1
|
Mohammed SW, El-Megrab NA, Hasan AA, Gomaa E. A remodeled ivermectin polycaprolactone-based nanoparticles for inhalation as a promising treatment of pulmonary inflammatory diseases. Eur J Pharm Sci 2024; 195:106714. [PMID: 38301972 DOI: 10.1016/j.ejps.2024.106714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
In recent years, ivermectin (IVM), an antiparasitic drug of low water solubility and poor oral bioavailability, has shown a profound effect on inflammatory mediators involved in diseases, such as acute lung injury, lung fibrosis, and COVID-19. In order to maximize drug bioavailability, polymeric nanoparticles can be delivered through nebulizers for pulmonary administration. The aim of this study was to prepare IVM-loaded polycaprolactone (PCL) nanoparticles (NPs) by solvent evaporation method. Box-Benkhen design (BBD) was used to optimize entrapment efficiency (Y1), percent drug release after 6 h (Y2), particle size (Y3), and zeta potential (Y4). A study was conducted examining the effects of three independent variables: PCL-IVM ratio (A), polyvinyl alcohol (PVA) concentration (B), and sonication time (C). The optimized formula was also compared to the oral IVM dispersion for lung deposition, in-vivo behavior, and pharmacokinetic parameters. The optimized IVM-PCL-NPs formulation was spherical in shape with entrapment efficiency (% EE) of 93.99 ± 0.96 %, about 62.71 ± 0.53 % released after 6 h, particle size of 100.07 ± 0.73 nm and zeta potential of -3.30 ± 0.23 mV. Comparing the optimized formulation to IVM-dispersion, the optimized formulation demonstrated greater bioavailability with greater area under the curve AUC0-t of 710.91 ± 15.22 μg .ml-1.h for lung and 637.97 ± 15.43 μg .ml-1.h for plasma. Based on the results, the optimized NPs accumulated better in lung tissues, exhibiting a twofold longer residence time (MRT 4.78 ± 0.55 h) than the IVM-dispersion (MRT 2.64 ± 0.64 h). The optimized nanoparticle formulation also achieved higher cmax (194.90 ± 5.01 μg/ml), and lower kel (0.21 ± 0.04 h-1) in lungs. Additionally, the level of inflammatory mediators was markedly reduced. To conclude, inhalable IVM-PCL-NPs formulation was suitable for the pulmonary delivery and may be one of the most promising approaches to increase IVM bioavailability for the successful treatment of a variety of lung diseases.
Collapse
Affiliation(s)
- Sabaa Wafiq Mohammed
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Nagia Ahmed El-Megrab
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Azza A Hasan
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Eman Gomaa
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
Sarfraz M, Arafat M, Zaidi SHH, Eltaib L, Siddique MI, Kamal M, Ali A, Asdaq SMB, Khan A, Aaghaz S, Alshammari MS, Imran M. Resveratrol-Laden Nano-Systems in the Cancer Environment: Views and Reviews. Cancers (Basel) 2023; 15:4499. [PMID: 37760469 PMCID: PMC10526844 DOI: 10.3390/cancers15184499] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The genesis of cancer is a precisely organized process in which normal cells undergo genetic alterations that cause the cells to multiply abnormally, colonize, and metastasize to other organs such as the liver, lungs, colon, and brain. Potential drugs that could modify these carcinogenic pathways are the ones that will be used in clinical trials as anti-cancer drugs. Resveratrol (RES) is a polyphenolic natural antitoxin that has been utilized for the treatment of several diseases, owing to its ability to scavenge free radicals, control the expression and activity of antioxidant enzymes, and have effects on inflammation, cancer, aging, diabetes, and cardioprotection. Although RES has a variety of pharmacological uses and shows promising applications in natural medicine, its unpredictable pharmacokinetics compromise its therapeutic efficacy and prevent its use in clinical settings. RES has been encapsulated into various nanocarriers, such as liposomes, polymeric nanoparticles, lipidic nanocarriers, and inorganic nanoparticles, to address these issues. These nanocarriers can modulate drug release, increase bioavailability, and reach therapeutically relevant plasma concentrations. Studies on resveratrol-rich nano-formulations in various cancer types are compiled in the current article. Studies relating to enhanced drug stability, increased therapeutic potential in terms of pharmacokinetics and pharmacodynamics, and reduced toxicity to cells and tissues are the main topics of this research. To keep the readers informed about the current state of resveratrol nano-formulations from an industrial perspective, some recent and significant patent literature has also been provided. Here, the prospects for nano-formulations are briefly discussed, along with machine learning and pharmacometrics methods for resolving resveratrol's pharmacokinetic concerns.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain P.O. Box 64141, United Arab Emirates
| | - Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain P.O. Box 64141, United Arab Emirates
| | - Syeda Huma H. Zaidi
- Department of Chemistry, Faculty of Science, Northern Border University, Arar 91431, Saudi Arabia
| | - Lina Eltaib
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Muhammad Irfan Siddique
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | | | - Abida Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia (M.I.)
| | - Shams Aaghaz
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Mohammed Sanad Alshammari
- Department of Computer Science, Faculty of Computing and Information Technology, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia (M.I.)
