approach is inevitably dependent on the expertise and subjective assessment of those administering the clinical evaluations. There is a need to identify objective biological markers associated with diagnosis or clinical severity of the disorder. Several important issues and concerns exist regarding the diagnostic competence of the many abnormal plasma metabolites produced in the different biochemical pathways evaluated in individuals with ASD. The search for high-performing bio-analytes to diagnose and follow-up ASD development is still a major target in medicine. Dysregulation in the oxidative stress response and proinflammatory processes are major etiological causes of ASD pathogenesis. Furthermore, dicarboxylic acid metabolites, cholesterol-related metabolites, phospholipid-related metabolites, and lipid transporters and mediators are impaired in different pathological conditions that have a role in the ASD etiology. A mechanism may exist by which pro-oxidant environmental stressors and abnormal metabolites regulate clinical manifestations and development of ASD.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia.,Autism Research and Treatment Center, Riyadh, Saudi Arabia.,CONEM Saudi Autism Research Group, King Saud University, Riyadh, Saudi Arabia.,Therapeutic Chemistry Department, National Research Centre, Giza, Egypt
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,CONEM Scientific Secretary, Verona, Italy
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Eiman M Ibrahim
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway.
| |
Collapse
|
4
|
Andries A, Rozenski J, Vermeersch P, Mekahli D, Van Schepdael A. Recent progress in the LC-MS/MS analysis of oxidative stress biomarkers. Electrophoresis 2020; 42:402-428. [PMID: 33280143 DOI: 10.1002/elps.202000208] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/17/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
The presence of a dynamic and balanced equilibrium between the production of reactive oxygen (ROS) and nitrogen (RNS) species and the in-house antioxidant defense mechanisms is characteristic for a healthy body. During oxidative stress (OS), this balance is switched to increased production of ROS and RNS, exceeding the capacity of physiological antioxidant systems. This can cause damage to biological molecules, leading to loss of function and even cell death. Nowadays, there is increasing scientific and clinical interest in OS and the associated parameters to measure the degree of OS in biofluids. An increasing number of reports using LC-MS/MS methods for the analysis of OS biomarkers can be found. Since bioanalysis is usually complicated by matrix effects, various types of cleanup procedures are used to effectively separate the biomarkers from the matrix. This is an essential part of the analysis to prepare a reproducible and homogenous solution suitable for injection onto the column. The present review gives a summary of the chromatographic methods used for the determination of OS biomarkers in both urine and plasma, serum, and whole blood samples. The first part mainly describes the biological background of the different OS biomarkers, while the second part reports examples of chromatographic methods for the analysis of different metabolites connected with OS in biofluids, covering a period from 2015 till early 2020. The selected examples mainly include LC-MS/MS methods for isoprostanes, oxidized proteins, oxidized lipoproteins, and DNA/RNA biomarkers. The last part explains the clinical relevance of this review.
Collapse
Affiliation(s)
- Asmin Andries
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, Leuven, Belgium
| | - Jef Rozenski
- KU Leuven - Rega Institute for Medical Research, Medicinal Chemistry, Leuven, Belgium
| | - Pieter Vermeersch
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium.,Center for Metabolic Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Djalila Mekahli
- Department of Development and Regeneration, Laboratory of Pediatrics, PKD group, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Role of CAPE in reducing oxidative stress in animal models with traumatic brain injury. Ann Med Surg (Lond) 2020; 57:118-122. [PMID: 32760580 PMCID: PMC7390826 DOI: 10.1016/j.amsu.2020.07.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 01/26/2023] Open
Abstract
Introduction The central nervous system (CNS) is the most metabolically active organ characterized by high oxygen demand and relatively low anti-oxidative activity, which makes neurons and glia highly susceptible to damage by reactive oxygen and nitrogen byproducts as well as neurodegeneration. Free radicals are associated with secondary injuries that occur after a primary brain injury. Some of these free radical products include F2-Isoprostane (F2-IsoPs), malondialdehyde (MDA), 4-hydroxy-2-nonenal (4-HNE) and acrolein. Methods In this study we measured serum F2-IsoPs levels as markers of free radical activity in 10–12 week-old male Sprague-Dawley rats weighing 200–300 g, all rats (n = 10) subjected with a head injury according to the modified marmourou model, then divided into 2 groups, one group treated with CAPE (Caffeic Acid Phenethyl Ester) (n = 5) and the other not treated with CAPE (n = 5), serum levels in the two groups were compared starting from day-0 (before brain injury), day-4 and day-7. Results We found lower F2-IsoPs levels in the group that received the CAPE treatment compared to the group that did not receive the CAPE treatment. Conclusion CAPE is capable of significantly reducing oxidative stress in brain injury. The central nervous system (CNS) is the most metabolically active organ characterized by high oxygen demand and relatively low anti-oxidative activity. Free radicals are associated with secondary injuries that occur after a primary brain injury. Caffeic Acid Phenethyl Ester (CAPE) administration in a rat model with brain injury can reduce the formation of F2-Isoprostane (F2-IsoPs) as an indicator of oxidative stress in blood serum post-trauma.
