1
|
Balasubramanian P, Vijayarangam V, Deviparasakthi MKG, Palaniyandi T, Ravi M, Natarajan S, Viswanathan S, Baskar G, Wahab MRA, Surendran H. Implications and progression of peroxiredoxin 2 (PRDX2) in various human diseases. Pathol Res Pract 2024; 254:155080. [PMID: 38219498 DOI: 10.1016/j.prp.2023.155080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/16/2024]
Abstract
Peroxiredoxin 2 (PRDX2), a characteristic 2-Cys enzyme is one of the foremost effective scavenger proteins against reactive oxygen species (ROS) and hydrogen peroxide (H2O2) defending cells against oxidative stress. Dysregulation of this antioxidant raises the quantity of ROS and oxidative stress implicated in several diseases. PRDX2 lowers the generation of ROS that takes part in controlling several signalling pathways occurring in neurons, protecting them from stress caused by oxidation and an inflammatory harm. Depending on the aetiological variables, the kind of cancer, and the stage of tumour development, PRDX2 may behave either as an onco-suppressor or a promoter. However, overexpression of PRDX2 may be linked to the development of numerous cancers, including those of the colon, cervix, breast, and prostate. PRDX2 also plays a beneficial effect in inflammatory diseases. PRDX2 being a thiol-specific peroxidase, is known to control proinflammatory reactions. The spilling of PRDX2, on the other hand, accelerates cognitive impairment following a stroke by triggering an inflammatory reflex. PRDX2 expression patterns in vascular cells tend to be crucial to its involvement in cardiovascular diseases. In vascular smooth muscle cells, if the protein tyrosine phosphatase is restricted, PRDX2 could avoid the neointimal thickening which relies on platelet derived growth factor (PDGF), a vital component of vascular remodelling. A proper PRDX2 balance is therefore crucial. The imbalance causes a number of illnesses, including cancers, inflammatory diseases, cardiovascular ailments, and neurological and neurodegenerative problems which are discussed in this review.
Collapse
Affiliation(s)
| | - Varshini Vijayarangam
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | | | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India; Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, India.
| | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Sudhakar Natarajan
- Department of Tuberculosis, ICMR - National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | - Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | | | - Hemapreethi Surendran
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| |
Collapse
|
2
|
Ahmad Y, Sharma NK, Ahmad MF, Sharma M, Garg I, Bhargava K. Proteomic identification of novel differentiation plasma protein markers in hypobaric hypoxia-induced rat model. PLoS One 2014; 9:e98027. [PMID: 24842778 PMCID: PMC4026414 DOI: 10.1371/journal.pone.0098027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/28/2014] [Indexed: 12/24/2022] Open
Abstract
Background Hypobaric hypoxia causes complex changes in the expression of genes, including stress related genes and corresponding proteins that are necessary to maintain homeostasis. Whereas most prior studies focused on single proteins, newer methods allowing the simultaneous study of many proteins could lead to a better understanding of complex and dynamic changes that occur during the hypobaric hypoxia. Methods In this study we investigated the temporal plasma protein alterations of rat induced by hypobaric hypoxia at a simulated altitude of 7620 m (25,000 ft, 282 mm Hg) in a hypobaric chamber. Total plasma proteins collected at different time points (0, 6, 12 and 24 h), separated by two-dimensional electrophoresis (2-DE) and identified using matrix assisted laser desorption ionization time of flight (MALDI-TOF/TOF). Biological processes that were enriched in the plasma proteins during hypobaric hypoxia were identified using Gene Ontology (GO) analysis. According to their properties and obvious alterations during hypobaric hypoxia, changes of plasma concentrations of Ttr, Prdx-2, Gpx -3, Apo A-I, Hp, Apo-E, Fetub and Nme were selected to be validated by Western blot analysis. Results Bioinformatics analysis of 25 differentially expressed proteins showed that 23 had corresponding candidates in the database. The expression patterns of the eight selected proteins observed by Western blot were in agreement with 2-DE results, thus confirming the reliability of the proteomic analysis. Most of the proteins identified are related to cellular defense mechanisms involving anti-inflammatory and antioxidant activity. Their presence reflects the consequence of serial cascades initiated by hypobaric hypoxia. Conclusion/Significance This study provides information about the plasma proteome changes induced in response to hypobaric hypoxia and thus identification of the candidate proteins which can act as novel biomarkers.