| |
Collapse
|
3
|
Emad NA, Sultana Y, Aqil M, Saleh A, Al kamaly O, Nasr FA. Omega-3 fatty acid-based self-microemulsifying drug delivery system (SMEDDS) of pioglitazone: Optimization, in vitro and in vivo studies. Saudi J Biol Sci 2023; 30:103778. [PMID: 37663396 PMCID: PMC10470285 DOI: 10.1016/j.sjbs.2023.103778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
Pioglitazone (PGL) is an effective insulin sensitizer, however, side effects such as accumulation of subcutaneous fat, edema, and weight gain as well as poor oral bioavailability limit its therapeutic potential for oral delivery. Recent studies have shown that combination of both, PGL and fish oil significantly reduce fasting plasma glucose, improve insulin resistance, and mitigate pioglitazone-induced subcutaneous fat accumulation and weight gain. Nevertheless, developing an effective oral drug delivery system for administration of both medications have not been explored yet. Thus, this study aimed to develop a self-micro emulsifying drug delivery system (SMEDDS) for the simultaneous oral administration of PGL and fish oil. SMEDDS was developed using concentrated fish oil,Tween® 80, and Transcutol HP and optimized by central composite design (CCD). The reconstituted, optimized PGL-SMEDDS exhibited a globule size of 142 nm, a PDI of 0.232, and a zeta potential of -20.9 mV. The in-vitro drug release study of the PGL-SMEDDS showed a first-order model kinetic release and demonstrated remarkable 15-fold enhancement compared to PGL suspension. Additionally, following oral administration in fasting albino Wistar rats, PGL-SMEDDS exhibited 3.4-fold and 1.4-fold enhancements in the AUC0-24h compared to PGL suspension and PGL marketed product. The accelerated stability testing showed that the optimized SMEDDS formulation was stable over a three-month storage period. Taken together, our findings demonstrate that the developed fish oil-based SMEDDS for PGL could serve as effective nanoplatforms for the oral delivery of PGL, warranting future studies to explore its synergistic therapeutic potential in rats.
Collapse
Affiliation(s)
- Nasr A. Emad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road, New Delhi 110062, India
| | - Yasmin Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road, New Delhi 110062, India
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road, New Delhi 110062, India
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O Box 84428, Riyadh 11671, Saudi Arabia
| | - Omkulthom Al kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O Box 84428, Riyadh 11671, Saudi Arabia
| | - Fahd A Nasr
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Di Nunzio MR, Douhal A. Robust Inclusion Complex of Topotecan Comprised within a Rhodamine-Labeled β-Cyclodextrin: Competing Proton and Energy Transfer Processes. Pharmaceutics 2023; 15:1620. [PMID: 37376069 DOI: 10.3390/pharmaceutics15061620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Monitoring the biological fate of medicaments within the environments of cancer cells is an important challenge which is nowadays the object of intensive studies. In this regard, rhodamine-based supramolecular systems are one of the most suitable probes used in drug delivery thanks to their high emission quantum yield and sensitivity to the environment which helps to track the medicament in real time. In this work, we used steady-state and time-resolved spectroscopy techniques to investigate the dynamics of the anticancer drug, topotecan (TPT), in water (pH ~6.2) in the presence of a rhodamine-labeled methylated β-cyclodextrin (RB-RM-βCD). A stable complex of 1:1 stoichiometry is formed with a Keq value of ~4 × 104 M-1 at room temperature. The fluorescence signal of the caged TPT is reduced due to: (1) the CD confinement effect; and (2) a Förster resonance energy transfer (FRET) process from the trapped drug to the RB-RM-βCD occurring in ~43 ps with 40% efficiency. These findings provide additional knowledge about the spectroscopic and photodynamic interactions between drugs and fluorescent functionalized CDs, and may lead to the design of new fluorescent CD-based host-guest nanosystems with efficient FRET to be used in bioimaging for drug delivery monitoring.
Collapse
Affiliation(s)
- Maria Rosaria Di Nunzio
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica and INAMOL, Universidad de Castilla-La Mancha, Av. Carlos III, s/n, 45071 Toledo, Spain
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica and INAMOL, Universidad de Castilla-La Mancha, Av. Carlos III, s/n, 45071 Toledo, Spain
| |
Collapse
|
5
|
Hassan N, Farooq U, Das AK, Sharma K, Mirza MA, Fatima S, Singh O, Ansari MJ, Ali A, Iqbal Z. In Silico Guided Nanoformulation Strategy for Circumvention of Candida albicans Biofilm for Effective Therapy of Candidal Vulvovaginitis. ACS OMEGA 2023; 8:6918-6930. [PMID: 36844532 PMCID: PMC9947946 DOI: 10.1021/acsomega.2c07718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Candidal vulvovaginitis involving multispecies of Candida and epithelium-bound biofilm poses a drug-resistant pharmacotherapeutic challenge. The present study aims for a disease-specific predominant causative organism resolution for the development of a tailored vaginal drug delivery system. The proposed work fabricates a luliconazole-loaded nanostructured lipid carrier-based transvaginal gel for combating Candida albicans biofilm and disease amelioration. The interaction and binding affinity of luliconazole against the proteins of C. albicans and biofilm were assessed using in silico tools. A systematic QbD analysis was followed to prepare the proposed nanogel using a modified melt emulsification-ultrasonication-gelling method. The DoE optimization was logically implemented to ascertain the effect of independent process variables (excipients concentration; sonication time) on dependent formulation responses (particle size; polydispersity index; entrapment efficiency). The optimized formulation was characterized for final product suitability. The surface morphology and dimensions were spherical and ≤300 nm, respectively. The flow behavior of an optimized nanogel (semisolid) was non-Newtonian similar to marketed preparation. The texture pattern of a nanogel was firm, consistent, and cohesive. The release kinetic model followed was Higuchi (nanogel) with a % cumulative drug release of 83.97 ± 0.69% in 48 h. The % cumulative drug permeated across a goat vaginal membrane was found to be 53.148 ± 0.62% in 8 h. The skin-safety profile was examined using a vaginal irritation model (in vivo) and histological assessments. The drug and proposed formulation(s) were checked against the pathogenic strains of C. albicans (vaginal clinical isolates) and in vitro established biofilms. The visualization of biofilms was done under a fluorescence microscope revealing mature, inhibited, and eradicated biofilm structures.