Collapse
|
6
|
Saliva as a non-invasive tool for monitoring oxidative stress in swimmers athletes performing a VO 2max cycle ergometer test. Talanta 2020; 216:120979. [PMID: 32456903 DOI: 10.1016/j.talanta.2020.120979] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 01/07/2023]
Abstract
Biomarkers of oxidative stress are generally measured in blood and its derivatives. However, the invasiveness of blood collection makes the monitoring of such chemicals during exercise not feasible. Saliva analysis is an interesting approach in sport medicine because the collection procedure is easy-to-use and does not require specially-trained personnel. These features guarantee the collection of multiple samples from the same subject in a short span of time, thus allowing the monitoring of the subject before, during and after physical tests, training or competitions. The aim of this work was to evaluate the possibility of following the changes in the concentration of some oxidative stress markers in saliva samples taken over time by athletes under exercise. To this purpose, ketones (i.e. acetone, 2-butanone and 2-pentanone), aldehydes (i.e. propanal, butanal, and hexanal), α,β-unsaturated aldehydes (i.e. acrolein and methacrolein) and di-carbonyls (i.e. glyoxal and methylglyoxal) were derivatized with 2,4-dinitrophenylhydrazine, and determined by ultra-high performance liquid chromatography coupled to diode array detector. Prostaglandin E2, F2/E2-isoprostanes, F2-dihomo-isoprostanes, F4-neuroprostanes, and F2-dihomo-isofuranes were also determined by a reliable analytical procedure that combines micro-extraction by packed sorbent and ultra-high performance liquid chromatography-electrospray ionization tandem mass spectrometry. Overall the validation process showed that the methods have limits of detection in the range of units of ppb for carbonyls and tens to hundreds of ppt for isoprostanes and prostanoids, very good quantitative recoveries (90-110%) and intra- and inter-day precision lower than 15%. The proof of applicability of the proposed analytical approach was investigated by monitoring the selected markers of oxidative stress in ten swimmers performing a VO2max cycle ergo meter test. The results highlighted a clear increase of salivary by-products of oxidative stress during exercise, whereas a sharp decrease, approaching baseline values, of these compounds was observed in the recovery phase. This study opens up a new approach in the evaluation of oxidative stress and its relation to aerobic activity.