Collapse
Affiliation(s)
- Yasmin Ahmad
- Peptide and Proteomics Division, DIPAS, DRDO, Ministry of Defence, Delhi, India
- * E-mail:
| | - Narendra K. Sharma
- Peptide and Proteomics Division, DIPAS, DRDO, Ministry of Defence, Delhi, India
| | | | - Manish Sharma
- Peptide and Proteomics Division, DIPAS, DRDO, Ministry of Defence, Delhi, India
| | - Iti Garg
- Department of Genomics, DIPAS, DRDO, Ministry of Defence, Delhi, India
| | - Kalpana Bhargava
- Peptide and Proteomics Division, DIPAS, DRDO, Ministry of Defence, Delhi, India
| |
Collapse
|
3
|
Diaz AJG, Tamae D, Yen Y, Li J, Wang T. Enhanced radiation response in radioresistant MCF-7 cells by targeting peroxiredoxin II. BREAST CANCER-TARGETS AND THERAPY 2013; 5:87-101. [PMID: 24648762 PMCID: PMC3929248 DOI: 10.2147/bctt.s51378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In our previous study, we identified that a protein target, peroxiredoxin II (PrxII), is overexpressed in radioresistant MCF+FIR3 breast-cancer cells and found that its expression and function is associated with breast-cancer radiation sensitivity or resistance. Small interference RNA (siRNA) targeting PrxII gene expression was able to sensitize MCF+FIR3 radioresistant breast-cancer cells to ionizing radiation. The major focus of this work was to investigate how the radiation response of MCF+FIR3 radioresistant cells was affected by the siRNA that inhibits PrxII gene expression. Our results, presented here, show that silencing PrxII gene expression increased cellular toxicity by altering cellular thiol status, inhibiting Ca(2+) efflux from the cells, and perturbing the intracellular Ca(2+) homeostasis. By combining radiotherapy and siRNA technology, we hope to develop new therapeutic strategies that may have potential to enhance the efficacy of chemotherapeutic agents due to this technology's property of targeting to specific cancer-related genes.
Collapse
Affiliation(s)
- Anthony Joseph Gomez Diaz
- Department of Chemistry and Biochemistry, California State University at Dominguez Hills, Carson, CA
| | - Daniel Tamae
- Center of Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania, Philadelphia, PA
| | - Yun Yen
- Department of Clinical and Molecular Pharmacology, Beckman Research Institute of City of Hope National Medical Center, Duarte, CA
| | - Jianjian Li
- Department of Radiation Oncology, University of California Davis, Sacramento, CA, USA
| | - Tieli Wang
- Department of Chemistry and Biochemistry, California State University at Dominguez Hills, Carson, CA
| |
Collapse
|
4
|
Lu W, Fu Z, Wang H, Feng J, Wei J, Guo J. Peroxiredoxin 2 knockdown by RNA interference inhibits the growth of colorectal cancer cells by downregulating Wnt/β-catenin signaling. Cancer Lett 2013; 343:190-9. [PMID: 24125860 DOI: 10.1016/j.canlet.2013.10.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/27/2013] [Accepted: 10/01/2013] [Indexed: 11/24/2022]
Abstract
Peroxiredoxin 2 (Prdx2) has been shown to act as an antioxidant whose main function is to reduce hydrogen peroxide (H2O2) in cells, and Prdx2 is abnormally elevated in colorectal cancer (CRC). However, the functional significance of this up-regulation and the detailed molecular mechanism behind the regulatory effect of Prdx2 on the growth of CRC cells have not been elucidated. In this study, we demonstrated that Prdx2 knockdown using a lentiviral vector-mediated specific shRNA inhibited cell growth, stimulated apoptosis, and augmented the production of endogenous reactive oxygen species (ROS). Further, silencing of Prdx2 resulted in an altered expression of proteins associated with the Wnt signaling pathway. Finally, Prdx2 knockdown contributed to attenuated CRC growth in BALB/c nude mice. In conclusion, these findings demonstrate that the regulatory effects of Prdx2 can be partially attributed to Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Weidong Lu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Zhongxue Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| | - Hao Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jihong Feng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jinlai Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jinbao Guo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
5
|
Thimerosal-Derived Ethylmercury Is a Mitochondrial Toxin in Human Astrocytes: Possible Role of Fenton Chemistry in the Oxidation and Breakage of mtDNA. J Toxicol 2012; 2012:373678. [PMID: 22811707 PMCID: PMC3395253 DOI: 10.1155/2012/373678] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/07/2012] [Accepted: 05/21/2012] [Indexed: 11/17/2022] Open
Abstract
Thimerosal generates ethylmercury in aqueous solution and is widely used as preservative. We have investigated the toxicology of Thimerosal in normal human astrocytes, paying particular attention to mitochondrial function and the generation of specific oxidants. We find that ethylmercury not only inhibits mitochondrial respiration leading to a drop in the steady state membrane potential, but also concurrent with these phenomena increases the formation of superoxide, hydrogen peroxide, and Fenton/Haber-Weiss generated hydroxyl radical. These oxidants increase the levels of cellular aldehyde/ketones. Additionally, we find a five-fold increase in the levels of oxidant damaged mitochondrial DNA bases and increases in the levels of mtDNA nicks and blunt-ended breaks. Highly damaged mitochondria are characterized by having very low membrane potentials, increased superoxide/hydrogen peroxide production, and extensively damaged mtDNA and proteins. These mitochondria appear to have undergone a permeability transition, an observation supported by the five-fold increase in Caspase-3 activity observed after Thimerosal treatment.