Collapse
Affiliation(s)
- Nazia Hassan
- Department
of Pharmaceutics, School of Pharmaceutical Education & Research
(SPER), Jamia Hamdard, New Delhi 110062, India
| | - Uzma Farooq
- Department
of Pharmaceutics, School of Pharmaceutical Education & Research
(SPER), Jamia Hamdard, New Delhi 110062, India
| | - Ayan Kumar Das
- Hamdard
Institute of Medical Sciences & Research, Jamia Hamdard, New Delhi 110062, India
| | - Kalicharan Sharma
- Department
of Pharmaceutical Chemistry, DPSRU, New Delhi 110017, India
| | - Mohd. Aamir Mirza
- Department
of Pharmaceutics, School of Pharmaceutical Education & Research
(SPER), Jamia Hamdard, New Delhi 110062, India
| | - Suhail Fatima
- Department
of Amraz-E-Niswan Wa Qabalat, School of Unani Medical Education &
Research (SUMER), Jamia Hamdard, New Delhi 110062, India
| | - Omana Singh
- Department
of Pharmaceutics, School of Pharmaceutical Education & Research
(SPER), Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Javed Ansari
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia
| | - Asgar Ali
- Department
of Pharmaceutics, School of Pharmaceutical Education & Research
(SPER), Jamia Hamdard, New Delhi 110062, India
| | - Zeenat Iqbal
- Department
of Pharmaceutics, School of Pharmaceutical Education & Research
(SPER), Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
6
|
Nano-Enabled Strategies for the Treatment of Lung Cancer: Potential Bottlenecks and Future Perspectives. Biomedicines 2023; 11:biomedicines11020473. [PMID: 36831009 PMCID: PMC9952953 DOI: 10.3390/biomedicines11020473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
On a global scale, lung cancer is acknowledged to be the major driver of cancer death attributable to treatment challenges and poor prognosis. Classical cancer treatment regimens, such as chemotherapy or radiotherapy, can be used to treat lung cancer, but the appended adverse effects limit them. Because of the numerous side effects associated with these treatment modalities, it is crucial to strive to develop novel and better strategies for managing lung cancer. Attributes such as enhanced bioavailability, better in vivo stability, intestinal absorption pattern, solubility, prolonged and targeted distribution, and the superior therapeutic effectiveness of numerous anticancer drugs have all been boosted with the emergence of nano-based therapeutic systems. Lipid-based polymeric and inorganic nano-formulations are now being explored for the targeted delivery of chemotherapeutics for lung cancer treatment. Nano-based approaches are pioneering the route for primary and metastatic lung cancer diagnosis and treatment. The implementation and development of innovative nanocarriers for drug administration, particularly for developing cancer therapies, is an intriguing and challenging task in the scientific domain. The current article provides an overview of the delivery methods, such as passive and active targeting for chemotherapeutics to treat lung cancer. Combinatorial drug therapy and techniques to overcome drug resistance in lung cancer cells, as potential ways to increase treatment effectiveness, are also discussed. In addition, the clinical studies of the potential therapies at different stages and the associated challenges are also presented. A summary of patent literature has also been included to keep readers aware of the new and innovative nanotechnology-based ways to treat lung cancer.
Collapse
|
7
|
Alshammari MK, Alghazwni MK, Alharbi AS, Alqurashi GG, Kamal M, Alnufaie SR, Alshammari SS, Alshehri BA, Tayeb RH, Bougeis RJM, Aljehani AA, Alotaibi NM, Abida A, Imran M. Nanoplatform for the Delivery of Topotecan in the Cancer Milieu: An Appraisal of its Therapeutic Efficacy. Cancers (Basel) 2022; 15:cancers15010065. [PMID: 36612067 PMCID: PMC9817931 DOI: 10.3390/cancers15010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Chemotherapy has been the predominant treatment modality for cancer patients, but its overall performance is still modest. Difficulty in penetration of tumor tissues, a toxic profile in high doses, multidrug resistance in an array of tumor types, and the differential architecture of tumor cells as they grow are some of the bottlenecks associated with the clinical usage of chemotherapeutics. Recent advances in tumor biology understanding and the emergence of novel targeted drug delivery tools leveraging various nanosystems offer hope for developing effective cancer treatments. Topotecan is a topoisomerase I inhibitor that stabilizes the transient TOPO I-DNA cleavable complex, leading to single-stranded breaks in DNA. Due to its novel mechanism of action, TOPO is reported to be active against various carcinomas, namely small cell lung cancer, cervical cancer, breast cancer, and ovarian cancer. Issues of cross-resistance with numerous drugs, rapid conversion to its inactive form in biological systems, appended adverse effects, and higher water solubility limit its therapeutic efficacy in clinical settings. Topotecan nanoformulations offer several benefits for enhancing the therapeutic action of this significant class of chemotherapeutics. The likelihood that the target cancer cells will be exposed to the chemotherapeutic drug while in the drug-sensitive s-phase is increased due to the slow and sustained release of the chemotherapeutic, which could provide for a sustained duration of exposure of the target cancer cells to the bioavailable drug and result in the desired therapeutic outcome. This article explores nanoenabled active and passive targeting strategies and combinatorial therapy employing topotecan to ameliorate various cancers, along with a glimpse of the clinical studies utilizing the said molecule.
Collapse
Affiliation(s)
- Mohammed Kanan Alshammari
- Department of Clinical Pharmacy, King Fahad Medical City, Riyadh 12211, Saudi Arabia
- Correspondence: (M.K.A.); (M.I.)
| | | | - Abrar Saleh Alharbi
- Department of Pharmaceutical Sciences, Maternity and Children’s Hospital, Mecca 24246, Saudi Arabia
| | | | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Salman Rahim Alnufaie
- Department of Infection Control, Riyadh Third Health Cluster, Riyadh 13223, Saudi Arabia
| | - Salem Sayer Alshammari
- Department of Pharmaceutical Care, Al-Dawaa Medical Services, Jubail 35412, Saudi Arabia
| | - Bandar Ali Alshehri
- Laboratory Department, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Rami Hatem Tayeb
- Laboratory Department, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | | | - Alaa Adel Aljehani
- Laboratory Department, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Nawaf M. Alotaibi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Abida Abida
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
- Correspondence: (M.K.A.); (M.I.)