Collapse
|
7
|
García-Blanco A, Peña-Bautista C, Oger C, Vigor C, Galano JM, Durand T, Martín-Ibáñez N, Baquero M, Vento M, Cháfer-Pericás C. Reliable determination of new lipid peroxidation compounds as potential early Alzheimer Disease biomarkers. Talanta 2018; 184:193-201. [DOI: 10.1016/j.talanta.2018.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 11/28/2022]
|
8
|
Signorini C, De Felice C, Durand T, Galano JM, Oger C, Leoncini S, Ciccoli L, Carone M, Ulivelli M, Manna C, Cortelazzo A, Lee JCY, Hayek J. Relevance of 4-F 4t-neuroprostane and 10-F 4t-neuroprostane to neurological diseases. Free Radic Biol Med 2018; 115:278-287. [PMID: 29233794 DOI: 10.1016/j.freeradbiomed.2017.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/16/2017] [Accepted: 12/06/2017] [Indexed: 12/11/2022]
Abstract
F4-neuroprostanes (F4-NeuroPs) are non-enzymatic oxidized products derived from docosahexaenoic acid (DHA) and are suggested to be oxidative damage biomarkers of neurological diseases. However, 128 isomers can be formed from DHA oxidation and among them, 4(RS)-4-F4t-NeuroP (4-F4t-NeuroP) and 10(RS)-10-F4t-NeuroP (10-F4t-NeuroP) are the most studied. Here, we report the identification and the clinical relevance of 4-F4t-NeuroP and 10-F4t-NeuroP in plasma of four different neurological diseases, including multiple sclerosis (MS), autism spectrum disorders (ASD), Rett syndrome (RTT), and Down syndrome (DS). The identification and the optimization of the method were carried out by gas chromatography/negative-ion chemical ionization tandem mass spectrometry (GC/NICI-MS/MS) using chemically synthesized 4-F4t-NeuroP and 10-F4t-NeuroP standards and in oxidized DHA liposome. Both 4-F4t-NeuroP and 10-F4t-NeuroP were detectable in all plasma samples from MS (n = 16), DS (n = 16), ASD (n = 9) and RTT (n = 20) patients. While plasma 10-F4t-NeuroP content was significantly higher in patients of all diseases as compared to age and gender matched healthy control subjects (n = 61), 4-F4t-NeuroP levels were significantly higher in MS and RTT as compared to healthy controls. Significant positive relationships were observed between relative disease severity and 4-F4t-NeuroP levels (r = 0.469, P <0.0001), and 10-F4t-NeuroP levels (r = 0.757, P < 0.0001). The study showed that the plasma amount ratio of 10-F4t-NeuroP to 4-F4t-NeuroP and the plasma amount as individual isomer can be used to discriminate between different brain diseases. Overall, by comparing the different types of disease, our plasma data indicates that 4-F4t-NeuroP and 10-F4t -NeuroP: i) are biologically synthesized in vivo and circulated, ii) are related to clinical severity of neurological diseases, iii) are useful to identify shared pathogenetic pathways in distinct brain diseases, and iv) appears to be distinctive for different neurological conditions, thus representing potentially new biological disease markers. Our data strongly suggest that in vivo DHA oxidation follows preferential chemical rearrangements according to different brain diseases.
Collapse
Affiliation(s)
- Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Claudio De Felice
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Silvia Leoncini
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Lucia Ciccoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Marisa Carone
- Department of Medicine, Surgery, and Neuroscience, University of Siena, Siena, Italy
| | - Monica Ulivelli
- Department of Medicine, Surgery, and Neuroscience, University of Siena, Siena, Italy
| | - Caterina Manna
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Naples, Italy"
| | - Alessio Cortelazzo
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy; Clinical Pathology Laboratory Unit, University Hospital, AOUS, Siena, Italy
| | - Jetty Chung-Yung Lee
- The University of Hong Kong, School of Biological Sciences, Hong Kong Special Administrative Region
| | - Joussef Hayek
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|
9
|
Gessler NN, Filippovich SY, Bachurina GP, Kharchenko EA, Groza NV, Belozerskaya TA. Oxylipins and oxylipin synthesis pathways in fungi. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817060060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Insight into the contribution of isoprostanoids to the health effects of omega 3 PUFAs. Prostaglandins Other Lipid Mediat 2017; 133:111-122. [DOI: 10.1016/j.prostaglandins.2017.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/07/2017] [Accepted: 05/31/2017] [Indexed: 12/30/2022]
|
11
|
Galano JM, Lee YY, Oger C, Vigor C, Vercauteren J, Durand T, Giera M, Lee JCY. Isoprostanes, neuroprostanes and phytoprostanes: An overview of 25years of research in chemistry and biology. Prog Lipid Res 2017; 68:83-108. [PMID: 28923590 DOI: 10.1016/j.plipres.2017.09.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 02/07/2023]
Abstract
Since the beginning of the 1990's diverse types of metabolites originating from polyunsaturated fatty acids, formed under autooxidative conditions were discovered. Known as prostaglandin isomers (or isoprostanoids) originating from arachidonic acid, neuroprostanes from docosahexaenoic acid, and phytoprostanes from α-linolenic acid proved to be prevalent in biology. The syntheses of these compounds by organic chemists and the development of sophisticated mass spectrometry methods has boosted our understanding of the isoprostanoid biology. In recent years, it has become accepted that these molecules not only serve as markers of oxidative damage but also exhibit a wide range of bioactivities. In addition, isoprostanoids have emerged as indicators of oxidative stress in humans and their environment. This review explores in detail the isoprostanoid chemistry and biology that has been achieved in the past three decades.