Collapse
|
6
|
Iq KC, Shu-Chien AC. Proteomics of buccal cavity mucus in female tilapia fish (Oreochromis spp.): a comparison between parental and non-parental fish. PLoS One 2011; 6:e18555. [PMID: 21533134 PMCID: PMC3080365 DOI: 10.1371/journal.pone.0018555] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 03/04/2011] [Indexed: 01/01/2023] Open
Abstract
Mouthbrooding is an elaborate form of parental care displayed by many teleost species. While the direct benefits of mouthbrooding such as protection and transportation of offsprings are known, it is unclear if mouthbrooding offers additional benefits to embryos during incubation. In addition, mouthbrooding could incur negative costs on parental fish, due to limited feeding opportunities. Parental tilapia fish (Oreochromis spp.) display an elaborated form of parental care by incubating newly hatched embryos in oral buccal cavity until the complete adsorption of yolk sac. In order to understand the functional aspects of mouthbrooding, we undertake a proteomics approach to compare oral mucus sampled from mouthbrooders and non-mouthbrooders, respectively. Majority of the identified proteins have also been previously identified in other biological fluids or mucus-rich organs in different organisms. We also showed the upregulation of 22 proteins and down regulation of 3 proteins in mucus collected from mouthbrooders. Anterior gradient protein, hemoglobin beta-A chain and alpha-2 globin levels were lower in mouthbrooder samples. Mouthbrooder oral mucus collectively showed increase levels of proteins related to cytoskeletal properties, glycolytic pathway and mediation of oxidative stress. Overall the findings suggest cellular stress response, probably to support production of mucus during mouthbrooding phase.
Collapse
Affiliation(s)
- Koe Chun Iq
- School of Biological Sciences, Universiti
Sains Malaysia, Minden, Penang, Malaysia
| | - Alexander Chong Shu-Chien
- School of Biological Sciences, Universiti
Sains Malaysia, Minden, Penang, Malaysia
- Assay Development Division, Malaysian
Institute of Pharmaceuticals and Nutraceuticals, Ministry of Science, Technology
and Innovation, Gelugor, Penang, Malaysia
- * E-mail:
| |
Collapse
|
7
|
Dangre AJ, Manning S, Brouwer M. Effects of cadmium on hypoxia-induced expression of hemoglobin and erythropoietin in larval sheepshead minnow, Cyprinodon variegatus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 99:168-175. [PMID: 20447699 DOI: 10.1016/j.aquatox.2010.04.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/12/2010] [Accepted: 04/17/2010] [Indexed: 05/29/2023]
Abstract
Hypoxia and toxic metals are two common stressors found in the estuarine environment. To date little information is available on the combined effects of these stressors on early larval development in fish. We investigated the effect of cadmium and hypoxia exposure alone as well in combination on larval Cyprinodon variegatus. The LC(10) for cadmium was determined to be 0.3 ppm in a 96 h acute exposure. This concentration was used in all studies. Cadmium in larvae increased significantly with exposure time (1, 3, 5 and 7 days post-hatch). The increase was proportional to body weight and not affected by hypoxia. Cadmium responsive genes were identified by suppression subtractive hybridization (SSH) in Cyprinodon variegatus larvae after exposure to cadmium for 1, 3, 5 and 7 days. We obtained over 700 sequences from the cadmium cDNA library. Blast search of ESTs suggested that cadmium modulates multiple physiological processes. Pertinent to this study, cadmium was found to down-regulate both embryonic alpha and beta globin, which are expressed in erythrocytes generated during the first, or primitive, wave of erythropoiesis in teleosts. Hemoglobin (Hb) and