| |
Collapse
|
8
|
Qbd based and Box-Behnken design assisted Oral delivery of stable lactone (active) form of Topotecan as PLGA nanoformulation: Cytotoxicity, pharmacokinetic, in vitro, and ex vivo gut permeation studies. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Buchelnikova VA, Rogozhin EA, Barashkova AS, Buchelnikov AS, Evstigneev MP. C 60 Fullerene Clusters Stabilize the Biologically Inactive Form of Topotecan. Chem Res Toxicol 2022; 35:1482-1492. [PMID: 35980010 DOI: 10.1021/acs.chemrestox.2c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is a range of experimental proofs that biologically relevant compounds change their activity in the presence of C60 fullerene clusters in aqueous solution, which most frequently act as a nanoplatform for drug delivery. Inspired by this evidence, we made an effort to investigate the interaction of fullerene clusters with the antibiotic topotecan (TPT). This study proceeded in three steps, namely, UV/vis titration to confirm complexation and in vitro assays on proliferating and nonproliferating cells to elucidate the role of C60 fullerene in the putative change in TPT activity. Surprisingly, although the nonproliferating cell assay is consistent with the titration data and confirms complex formation, it contradicted the results of the proliferating cell assay. The latter showed that the mixture of TPT and fullerene affects the cells in the same way as pure TPT, as if there were no fullerenes in solution at all, whereas the action of TPT was expected to be enhanced. We explained this contradiction by the specific stabilization of the biologically inactive carboxylate form of the antibiotic adsorbed in the alkaline shell of large fullerene clusters, which leads to neutralization of the drug delivery function and almost zero net biological effect of the antibiotic in vitro. The practical outcome of the work is that fullerene clusters can be used for the selective delivery of pH-sensitive drug forms.
Collapse
Affiliation(s)
| | - Eugene A Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow 117997, Russia.,Gause Institute of New Antibiotics, Moscow 119021, Russia
| | - Anna S Barashkova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow 117997, Russia
| | | | | |
Collapse
|
10
|
Mills H, Acquah R, Tang N, Cheung L, Klenk S, Glassen R, Pirson M, Albert A, Hoang DT, Van TN. A Critical Scrutiny on Liposomal Nanoparticles Drug Carriers as Modelled by Topotecan Encapsulation and Release in Treating Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7702512. [PMID: 35983007 PMCID: PMC9381203 DOI: 10.1155/2022/7702512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/10/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022]
Abstract
The medical field is looking for drugs and/or ways of delivering drugs without harming patients. A number of severe drug side effects are reported, such as acute kidney injury (AKI), hepatotoxicity, skin rash, and so on. Nanomedicine has come to the rescue. Liposomal nanoparticles have shown great potential in loading drugs, and delivering drugs to specific targeted sites, hence achieving a needed bioavailability and steady state concentration, which is achieved by a controlled drug release ability by the nanoparticles. The liposomal nanoparticles can be conjugated to cancer receptor tags that give the anticancer-loaded nanoparticles specificity to deliver anticancer agents only at cancerous sites, hence circumventing destruction of normal cells. Also, the particles are biocompatible. The drugs are shielded by attack from the liver and other cytochrome P450 enzymes before reaching the desired sites. The challenge, however, is that the drug release is slow by these nanoparticles on their own. Scientists then came up with several ways to enhance drug release. Magnetic fields, UV light, infrared light, and so on are amongst the enhancers used by scientists to potentiate drug release from nanoparticles. In this paper, synthesis of liposomal nanoparticle formulations (liposomal-quantum dots (L-QDs), liposomal-quantum dots loaded with topotecan (L-QD-TPT)) and their analysis (cytotoxicity, drug internalization, loading efficiency, drug release rate, and the uptake of the drug and nanoparticles by the HeLa cells) are discussed.
Collapse
Affiliation(s)
- Hilla Mills
- Department of Medical Science, University for Development, Accra, Ghana
| | - Ronald Acquah
- Department of Medical Science, University for Development, Accra, Ghana
| | - Nova Tang
- RD Lab, The Hospital Institute for Hebal Research, Toluca, MEX 50200, Mexico
| | - Luke Cheung
- RD Lab, The Hospital Institute for Hebal Research, Toluca, MEX 50200, Mexico
| | - Susanne Klenk
- Research Institution of Clinical Biomedicine, Hospital University Medical Centre, Ulm 89000, Germany
| | - Ronald Glassen
- Research Institution of Clinical Biomedicine, Hospital University Medical Centre, Ulm 89000, Germany
| | - Magali Pirson
- Industrial Research Group, International College of Science and Technology, Route de Lennik 800, CP 590, Brussels 1070, Belgium
| | - Alain Albert
- Industrial Research Group, International College of Science and Technology, Route de Lennik 800, CP 590, Brussels 1070, Belgium
| | | | | |
Collapse
|
11
|
Khuroo T, Atifa U, Khuroo A, Mirza MA, Ali A, Iqbal Z. Simultaneous estimation of Paclitaxel and Erlotinib in plasma by liquid chromatography/(+) electrospray tandem mass spectrometry: Application in formulation development and pharmacokinetics. Drug Dev Ind Pharm 2022; 48:292-300. [PMID: 35913109 DOI: 10.1080/03639045.2022.2108830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The bio-analytical method was developed and validated for simultaneous detection and quantification of paclitaxel (PAC) and erlotinib (ERL) in plasma samples. The sample preparation process was accomplished by liquid -liquid extraction technique. The dried and reconstituted samples were subjected to chromatography on Discovery -C18 (50 × 4.6 × 5µm) column and a mobile phase, composed of a mixture of 0.1% formic acid in water: acetonitrile (70:30, v/v), in isocratic mode at a flow rate of 0.6 mL/min. Liquid chromatography coupled to tandem mass spectrometry detection in positive ion mode was selected to provide optimal selectivity and sensitivity. The mass transitions of erlotinib, erlotinib13C6, Paclitaxel and docetaxel were m/z 394.5→278.4, m/z 400.4→284.5, m/z 876.6→308.4 and m/z 830.0→304.0 respectively. The linearity in the calibration curves were obtained in the concentration range of 3.6 -1006.7 ng/ml (r ≥ 0.99) for erlotinib and 5.3 -1500.0 ng/mL for paclitaxel with a LLOQ (lower limit of quantification) of 3.6 and 5.3ng/ml respectively. The run time was achieved in 2.5 minutes only, for all the analytes.