Collapse
Affiliation(s)
- Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Yiu Yiu Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Joseph Vercauteren
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2300RC Leiden, The Netherlands
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
12
|
Michalczyk M, Czuba M, Zydek G, Zając A, Langfort J. Dietary Recommendations for Cyclists during Altitude Training. Nutrients 2016; 8:E377. [PMID: 27322318 PMCID: PMC4924218 DOI: 10.3390/nu8060377] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 05/30/2016] [Accepted: 06/12/2016] [Indexed: 01/08/2023] Open
Abstract
The concept of altitude or hypoxic training is a common practice in cycling. However, several strategies for training regimens have been proposed, like "live high, train high" (LH-TH), "live high, train low" (LH-TL) or "intermittent hypoxic training" (IHT). Each of them combines the effect of acclimatization and different training protocols that require specific nutrition. An appropriate nutrition strategy and adequate hydration can help athletes achieve their fitness and performance goals in this unfriendly environment. In this review, the physiological stress of altitude exposure and training will be discussed, with specific nutrition recommendations for athletes training under such conditions. However, there is little research about the nutrition demands of athletes who train at moderate altitude. Our review considers energetic demands and body mass or body composition changes due to altitude training, including respiratory and urinary water loss under these conditions. Carbohydrate intake recommendations and hydration status are discussed in detail, while iron storage and metabolism is also considered. Last, but not least the risk of increased oxidative stress under hypoxic conditions and antioxidant supplementation suggestions are presented.
Collapse
Affiliation(s)
- Małgorzata Michalczyk
- Department of Nutrition & Supplementation, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Mikołowska 72A, Katowice 40-065, Poland.
| | - Miłosz Czuba
- Department of Sports Training, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Mikołowska 72A, Katowice 40-065, Poland.
| | - Grzegorz Zydek
- Department of Nutrition & Supplementation, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Mikołowska 72A, Katowice 40-065, Poland.
| | - Adam Zając
- Department of Sports Training, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Mikołowska 72A, Katowice 40-065, Poland.
| | - Józef Langfort
- Department of Nutrition & Supplementation, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Mikołowska 72A, Katowice 40-065, Poland.
| |
Collapse
|
13
|
García-Flores LA, Medina S, Oger C, Galano JM, Durand T, Cejuela R, Martínez-Sanz JM, Ferreres F, Gil-Izquierdo Á. Lipidomic approach in young adult triathletes: effect of supplementation with a polyphenols-rich juice on neuroprostane and F2-dihomo-isoprostane markers. Food Funct 2016; 7:4343-4355. [DOI: 10.1039/c6fo01000h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
With adequate training, our juice rich in polyphenolic compounds has been able to influence the excretion values of oxidative stress biomarkers associated with the central nervous system.
Collapse
Affiliation(s)
| | - Sonia Medina
- Dept. of Food Science and Technology. CEBAS-CSIC. Campus de Espinardo 25
- 30100 Espinardo
- Spain
| | - Camille Oger
- Institut des Biomolécules Max Mousseron
- UMR 5247 CNRS-University of Montpellier – ENSCM
- Montpellier
- France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron
- UMR 5247 CNRS-University of Montpellier – ENSCM
- Montpellier
- France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron
- UMR 5247 CNRS-University of Montpellier – ENSCM
- Montpellier
- France
| | - Roberto Cejuela
- Faculty of Education
- University of Alicante
- Campus de San Vicent del Raspeig
- Alicante
- Spain
| | | | - Federico Ferreres
- Dept. of Food Science and Technology. CEBAS-CSIC. Campus de Espinardo 25
- 30100 Espinardo
- Spain
| | - Ángel Gil-Izquierdo
- Dept. of Food Science and Technology. CEBAS-CSIC. Campus de Espinardo 25
- 30100 Espinardo
- Spain
| |
Collapse
|