erythropoietin (Epo) (the hormone that promotes red blood cell production) are known hypoxia-inducible genes. To explore the possibility that cadmium might offset the hypoxia-induced expression of Hb and Epo, we investigated the expression of both genes following hypoxia, cadmium and combined exposures for 1, 3, 5 and 7 days post-hatch. Since Epo had not yet been identified in C. variegatus we first successfully cloned a partial coding sequence of the C. variegatus hormone. Subsequent studies revealed that expression levels of Hb and Epo remained unchanged in the normoxic controls during the time course of the study. Hypoxia increased Epo expression relative to normoxic controls, on days 3, 5 and 7, while cadmium in hypoxia inhibited the increase. Only the changes on days 5 and 7 were statistically significant. Hypoxia also lead to a modest, but significant induction of Hb after 5 days. However, in spite of the Cd-induced down-regulation of Epo on day 5, Cd did not affect the hypoxia-induced expression of embryonic Hb at this time point. It appears therefore that Epo has only limited effect on primitive erythropoiesis in C. variegatus.
Collapse
Affiliation(s)
- A J Dangre
- Department of Coastal Sciences, The University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564, USA
| | | | | |
Collapse
|
8
|
Jin YC, Lee HG, Xu CX, Han JA, Choi SH, Song MK, Kim YJ, Lee KB, Kim SK, Kang HS, Cho BW, Shin TS, Choi YJ. Proteomic analysis of endogenous conjugated linoleic acid biosynthesis in lactating rats and mouse mammary gland epithelia cells (HC11). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:745-51. [DOI: 10.1016/j.bbapap.2009.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 11/13/2009] [Accepted: 11/18/2009] [Indexed: 10/20/2022]
|
9
|
Wang T, Tamae D, LeBon T, Shively JE, Yen Y, Li JJ. The role of peroxiredoxin II in radiation-resistant MCF-7 breast cancer cells. Cancer Res 2006; 65:10338-46. [PMID: 16288023 DOI: 10.1158/0008-5472.can-04-4614] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although several signaling pathways have been suggested to be involved in the cellular response to ionizing radiation, the molecular basis of tumor resistance to radiation remains elusive. We have developed a unique model system based upon the MCF-7 human breast cancer cell line that became resistant to radiation treatment (MCF+FIR30) after exposure to chronic ionizing radiation. By proteomics analysis, we found that peroxiredoxin II (PrxII), a member of a family of peroxidases, is up-regulated in the radiation-derived MCF+FIR3 cells but not in the MCF+FIS4 cells that are relatively sensitive to radiation. Both MCF+FIR3 and MCF+FIS4 cell lines are from MCF+FIR30 populations. Furthermore, the resistance to ionizing radiation can be partially reversed by silencing the expression of PrxII by PrxII/small interfering RNA treatment of MCF+FIR3 resistant cells, suggesting that PrxII is not the sole factor responsible for the resistant phenotype. The relevance of this mechanism was further confirmed by the increased radioresistance in PrxII-overexpressing MCF+FIS4 cells when compared with vector control cells. The up-regulation of the PrxII protein in radioresistant cancer cells suggested that human peroxiredoxin plays an important role in eliminating the generation of reactive oxygen species by ionizing radiation. The present finding, together with the observation that PrxII is also up-regulated in response to ionizing radiation in other cell systems, strengthens the hypothesis that the PrxII antioxidant protein is involved in the cellular response to ionizing radiation and functions to reduce the intracellular reactive oxygen species levels, resulting in increased resistance of breast cancer cells to ionizing radiation.