Collapse
Affiliation(s)
- Tahir Khuroo
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, Texas, 77843, USA.,Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar New Delhi-110062, India.,Department of Clinical Pharmacology and Pharmacokinetics, Sun Pharma, HSIDC, GP-5, Old Delhi Gurgaon Road, Udyog Vihar Industrial Area, Gurgaon 122015, Haryana, India
| | - Umme Atifa
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar New Delhi-110062, India
| | - Arshad Khuroo
- Department of Clinical Pharmacology and Pharmacokinetics, Sun Pharma, HSIDC, GP-5, Old Delhi Gurgaon Road, Udyog Vihar Industrial Area, Gurgaon 122015, Haryana, India
| | - Mohd Aamir Mirza
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar New Delhi-110062, India
| | - Asgar Ali
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar New Delhi-110062, India
| | - Zeenat Iqbal
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar New Delhi-110062, India
| |
Collapse
|
12
|
Shahid M, Hussain A, Khan AA, Ramzan M, Alaofi AL, Alanazi AM, Alanazi MM, Rauf MA. Ketoconazole-Loaded Cationic Nanoemulsion: In Vitro- Ex Vivo- In Vivo Evaluations to Control Cutaneous Fungal Infections. ACS OMEGA 2022; 7:20267-20279. [PMID: 35721949 PMCID: PMC9201893 DOI: 10.1021/acsomega.2c02219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
An attempt has been made to optimize ketoconazole (KTZ)-loaded cationic nanoemulsion for topical delivery followed by in vitro, ex vivo, and in vivo evaluations. Central composite design suggested a total of 13 outcomes at 3 factors and 2 levels against 6 responses. Formulations were characterized for globular size, polydispersity index, pH, ζ potential, % entrapment efficiency (% EE), and drug content. Moreover, the optimized KTZ-CNM13 was compared against drug suspension (KTZ-SUS), commercial cream, and anionic nanoemulsion for in vitro drug release, ex vivo permeation, in vitro hemolysis, antifungal assay, in vivo dermal irritancy, and long-term stability. KTZ-CNM13 was found to have a low size (239 nm), an optimal ζ potential (+22.7 mV), a high % EE (89.1%), a spherical shape, a high drug content (98.9%), and a high numerical desirability value (1.0). In vitro drug release behavior of KTZ from KTZ-CNM13 was 7.54- and 1.71-folds higher than those of KTZ-ANM13 and KTZ-SUS, respectively, at 24 h. The permeation rate values were ordered as KTZ-CNM13 > KTZ-ANM13 > KTZ-MKT > KTZ-SUP due to various studied factors. High values of zone of inhibition for KTZ-CNM13 were observed against Candida albicans, Candida glabrata, Candida tropicalis, and Candida krusei as compared to KTZ-SUS. In vitro hemolysis and in vivo irritation studied confirmed the safety concern of the nanoemulsion at the explored composition. Long-term stability result revealed a stable product at the explored temperature for a year. Conclusively, cationic nanoemulsion is a promising approach to deliver KTZ for high permeation and therapeutic efficacy.
Collapse
Affiliation(s)
- Mudassar Shahid
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Afzal Hussain
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Azmat Ali Khan
- Pharmaceutical
Biotechnology Laboratory, Department of Pharmaceutical Chemistry,
College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohhammad Ramzan
- School
of Pharmaceutical Sciences, Lovely Professional
University, Phagwara, Jalandhar, Punjab 144411, India
| | - Ahmed L. Alaofi
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Amer M. Alanazi
- Pharmaceutical
Biotechnology Laboratory, Department of Pharmaceutical Chemistry,
College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad M. Alanazi
- Pharmaceutical
Biotechnology Laboratory, Department of Pharmaceutical Chemistry,
College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohd Ahmar Rauf
- Department
of Pharmacy, Eugene Applebaum, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
| |
Collapse
|
13
|
Khalid Anwer M, Fatima F, Muqtader Ahmed M, Aldawsari MF, Ali A, Abul Kalam M, Alshamsan A, Alkholief M, Malik A, AZ A, Al-shdefat R. Abemaciclib-loaded ethylcellulose based nanosponges for sustained cytotoxicity against MCF-7 and MDA-MB-231 human breast cancer cells lines. Saudi Pharm J 2022; 30:726-734. [PMID: 35812154 PMCID: PMC9257851 DOI: 10.1016/j.jsps.2022.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/04/2022] [Indexed: 12/22/2022] Open
Abstract
Abemaciclib (AC) is a novel, orally available drug molecule approved for the treatment of breast cancer. Due to its low bioavailability, its administration frequency is two to three times a day that can decrease patient compliance. Sustained release formulation are needed for prolong the action and to reduce the adverse effects. The aim of current study was to develop sustained release NSs of AC. Nanosponges (NSs) was prepared by emulsion-solvent diffusion method using ethyl-cellulose (EC) and Kolliphor P-188 (KP-188) as sustained-release polymer and surfactant, respectively. Effects of varying surfactant concentration and drug: polymer proportions on the particle size (PS), polydispersity index (PDI), zeta potential (ζP), entrapment efficiency (%EE), and drug loading (%DL) were investigated. The results of AC loaded NSs (ACN1-ACN5) exhibited PS (366.3–842.2 nm), PDI (0.448–0.853), ζP (−8.21 to −19.7 mV), %EE (48.45–79.36%) and %DL (7.69–19.17%), respectively. Moreover, ACN2 showed sustained release of Abemaciclib (77.12 ± 2.54%) in 24 h Higuchi matrix as best fit kinetics model. MTT assay signified ACN2 as potentials cytotoxic nanocarrier against MCF-7 and MDA-MB-231 human breast cancer cells. Further, ACN2 displayed drug release property without variation in the % release after exposing the product at 25 °C, 5 °C, and 45 °C storage conditions for six months. This investigation proved that the developed NSs would be an efficient carrier to sustain the release of AC in order to improve efficacy against breast cancer.
