1
|
Prerna, Bhatt DC, Mir KB, Kumar V, Rathor S. A Comprehensive Review on Nanoparticles as Drug Delivery System and Their Role for Management of Hypertension. Curr Pharm Biotechnol 2025; 26:169-185. [PMID: 38566387 DOI: 10.2174/0113892010291414240322112508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/16/2024] [Accepted: 03/02/2024] [Indexed: 04/04/2024]
Abstract
The current global epidemic of hypertension is not a disease in and of itself but rather a significant risk factor for serious cardiovascular conditions such as peripheral artery disease, heart failure, myocardial infarction, and stroke. Although many medications that work through various mechanisms of action are available on the market in conventional formulations to treat hypertension, these medications face significant difficulties with their bioavailability, dosing, and associated side effects, which significantly reduces the effectiveness of their therapeutic interventions. Numerous studies have shown that nanocarriers and nanoformulations can minimize the toxicity associated with high doses of the drug while greatly increasing the drug's bioavailability and reducing the frequency of dosing. This review sheds light on the difficulties posed by traditional antihypertensive formulations and highlights the necessity of oral nanoparticulate systems to solve these issues. Because hypertension has a circadian blood pressure pattern, chronotherapeutics can be very important in treating the condition. On the other hand, nanoparticulate systems can be very important in managing hypertension.
Collapse
Affiliation(s)
- Prerna
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana, Ambala, 133207, Haryana, India
| | - Dinesh Chandra Bhatt
- Department of Pharmaceutical Sciences, Guru Jambheswar University of Sciences and Technology, Hisar, Haryana, 125001, India
| | - Khalid Basir Mir
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurgaon, Haryana, 122103, India
| | - Vikash Kumar
- DK Pharma College, Dhani T. Bad, Rewari, Haryana, 123411, India
| | - Sandeep Rathor
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana, Ambala, 133207, Haryana, India
| |
Collapse
|
2
|
Chrysant SG. Better blood pressure control with the nanoformulation of antihypertensive drugs. Expert Rev Cardiovasc Ther 2024:1-9. [PMID: 39635781 DOI: 10.1080/14779072.2024.2438813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/12/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION Hypertension is very common and a major risk factor for cardiovascular disease, heart failure, chronic kidney disease, strokes, and death. However, at present only 14% of patients of developing countries have their blood pressure (BP) well controlled. The causes for the failure to control the BP are multiple and one of them could be the formulation of antihypertensive drugs. AREAS COVERED The recent development of nanotechnology by incorporating the drugs into nanoparticles is a new promising field of nanomedicine and preliminary studies have shown this nanoformulation to be more effective in the treatment of hypertension than the existing drug formulations. Another recent development is the nanoformulation of genes used for the treatment of hypertension and cardiovascular diseases. For current information, a Medline search was conducted between 2017 and 2024 and 36 pertinent papers were selected. EXPERT OPINION The nanoformulations of drugs help achieve better drug concentrations, improve drug stability, low solubility, short half life, oral bioavailability, narrow therapeutic index, and poor pharmacokinetic and pharmacodynamic profiles, and decrease the adverse effects of antihypertensive drugs. Also, the nanoformulation of genes for the treatment of hypertension has been shown in preliminary studies to be effective, but more research is needed.
Collapse
Affiliation(s)
- Steven G Chrysant
- Department of Cardiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
3
|
Kovačević M, Paudel A, Planinšek O, Bertoni S, Passerini N, Zupančič O, Alva C, German Ilić I, Zvonar Pobirk A. The comparison of melt technologies based on mesoporous carriers for improved carvedilol dissolution. Eur J Pharm Sci 2024; 202:106880. [PMID: 39181171 DOI: 10.1016/j.ejps.2024.106880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/10/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
High-shear (HS) melt granulation and hot melt extrusion (HME) were compared as perspective melt-based technologies for preparation of amorphous solid dispersions (ASDs). ASDs were prepared using mesoporous carriers (SyloidⓇ 244FP or NeusilinⓇ US2), which were loaded with carvedilol dispersed in polymeric matrix (polyethylene glycol 6000 or SoluplusⓇ). Formulations with high carvedilol content were obtained either by HME (11 extrudates with polymer:carrier ratio 1:1) or HS granulation (6 granulates with polymer:carrier ratio 3:1). DSC and XRD analysis confirmed the absence of crystalline carvedilol for the majority of prepared ADSs, thus confirming the stabilizing effect of selected polymers and carriers over amorphous carvedilol. HME produced larger particles compared to HS melt granulation, which was in line with better flow time and Carr index of extrudates. Moreover, SEM images revealed smoother surface of ASDs obtained by HME, contributing to less obstructed flow. The rougher and more porous surface of HS granules was correlated to larger granule specific surface area, manifesting in faster carvedilol release from SyloidⓇ 244FP-based granules, as compared to their HME counterparts. Regarding dissolution, the two HS-formulations performed superior to pure crystalline carvedilol, thereby confirming the suitability of HS melt granulation for developing dosage forms with improved carvedilol dissolution.