Collapse
Affiliation(s)
- Tieli Wang
- Department of Chemistry, California State University, Carson, California 90072, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Chen JH, Chang YW, Yao CW, Chiueh TS, Huang SC, Chien KY, Chen A, Chang FY, Wong CH, Chen YJ. Plasma proteome of severe acute respiratory syndrome analyzed by two-dimensional gel electrophoresis and mass spectrometry. Proc Natl Acad Sci U S A 2004; 101:17039-44. [PMID: 15572443 PMCID: PMC535397 DOI: 10.1073/pnas.0407992101] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have investigated the plasma proteome by using 2D gel electrophoresis and MS from patients with severe acute respiratory syndrome (SARS). A complete proteomic analysis was performed on four patients with SARS in different time courses, and a total of 38 differential spots were selected for protein identification. Most of the proteins identified are acute phase proteins, and their presence represents the consequence of serial cascades initiated by SARS-coronavirus infection. There are several proteins that have never been identified in plasma before using 2D gel electrophoresis, among which peroxiredoxin II was chosen for further study by analyzing additional 20 plasma samples from patients with probable and suspected SARS and patients with fever, respectively. The results showed that the level of plasma peroxiredoxin II in patients with SARS is significantly high and could be secreted by T cells. Taken together, our findings indicate that active innate immune responses, along with the oxidation-associated injuries, may play a major role in the pathogenesis of SARS.
Collapse
Affiliation(s)
- Jenn-Han Chen
- School of Dentistry, Tri-Service General Hospital, National Defense Medical Center, National Defense University, Taipei 114, Taiwan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Geiben-Lynn R, Kursar M, Brown NV, Addo MM, Shau H, Lieberman J, Luster AD, Walker BD. HIV-1 antiviral activity of recombinant natural killer cell enhancing factors, NKEF-A and NKEF-B, members of the peroxiredoxin family. J Biol Chem 2003; 278:1569-74. [PMID: 12421812 DOI: 10.1074/jbc.m209964200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
CD8(+) T-cells are a major source for the production of non-cytolytic factors that inhibit HIV-1 replication. In order to characterize further these factors, we analyzed gene expression profiles of activated CD8(+) T-cells using a human cDNA expression array containing 588 human cDNAs. mRNA for the chemokine I-309 (CCL1), the cytokines granulocyte-macrophage colony-stimulating factor and interleukin-13, and natural killer cell enhancing factors (NKEF) -A and -B were up-regulated in bulk CD8(+) T-cells from HIV-1 seropositive individuals compared with seronegative individuals. Recombinant NKEF-A and NKEF-B inhibited HIV-1 replication when exogenously added to acutely infected T-cells at an ID(50) (dose inhibiting HIV-1 replication by 50%) of approximately 130 nm (3 microg/ml). Additionally, inhibition against dual-tropic simian immunodeficiency virus and dual-tropic simian-human immunodeficiency virus was found. T-cells transfected with NKEF-A or NKEF-B cDNA were able to inhibit 80-98% HIV-1 replication in vitro. Elevated plasma levels of both NKEF-A and NKEF-B proteins were detected in 23% of HIV-infected non-treated individuals but not in persons treated with highly active antiviral therapy or uninfected persons. These results indicate that the peroxiredoxin family members NKEF-A and NKEF-B are up-regulated in activated CD8(+) T-cells in HIV infection, and suggest that these antioxidant proteins contribute to the antiviral activity of CD8(+) T-cells.
Collapse
Affiliation(s)
- Ralf Geiben-Lynn
- Partners AIDS Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02129, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kim SH, Fountoulakis M, Cairns N, Lubec G. Protein levels of human peroxiredoxin subtypes in brains of patients with Alzheimer's disease and Down syndrome. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2002:223-35. [PMID: 11771746 DOI: 10.1007/978-3-7091-6262-0_18] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human peroxiredoxin (Prx) play important roles in eliminating hydrogen peroxide generated during cellular mechanisms using electrons from thioredoxin (Trx). Oxidative stress induced by reactive oxygen species (ROS) such as hydrogen peroxide has been implicated in the pathogenesis of several neurodegenerative diseases. We applied the proteomic approach to study protein levels of three subtypes of human Prx in brain regions from patients with Alzheimer's disease (AD) and Down Syndrome (DS). Protein levels of Prx-I and Prx-II were significantly increased in AD and DS. Protein levels of Prx-III, a mitochondrial protein, however, were significantly decreased. We conclude that increased protein levels of Prx-I and Prx-II could provide protection against neuronal cell death induced by hydrogen peroxide. Decreased protein levels of Prx-III could be caused by mitochondrial damage shown in AD and DS. Showing upregulated Prx protein levels provides evidence for the involvement of ROS in the pathogenesis of AD and DS.