Collapse
|
14
|
Alshahrani SM. A judicious review on the applications of chemotherapeutic loaded nanoemulsions in cancer management. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Padhi S, Azharuddin M, Behera A, Zakir F, Mirza MA, Chyad AA, Iqbal Z, Mansoor S. Nanocarriers as delivery tool for COVID-19 drugs. CORONAVIRUS DRUG DISCOVERY 2022:293-332. [DOI: 10.1016/b978-0-323-95574-4.00018-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Behera A, Pradhan SP, Ahmed FK, Abd-Elsalam KA. Enzymatic synthesis of silver nanoparticles: Mechanisms and applications. GREEN SYNTHESIS OF SILVER NANOMATERIALS 2022:699-756. [DOI: 10.1016/b978-0-12-824508-8.00030-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
17
|
Nawaz T, Iqbal M, Khan BA, Nawaz A, Hussain T, Hosny KM, Abualsunun WA, Rizg WY. Development and Optimization of Acriflavine-Loaded Polycaprolactone Nanoparticles Using Box-Behnken Design for Burn Wound Healing Applications. Polymers (Basel) 2021; 14:polym14010101. [PMID: 35012125 PMCID: PMC8747314 DOI: 10.3390/polym14010101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/22/2022] Open
Abstract
Nanoparticles are used increasingly for the treatment of different disorders, including burn wounds of the skin, due to their important role in wound healing. In this study, acriflavine-loaded poly (ε-caprolactone) nanoparticles (ACR-PCL-NPs) were prepared using a double-emulsion solvent evaporation method. All the formulations were prepared and optimized by using a Box-Behnken design. Formulations were evaluated for the effect of independent variables, i.e., poly (ε-caprolactone) (PCL) amount (X1), stirring speed of external phase (X2), and polyvinyl alcohol (PVA) concentration (X3), on the formulation-dependent variables (particle size, polydispersity index (PDI), and encapsulation efficiency) of ACR-PCL-NPs. The zeta potential, PDI, particle size, and encapsulation efficiency of optimized ACR-PCL-NPs were found to be -3.98 ± 1.58 mV, 0.270 ± 0.19, 469.2 ± 5.6 nm, and 71.9 ± 5.32%, respectively. The independent variables were found to be in excellent correlation with the dependent variables. The release of acriflavine from optimized ACR-PCL-NPs was in biphasic style with the initial burst release, followed by a slow release for up to 24 h of the in vitro study. Morphological studies of optimized ACR-PCL-NPs revealed the smooth surfaces and spherical shapes of the particles. Thermal and FTIR analyses revealed the drug-polymer compatibility of ACR-PCL-NPs. The drug-treated group showed significant re-epithelialization, as compared to the controlled group.
Collapse
Affiliation(s)
- Touseef Nawaz
- Faculty of Pharmacy, Gomal University, D. I. Khan 29050, Pakistan; (T.N.); (B.A.K.); (A.N.)
| | - Muhammad Iqbal
- Faculty of Pharmacy, Gomal University, D. I. Khan 29050, Pakistan; (T.N.); (B.A.K.); (A.N.)
- Correspondence: or
| | - Barkat Ali Khan
- Faculty of Pharmacy, Gomal University, D. I. Khan 29050, Pakistan; (T.N.); (B.A.K.); (A.N.)
| | - Asif Nawaz
- Faculty of Pharmacy, Gomal University, D. I. Khan 29050, Pakistan; (T.N.); (B.A.K.); (A.N.)
| | - Talib Hussain
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21577, Saudi Arabia; (K.M.H.); (W.A.A.); (W.Y.R.)
| | - Walaa A. Abualsunun
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21577, Saudi Arabia; (K.M.H.); (W.A.A.); (W.Y.R.)
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21577, Saudi Arabia; (K.M.H.); (W.A.A.); (W.Y.R.)
| |
Collapse
|
18
|
Wang B, Yan N, Wu D, Dou Y, Liu Z, Hu X, Chen C. Combination inhibition of triple-negative breast cancer cell growth with CD36 siRNA-loaded DNA nanoprism and genistein. NANOTECHNOLOGY 2021; 32:395101. [PMID: 34153956 DOI: 10.1088/1361-6528/ac0d1e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Currently, a single treatment is less effective for triple-negative breast cancer (TNBC) therapy. Additionally, there are some limitations to the use of siRNA alone as a new method to treat breast cancer, such as its effective delivery into cells. In this study, we proposed a strategy that combines a siRNA-loaded DNA nanostructure and genistein for TNBC therapy. Both CD36 siRNA-loaded self-assembled DNA nanoprisms (NP-siCD36) and genistein knocked down CD36, resulting in enhanced anticancer efficacy through phosphorylation of the p38 MAPK pathway.In vitrostudies showed that combination therapy could effectively enhance cell apoptosis and reduce cell proliferation, achieving an antitumor effect in TNBC cells. The current study suggests that NP-siCD36 combined with genistein might be a promising strategy for breast cancer and treatment.
Collapse
Affiliation(s)
- Beinuo Wang
- Queen Mary College, Medical School of Nanchang University, Nanchang 330006, People's Republic of China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, People's Republic of China
| | - Ni Yan
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, People's Republic of China
| | - Di Wu
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, People's Republic of China
| | - Yin Dou
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Zhenyu Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, People's Republic of China
| | - Xiaojuan Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, People's Republic of China
| | - Cancan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, People's Republic of China
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, People's Republic of China
| |
Collapse
|
19
|
Jeong SH, Jang JH, Lee YB. Oral delivery of topotecan in polymeric nanoparticles: Lymphatic distribution and pharmacokinetics. J Control Release 2021; 335:86-102. [PMID: 34015399 DOI: 10.1016/j.jconrel.2021.05.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 01/09/2023]
Abstract
There have been many attempts to formulate a variety of drugs in nano-size formulations. However, biodistribution characteristics of these formulated drugs remain unclear. Information about the pharmacokinetics and distributions of these formulations is essential for future practical use and advanced formulation development. Topotecan is a useful agent for treating a variety of cancers. It exhibits anti-cancer activity by inhibiting topoisomerase. However, oral bioavailability of topotecan was not satisfactory in previous studies. Reversible hydrolysis of its active site according to pH environment was a major limitation in terms of treatment. To improve the bioavailability and retention of topotecan in target organs (such as lung and brain) and increase its delivery to the lymphatic system as a major pathway for cancer metastasis, this study was conducted on topotecan-loaded nanoparticles using poly(lactic-co-glycolic acid) (PLGA). These nanoparticles were prepared by double emulsion solvent evaporation. Formulated topotecan-loaded PLGA nanoparticles were subjected to several in vitro tests to determine various physicochemical properties such as size, zeta potential, encapsulation efficiency, morphology, and release profile. These nanoparticles were also subjected to in vivo studies using rats. Based on in vivo results, pharmacokinetic properties, distribution in the body, and delivery efficiency of these formulated nanoparticles were confirmed. Topotecan-loaded PLGA nanoparticles showed a delayed release pattern in vitro. Their pharmacokinetic profiles and distributions in the body were clearly different from those of free topotecan hydrochloride. Results confirmed that topotecan encapsulated in the PLGA polymer was stable from hydrolysis and present in an active form for a longer time in the body. Biometric imaging revealed in vivo properties of topotecan-loaded PLGA nanoparticles for qualitative confirmation. And oral delivery of topotecan in polymeric nanoparticles to lymph and various body tissues has been identified. Findings of this study indicate that topotecan formulated into nanoparticles (using PLGA) has a better pharmacokinetic profile and a better delivery to lymphoid tissues, lung, and brain than free topotecan hydrochloride, suggesting that these topotecan-loaded PLGA nanoparticles might provide better therapeutic results.