Collapse
Affiliation(s)
- Mila Kovačević
- University of Ljubljana Faculty of Pharmacy, Department of Pharmaceutical Technology, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Amrit Paudel
- Research Centre for Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Odon Planinšek
- University of Ljubljana Faculty of Pharmacy, Department of Pharmaceutical Technology, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Serena Bertoni
- University of Bologna, Department of Pharmacy and BioTechnology, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Nadia Passerini
- University of Bologna, Department of Pharmacy and BioTechnology, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Ožbej Zupančič
- Research Centre for Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Carolina Alva
- Research Centre for Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Ilija German Ilić
- University of Ljubljana Faculty of Pharmacy, Department of Pharmaceutical Technology, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Alenka Zvonar Pobirk
- University of Ljubljana Faculty of Pharmacy, Department of Pharmaceutical Technology, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
4
|
Azrak ZAT, Taha MS, Jagal J, Elsherbeny A, Bayraktutan H, AbouGhaly MHH, Elshafeey AH, Greish K, Haider M. Optimized mucoadhesive niosomal carriers for intranasal delivery of carvedilol: A quality by design approach. Int J Pharm 2024; 654:123935. [PMID: 38395319 DOI: 10.1016/j.ijpharm.2024.123935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Carvedilol (CV), a β-blocker essential for treating cardiovascular diseases, faces bioavailability challenges due to poor water solubility and first-pass metabolism. This study developed and optimized chitosan (CS)-coated niosomes loaded with CV (CS/CV-NS) for intranasal (IN) delivery, aiming to enhance systemic bioavailability. Utilizing a Quality-by-Design (QbD) approach, the study investigated the effects of formulation variables, such as surfactant type, surfactant-to-cholesterol (CHOL) ratio, and CS concentration, on CS/CV-NS properties. The focus was to optimize specific characteristics including particle size (PS), polydispersity index (PDI), zeta potential (ZP), entrapment efficiency (EE%), and mucin binding efficiency (MBE%). The optimal formulation (Opt CS/CV-NS), achieved with a surfactant: CHOL ratio of 0.918 and a CS concentration of 0.062 g/100 mL, using Span 60 as the surfactant, exhibited a PS of 305 nm, PDI of 0.36, ZP of + 33 mV, EE% of 63 %, and MBE% of 57 %. Opt CS/CV-NS was characterized for its morphological and physicochemical properties, evaluated for stability under different storage conditions, and assessed for in vitro drug release profile. Opt CS/CV-NS demonstrated a 1.7-fold and 4.8-fold increase in in vitro CV release after 24 h, compared to uncoated CV-loaded niosomes (Opt CV-NS) and free CV, respectively. In vivo pharmacokinetic (PK) study, using a rat model, demonstrated that Opt CS/CV-NS achieved faster Tmax and higher Cmax compared to free CV suspension indicating enhanced absorption rate. Additionally, Opt CV-NS showed a 1.68-fold higher bioavailability compared to the control. These results underscore the potential of niosomal formulations in enhancing IN delivery of CV, offering an effective strategy for improving drug bioavailability and therapeutic efficacy.
Collapse
Affiliation(s)
- Zein A T Azrak
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Maie S Taha
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
| | - Jayalakshmi Jagal
- Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Amr Elsherbeny
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom; Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Hulya Bayraktutan
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom; Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Mohamed H H AbouGhaly
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt; Department of Pharmaceutics and Industrial Pharmacy, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Ahmed H Elshafeey
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
| | - Khaled Greish
- Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences Arabian Gulf University, Manama 329, Bahrain
| | - Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, 27272 Sharjah, United Arab Emirates; Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates.
| |
Collapse
|
5
|
Story D, Aminoroaya A, Skelton Z, Kumari M, Zhang Y, Smith BR. Nanoparticle-Based Therapies in Hypertension. Hypertension 2023; 80:2506-2514. [PMID: 37767725 PMCID: PMC10651274 DOI: 10.1161/hypertensionaha.123.19523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Nearly 1.4 billion people worldwide suffer from arterial hypertension, a significant risk factor for cardiovascular disease which is now the leading cause of death. Despite numerous drugs designed to treat hypertension, only ≈14% of hypertensive individuals have their blood pressure under control. A critical factor negatively impacting the efficacy of available treatments is their poor bioavailability. This leads to increased dosing requirements which can result in more side effects, resulting in patient noncompliance. A recent solution to improve dosing and bioavailability issues has been to incorporate drugs into nanoparticle carriers, with over 50 nanodrugs currently on the market across all diseases, and another 51 currently in clinical trials. Given their ability to improve solubility and bioavailability, nanoparticles may offer significant advantages in the formulation of antihypertensives to overcome pharmacokinetic shortcomings. To date, however, no antihypertensive nanoformulations have been clinically approved. This review assesses in vivo study data from preclinical antihypertensive nanoformulation development and testing. Combined, the results of these studies suggest nanoformulation of antihypertensive drugs may be a promising solution to overcome the poor efficacy of currently available antihypertensives, and with further advances has the potential to open paths for new substances that have heretofore been clinically unrealistic due to poor bioavailability.