Collapse
Affiliation(s)
- S H Kim
- Department of Pediatrics, University of Vienna, Austria
| | | | | | | |
Collapse
|
13
|
Harris JR, Schröder E, Isupov MN, Scheffler D, Kristensen P, Littlechild JA, Vagin AA, Meissner U. Comparison of the decameric structure of peroxiredoxin-II by transmission electron microscopy and X-ray crystallography. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1547:221-34. [PMID: 11410278 DOI: 10.1016/s0167-4838(01)00184-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The decameric human erythrocyte protein torin is identical to the thiol-specific antioxidant protein-II (TSA-II), also termed peroxiredoxin-II (Prx-II). Single particle analysis from electron micrographs of Prx-II molecules homogeneously orientated across holes in the presence of a thin film of ammonium molybdate and trehalose has facilitated the production of a >/=20 A 3-D reconstruction by angular reconstitution that emphasises the D5 symmetry of the ring-like decamer. The X-ray structure for Prx-II was fitted into the transmission electron microscopic reconstruction by molecular replacement. The surface-rendered transmission electron microscopy (TEM) reconstruction correlates well with the solvent-excluded surface of the X-ray structure of the Prx-II molecule. This provides confirmation that transmission electron microscopy of negatively stained specimens, despite limited resolution, has the potential to reveal a valid representation of surface features of protein molecules. 2-D crystallisation of the Prx-II protein on mica as part of a TEM study resulted in the formation of a p2 crystal form with parallel linear arrays of stacked rings. This latter 2-D form correlates well with that observed from the 2.7 A X-ray structure of Prx-II solved from a new orthorhombic 3-D crystal form.
Collapse
Affiliation(s)
- J R Harris
- Institute of Zoology, University of Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Simzar S, Ellyin R, Shau H, Sarafian TA. Contrasting antioxidant and cytotoxic effects of peroxiredoxin I and II in PC12 and NIH3T3 cells. Neurochem Res 2000; 25:1613-21. [PMID: 11152390 DOI: 10.1023/a:1026670620633] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We examined the impact of peroxiredoxin-I (Prx-I) and peroxiredoxin-II (Prx-II) stable transduction on oxidative stress in PC12 neurons and NIH3T3 fibroblasts and found variability depending on cell type and Prx subtype. In PC12 neurons, Prx-II suppressed reactive oxygen species (ROS) generation by 36% (p < 0.01) relative to vector-infected control cells. However, in NIH3T3 fibroblasts, Prx-II overexpression resulted in a 97% (p < 0.01) increase in ROS generation. Prx-I transduction elevated ROS generation in PC12 cells. The effect of Prx-I on PC12 cells was potentiated in the presence of menadione, and suppressed by an inhibitor of nitric oxide synthetase. Prx-II transduction resulted in 25-35% lower levels of glutathione (GSH) in both cell types, while Prx-I transduction increased GSH levels in neurons and decreased GSH and caspase-3 activity in fibroblasts. Prx-I and Prx-II also had differing effects on cell viability. These results suggest that Prx-I and Prx-II can either increase or decrease intracellular oxidative stress depending on cell type or experimental conditions, particularly conditions affecting nitric oxide levels.
Collapse
Affiliation(s)
- S Simzar
- Department of Medicine, Center for Health Sciences, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
15
|
Shau H, Merino A, Chen L, Shih CC, Colquhoun SD. Induction of peroxiredoxins in transplanted livers and demonstration of their in vitro cytoprotection activity. Antioxid Redox Signal 2000; 2:347-54. [PMID: 11229538 DOI: 10.1089/ars.2000.2.2-347] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Peroxiredoxin (Prx)-I and -II belong to a new class of antioxidants. Here, we report that they are induced by ischemia/reperfusion (I/R) in transplanted livers. Hypothesizing that Prxs are induced to protect liver from oxidative damage, we transduced these human genes into murine NIH-3T3 cells. The overexpressed Prxs made the cells more resistant to t-butylhydroperoxide-induced apoptosis. These results indicate that Prx-I and Prx-II are induced by the transplantation process and can protect cells against oxidant damage in tissue culture. Thus, proper genetic manipulations of Prxs may be useful in increasing the success rate of organ transplantation.