Collapse
Affiliation(s)
- Seung-Hyun Jeong
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Ji-Hun Jang
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Yong-Bok Lee
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
20
|
Singh M, Hassan N, Verma D, Thakur P, Panda BP, Panda AK, Sharma RK, Mirza A, Mansoor S, Alrokayan SH, Khan HA, Ahmad P, Iqbal Z. Design of expert guided investigation of native L-asparaginase encapsulated long-acting cross-linker-free poly (lactic-co-glycolic) acid nanoformulation in an Ehrlich ascites tumor model. Saudi Pharm J 2020; 28:719-728. [PMID: 32550804 PMCID: PMC7292879 DOI: 10.1016/j.jsps.2020.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/28/2020] [Indexed: 02/08/2023] Open
Abstract
Present study explores native L-asparaginase encapsulated long-acting cross-linker-free PLGA-nanoformulation in an Ehrlich ascites tumor model. L-asparaginase-PLGA nanoparticles for tumor were prepared using a double emulsion solvent evaporation technique, optimized and validated by Box-Behnken Design. L-ASN-PNs showed a particle size of 195 nm ± 0.2 nm and a PDI of 0.2. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques revealed its smooth morphology and elicited an in-vitro release of 80% of the drug, following the Higuchi drug release model. In-vivo studies of L-ASN-PNs on an Ehrlich ascites tumor (EAT) model were completed and compared with the standard medication of 5-fluorouracil (5-FU) treatment. L-ASN-PN treated mice showed a 51.15% decrease in tumor volume and 100% survival rate with no reduction in body weight, no haemotoxicity and no hepatotoxicity, as evident from the hematological parameters, and liver enzyme parameters that were well within the prescribed limits. Chemotherapy has severe side effects and restricted therapeutic success. Henceforth, the purported L-Asparaginase PLGA nanoparticles are a suitable entity for better tumor regression, intra-tumor accumulation and no hematological side-effects.
Collapse
Affiliation(s)
- Manvi Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi 110062, India
| | - Nazia Hassan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi 110062, India
| | - Devina Verma
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi 110062, India
| | - Pragya Thakur
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi 110062, India
| | - Bibhu Prasad Panda
- Microbial and Pharmaceutical Biotechnology Laboratory, Jamia Hamdard, New Delhi 110062, India
| | - Amulya Kumar Panda
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Rakesh Kumar Sharma
- Division of Radiopharmaceuticals and Radiation Biology, Institute of Nuclear Medicine and Allied Sciences, Brig. SK Mazumdar Road, Delhi 110 054, India
| | - Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi 110062, India
| | | | - Salman H. Alrokayan
- Department of Biochemistry, College of Science, King Saudi University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia
| | - Haseeb A. Khan
- Department of Biochemistry, College of Science, King Saudi University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saudi University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
| | - Zeenat Iqbal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi 110062, India
| |
Collapse
|
21
|
Effect of Formulation Variables on the Performance of Doxycycline-Loaded PLA Microsphere. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04592-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Padhi S, Behera A. Nanotechnology Based Targeting Strategies for the Delivery of Camptothecin. SUSTAINABLE AGRICULTURE REVIEWS 2020. [DOI: 10.1007/978-3-030-41842-7_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Dehshahri A, Ashrafizadeh M, Ghasemipour Afshar E, Pardakhty A, Mandegary A, Mohammadinejad R, Sethi G. Topoisomerase inhibitors: Pharmacology and emerging nanoscale delivery systems. Pharmacol Res 2019; 151:104551. [PMID: 31743776 DOI: 10.1016/j.phrs.2019.104551] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/11/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023]
Abstract
Topoisomerase enzymes have shown unique roles in replication and transcription. These enzymes which were initially found in Escherichia coli have attracted considerable attention as target molecules for cancer therapy. Nowadays, there are several topoisomerase inhibitors in the market to treat or at least control the progression of cancer. However, significant toxicity, low solubility and poor pharmacokinetic properties have limited their wide application and these characteristics need to be improved. Nano-delivery systems have provided an opportunity to modify the intrinsic properties of molecules and also to transfer the toxic agent to the target tissues. These delivery systems leads to the re-introduction of existing molecules present in the market as novel therapeutic agents with different physicochemical and pharmacokinetic properties. This review focusses on a variety of nano-delivery vehicles used for the improvement of pharmacological properties of topoisomerase inhibitors and thus enabling their potential application as novel drugs in the market.