Collapse
Affiliation(s)
- H Shau
- Division of Surgical Oncology, UCLA School of Medicine, Los Angeles, CA 90095-1782, USA.
| | | | | | | | | |
Collapse
|
16
|
Sarafian TA, Magallanes JA, Shau H, Tashkin D, Roth MD. Oxidative stress produced by marijuana smoke. An adverse effect enhanced by cannabinoids. Am J Respir Cell Mol Biol 1999; 20:1286-93. [PMID: 10340948 DOI: 10.1165/ajrcmb.20.6.3424] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Marijuana (MJ) smoking produces inflammation, edema, and cell injury in the tracheobronchial mucosa of smokers and may be a risk factor for lung cancer. Because oxidative stress may mediate some of these effects, this study was designed to test the hypothesis that cannabinoids in MJ smoke contribute to cellular oxidative stress. Oxidative stress was evaluated in an endothelial cell line (ECV 304) following exposure to smoke produced from MJ cigarettes containing either 0, 1.77, or 3.95% Delta9-tetrahydrocannabinol (Delta9-THC). Brief exposure to smoke from 3.95% MJ cigarettes stimulated the formation of reactive oxygen species (ROS) by 80% over control levels and lowered intracellular glutathione levels by 81%. Smoke-induced ROS generation increased in a dose- and time-dependent manner. In contrast, exposure to smoke from MJ containing 0% Delta9-THC produced no increase in ROS despite a 70% decline in glutathione levels. Smoke from MJ containing 1.77% Delta9-THC stimulated intermediate levels of ROS. A brief, 30-min exposure to MJ smoke, regardless of the Delta9-THC content, also induced necrotic cell death that increased steadily up to 48 h of observation. MJ smoke passed through a Cambridge filter that removed particulate matter was 3.4-fold more active in ROS production compared with unfiltered smoke, suggesting that most of the oxidative effects are produced by the gaseous phase. Alveolar macrophages obtained from habitual MJ smokers displayed low levels of glutathione compared with macrophages from nonsmokers. We conclude that MJ smoke containing Delta9-THC is a potent source of cellular oxidative stress that could contribute significantly to cell injury and dysfunction in the lungs of smokers.
Collapse
Affiliation(s)
- T A Sarafian
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California at Los Angeles School of Medicine, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
17
|
Sarafian TA, Verity MA, Vinters HV, Shih CCY, Shi L, Ji XD, Dong L, Shau H. Differential expression of peroxiredoxin subtypes in human brain cell types. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19990415)56:2<206::aid-jnr10>3.0.co;2-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Differential expression of peroxiredoxin subtypes in human brain cell types. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19990415)56:2<206::aid-jnr1>3.0.co;2-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Butterfield LH, Merino A, Golub SH, Shau H. From cytoprotection to tumor suppression: the multifactorial role of peroxiredoxins. Antioxid Redox Signal 1999; 1:385-402. [PMID: 11233141 DOI: 10.1089/ars.1999.1.4-385] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the past decade, a new family of highly conserved antioxidant enzymes, Peroxiredoxins (Prxs), have been discovered and defined. There are two major Prx subfamilies: one subfamily uses two conserved cysteines (2-Cys) and the other uses 1-Cys to scavenge reactive oxygen species (ROS). This review focuses on the four mammalian 2-Cys members (Prx I-IV) that utilize thioredoxin as the electron donor for antioxidation. The array of biological activities of these proteins suggests that they may be evolutionarily important for cell function. For example, Prxs are capable of protecting cells from ROS insult and regulating the signal transduction pathways that utilize c-Abl, caspases, nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1) to influence cell growth and apoptosis. Prxs are also essential for red blood cell (RBC) differentiation and are capable of inhibiting human immunodeficiency virus (HIV) infection and organ transplant rejection. Distribution patterns indicate that Prxs are highly expressed in the tissues and cells at risk for diseases related to ROS toxicity, such as Alzheimer's and Parkinson's diseases and atherosclerosis. This interesting correlation suggests that Prxs are protective against ROS toxicity, yet overwhelmed by oxidative stress in some cells. Prxs tend to form large aggregates at high concentrations, a feature that may interfere with their normal protective function or may even render them cytotoxic. Imbalance in the expression of subtypes can also potentially increase their susceptibility to oxidative stress. Understanding the function and biological role of Prxs may lead to important discoveries about the cellular dysfunction of ROS-related diseases ranging from atherosclerosis to cancer to neurodegenerative diseases.