Collapse
Affiliation(s)
- Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Mandegary
- Physiology Research Center, Institute of Neuropharmacology, and Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| |
Collapse
|
24
|
Ag Seleci D, Maurer V, Stahl F, Scheper T, Garnweitner G. Rapid Microfluidic Preparation of Niosomes for Targeted Drug Delivery. Int J Mol Sci 2019; 20:ijms20194696. [PMID: 31546717 PMCID: PMC6801367 DOI: 10.3390/ijms20194696] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 12/31/2022] Open
Abstract
Niosomes are non-ionic surfactant-based vesicles with high promise for drug delivery applications. They can be rapidly prepared via microfluidics, allowing their reproducible production without the need of a subsequent size reduction step, by controlled mixing of two miscible phases of an organic (lipids dissolved in alcohol) and an aqueous solution in a microchannel. The control of niosome properties and the implementation of more complex functions, however, thus far are largely unknown for this method. Here we investigate microfluidics-based manufacturing of topotecan (TPT)-loaded polyethylene glycolated niosomes (PEGNIO). The flow rate ratio of the organic and aqueous phases was varied and optimized. Furthermore, the surface of TPT-loaded PEGNIO was modified with a tumor homing and penetrating peptide (tLyp-1). The designed nanoparticular drug delivery system composed of PEGNIO-TPT-tLyp-1 was fabricated for the first time via microfluidics in this study. The physicochemical properties were determined through dynamic light scattering (DLS) and zeta potential analysis. In vitro studies of the obtained formulations were performed on human glioblastoma (U87) cells. The results clearly indicated that tLyp-1-functionalized TPT-loaded niosomes could significantly improve anti-glioma treatment.
Collapse
Affiliation(s)
- Didem Ag Seleci
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, 38104 Braunschweig, Germany.
- Centre for Pharmaceutical Engineering Research (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany.
| | - Viktor Maurer
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, 38104 Braunschweig, Germany.
- Centre for Pharmaceutical Engineering Research (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany.
| | - Frank Stahl
- Institute for Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany.
| | - Thomas Scheper
- Institute for Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany.
| | - Georg Garnweitner
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, 38104 Braunschweig, Germany.
- Centre for Pharmaceutical Engineering Research (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany.
| |
Collapse
|
25
|
Wang T, Shen L, Zhang Z, Li H, Huang R, Zhang Y, Quan D. A novel core-shell lipid nanoparticle for improving oral administration of water soluble chemotherapeutic agents: inhibited intestinal hydrolysis and enhanced lymphatic absorption. Drug Deliv 2018; 24:1565-1573. [PMID: 29029577 PMCID: PMC8241165 DOI: 10.1080/10717544.2017.1386730] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The oral administration of water-soluble chemotherapeutical agents is limited by their serious gastrointestinal side effects, instability at intestinal pH, and poor absorption. Aiming to solve these problems, we chose topotecan (TPT) as a model drug and developed a novel lipid formulation containing core-shell lipid nanoparticle (CLN) that makes the water-soluble drug to ‘dissolve’ in oil. TPT molecules can be encapsulated into nanoparticles surrounded by oil barrier while avoiding the direct contact with intestinal environment, thus easing the intestinal hydrolytic degradation and gastrointestinal (GI) irritation. Microstructure and mean particle size of TPT-CLN were characterized by Transmission Electron Microscope (TEM) and Dynamic Light Scattering (DLS), respectively. The average size of nanoparticles was approximately 60 nm with a homogeneous distribution in shapes of spheres or ellipsoid. According to in vitro stability studies, more initial form of TPT was observed in presence of lipid nanoparticle compared with free topotecan solution in artificial intestinal juice (pH 6.5). After oral administration of TPT-CLN in rats, AUC and Cmax of TPT were all increased compared with free TPT, indicating significant enhancement of oral absorption. Intestinal lymphatic transport was confirmed as the major way for CLN to enhance oral absorption of TPT by the treatment of blocking chylomicron flow. Lower GI irritation of TPT-CLN was observed in the gastrointestinal damage studies. The in vivo antitumor activity of TPT-CLN showed an improved antitumor efficacy by oral treatment of TPT-CLN compared to free TPT. From the obtained data, the systems appear an attractive progress in oral administration of topotecan.
Collapse
Affiliation(s)
- Tao Wang
- a Beijing Institute of Pharmacology and Toxicology , Beijing , PR China
| | - Liao Shen
- a Beijing Institute of Pharmacology and Toxicology , Beijing , PR China
| | - Zhen Zhang
- a Beijing Institute of Pharmacology and Toxicology , Beijing , PR China
| | - Haiyan Li
- a Beijing Institute of Pharmacology and Toxicology , Beijing , PR China
| | - Ri Huang
- a Beijing Institute of Pharmacology and Toxicology , Beijing , PR China
| | - Yadan Zhang
- a Beijing Institute of Pharmacology and Toxicology , Beijing , PR China
| | - Dongqin Quan
- a Beijing Institute of Pharmacology and Toxicology , Beijing , PR China
| |
Collapse
|
26
|
Design expert assisted nanoformulation design for co-delivery of topotecan and thymoquinone: Optimization, in vitro characterization and stability assessment. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Theranostic Liposome-Nanoparticle Hybrids for Drug Delivery and Bioimaging. Int J Mol Sci 2017; 18:ijms18071415. [PMID: 28671589 PMCID: PMC5535907 DOI: 10.3390/ijms18071415] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/24/2017] [Accepted: 06/26/2017] [Indexed: 12/04/2022] Open
Abstract
Advanced theranostic nanomedicine is a multifunctional approach which combines the diagnosis and effective therapy of diseased tissues. Here, we investigated the preparation, characterization and in vitro evaluation of theranostic liposomes. As is known, liposome–quantum dot (L–QD) hybrid vesicles are promising nanoconstructs for cell imaging and liposomal-topotecan (L-TPT) enhances the efficiency of TPT by providing protection against systemic clearance and allowing extended time for it to accumulate in tumors. In the present study, hydrophobic CdSe/ZnS QD and TPT were located in the bilayer membrane and inner core of liposomes, respectively. Dynamic light scattering (DLS), zeta potential (ζ) measurements and fluorescence/absorption spectroscopy were performed to determine the vesicle size, charge and spectroscopic properties of the liposomes. Moreover, drug release was studied under neutral and acidic pH conditions. Fluorescence microscopy and flow cytometry analysis were used to examine the cellular uptake and intracellular distribution of the TPT-loaded L–QD formulation. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was utilized to investigate the in vitro cytotoxicity of the formulations on HeLa cells. According to the results, the TPT-loaded L–QD hybrid has adequate physicochemical properties and is a promising multifunctional delivery vehicle which is capable of a simultaneous co-delivery of therapeutic and diagnostic agents.
Collapse
|