Collapse
Affiliation(s)
- L H Butterfield
- Division of Surgical Oncology, UCLA School of Medicine, Los Angeles, CA 90095-1782, USA
| | | | | | | |
Collapse
|
20
|
Shau H, Huang AC, Faris M, Nazarian R, de Vellis J, Chen W. Thioredoxin peroxidase (natural killer enhancing factor) regulation of activator protein-1 function in endothelial cells. Biochem Biophys Res Commun 1998; 249:683-6. [PMID: 9731197 DOI: 10.1006/bbrc.1998.9129] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thioredoxin peroxidase-1 (TxP-1), originally cloned as natural killer enhancing factor-B, belongs to a highly conserved antioxidant family. Tumor necrosis factor-alpha (TNF) activates the expression of activator protein-1 (AP-1) responsive genes. We show here that over-expression of TxP-1 blocks TNF-induced AP-1 activation in endothelial ECV304 cells, which was demonstrated by three independent experimental protocols: electromobility shift assay with AP-1 oligonucleotide probe; reporter gene expression with AP-1 binding site, and interleukin-8 production, which is dependent on AP-1. These results are consistent with the role of TxP-1 as an antioxidant and the previous reports that TNF-induced reactive oxygen species were responsible for AP-1 activation.
Collapse
Affiliation(s)
- H Shau
- Division of Surgical Oncology, UCLA School of Medicine 90095, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Sarafian TA, Huang C, Kim A, de Vellis J, Shau H. Expression of the antioxidant gene NKEF in the central nervous system. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1998; 34:39-51. [PMID: 9778645 DOI: 10.1007/bf02815135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Free radicals and the oxidative stress they impose can cause serious injury in the nervous system and contribute to pathology associated with a wide variety of degenerative and traumatic disorders. In this study, we examined the expression of an antioxidant defense gene, nkef, in human tissue and isolated populations of rat brain cells using Western and Northern blot analysis. NKEF protein was expressed in human brain, liver, kidney, muscle, and lung. The human endothelial cell line ECV expressed a 25-kDa band in addition to the 22-kDa band normally observed. In the central nervous system, a 22-kDa NKEF band was present in cortical gray and white matter, hippocampus, cerebellum, and spinal cord in roughly similar amounts. Expression of NKEF-A and NKEF-B subtypes was evaluated by Northern analysis of cultured cell types from embryonic rat brain. Astrocyte and microglia expressed both 22- and 25-kDa bands, whereas cortical neurons and oligodendrocytes contained only the 22-kDa protein band. Northern blot analysis of these cell types revealed low levels of NKEF-A message in neurons and oligodendrocytes, and relatively low levels of NKEF-B in microglia. Differential expression of these antioxidant defense genes may contribute to the selective vulnerability of brain cell types to specific kinds of oxidative stress.
Collapse
Affiliation(s)
- T A Sarafian
- Department of Pathology and Experimental Medicine, UCLA School of Medicine 90095, USA
| | | | | | | | | |
Collapse
|
22
|
Kim AT, Sarafian TA, Shau H. Characterization of antioxidant properties of natural killer-enhancing factor-B and induction of its expression by hydrogen peroxide. Toxicol Appl Pharmacol 1997; 147:135-42. [PMID: 9356316 DOI: 10.1006/taap.1997.8270] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Natural killer-enhancing factor B (NKEF-B) belongs to a highly conserved family of recently discovered antioxidants. The role of NKEF-B as an antioxidant was demonstrated by its protection of transfected cells to oxidative damage by hydrogen peroxide. To further characterize the antioxidant properties of NKEF-B, we compared the sensitivity of a human endothelial cell line ECV304 and its transfectant, B/1 that hyperexpresses NKEF-B, to various oxidants. In addition, we investigated the changes in the expression of NKEF-B mRNA upon oxidative stress. We found that B/1 was significantly more resistant than the control cells to the oxidative stresses caused by t-butyl hydroperoxide (t-BHP) and methyl mercury (MeHg). In contrast, there was no difference in the sensitivity of B/1 and the control cells to sulfhydryl reactive agents, diethyl maleate and diamide. B/1 was also as sensitive as the control cells to buthionine sulfoximine. The expression of NKEF-B mRNA was induced when the parental cell line ECV304 was treated with 2 mm HP. The induction reached a maximum level around 2 hr and decreased to the basal level around 4 hr. NKEF-A mRNA was not induced by HP. These results demonstrate antioxidant activities of NKEF-B toward prooxidants such as alkyl hydroperoxide and MeHg. Together with its antioxidant activity, the induction of NKEF-B by HP indicates that NKEF-B is an important oxidative stress protein providing protection against a variety of xenobiotic toxic agents.
Collapse
Affiliation(s)
- A T Kim
- Division of Surgical Oncology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | |
Collapse
|