Collapse
Affiliation(s)
- Darren Story
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering (D.S., M.K., Y.Z., B.R.S.), Michigan State University, East Lansing, MI
| | - Alireza Aminoroaya
- Department of Chemical Engineering and Materials Science (A.A., B.R.S.), Michigan State University, East Lansing, MI
| | - Zak Skelton
- College of Osteopathic Medicine (Z.S.), Michigan State University, East Lansing, MI
| | - Manisha Kumari
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering (D.S., M.K., Y.Z., B.R.S.), Michigan State University, East Lansing, MI
| | - Yapei Zhang
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering (D.S., M.K., Y.Z., B.R.S.), Michigan State University, East Lansing, MI
| | - Bryan Ronain Smith
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering (D.S., M.K., Y.Z., B.R.S.), Michigan State University, East Lansing, MI
- Department of Chemical Engineering and Materials Science (A.A., B.R.S.), Michigan State University, East Lansing, MI
| |
Collapse
|
6
|
Zaky MF, Hammady TM, Gad S, Alattar A, Alshaman R, Hegazy A, Zaitone SA, Ghorab MM, Megahed MA. Influence of Surface-Modification via PEGylation or Chitosanization of Lipidic Nanocarriers on In Vivo Pharmacokinetic/Pharmacodynamic Profiles of Apixaban. Pharmaceutics 2023; 15:1668. [PMID: 37376116 DOI: 10.3390/pharmaceutics15061668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Nanostructured lipid carriers (NLCs) have been proven to significantly improve the bioavailability and efficacy of many drugs; however, they still have many limitations. These limitations could hinder their potential for enhancing the bioavailability of poorly water-soluble drugs and, therefore, require further amendments. From this perspective, we have investigated how the chitosanization and PEGylation of NLCs affected their ability to function as a delivery system for apixaban (APX). These surface modifications could enhance the ability of NLCs to improve the bioavailability and pharmacodynamic activity of the loaded drug. In vitro and in vivo studies were carried out to examine APX-loaded NLCs, chitosan-modified NLCs, and PEGylated NLCs. The three nanoarchitectures displayed a Higuchi-diffusion release pattern in vitro, in addition to having their vesicular outline proven via electron microscopy. PEGylated and chitosanized NLCs retained good stability over 3 months, versus the nonPEGylated and nonchitosanized NLCs. Interestingly, APX-loaded chitosan-modified NLCs displayed better stability than the APX-loaded PEGylated NLCs, in terms of mean vesicle size after 90 days. On the other hand, the absorption profile of APX (AUC0-inf) in rats pretreated with APX-loaded PEGylated NLCs (108.59 µg·mL-1·h-1) was significantly higher than the AUC0-inf of APX in rats pretreated with APX-loaded chitosan-modified NLCs (93.397 µg·mL-1·h-1), and both were also significantly higher than AUC0-inf of APX-Loaded NLCs (55.435 µg·mL-1·h-1). Chitosan-coated NLCs enhanced APX anticoagulant activity with increased prothrombin time and activated partial thromboplastin time by 1.6- and 1.55-folds, respectively, compared to unmodified NLCs, and by 1.23- and 1.37-folds, respectively, compared to PEGylated NLCs. The PEGylation and chitosanization of NLCs enhanced the bioavailability and anticoagulant activity of APX over the nonmodified NLCs; this highlighted the importance of both approaches.
Collapse
Affiliation(s)
- Mohamed F Zaky
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Taha M Hammady
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Shadeed Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Abdullah Alattar
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Reem Alshaman
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ann Hegazy
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Sawsan A Zaitone
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mamdouh Mostafa Ghorab
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed A Megahed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| |
Collapse
|
7
|
El-Marasy SA, AbouSamra MM, El-Mosallamy AEMK, Emam AN, Mabrok HB, Galal AF, Ahmed-Farid OA, Abd El-Rahman SS, Moustafa PE. Chrysin loaded nanovesicles ameliorated diabetic peripheral neuropathy. Role of NGF/AKT/GSK-3β pathway. Chem Biol Interact 2023; 375:110402. [PMID: 36804429 DOI: 10.1016/j.cbi.2023.110402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is a common diabetic complication. Chrysin (CHY) has many biological properties but poor oral bioavailability. This study investigates the effect of CHY and CHY-loaded nanovesicles (CHY-NVs) on streptozotocin (STZ)-induced DPN in rats. CHY-NVs were prepared by using film hydration method. The formula with the best entrapment efficiency%, lowest particle size, highest zeta potential, and highest in vitro CHY released profile was selected, characterized by Differential scanning calorimetry, Fourier transformation infrared spectroscopy analysis, and examined by Transmission electron microscope. Acute toxicity test, pharmacokinetic study and experimental model of diabetes mellitus were performed on the selected formulation. Wistar rats were considered diabetic by administration of a single intraperitoneal dose of STZ (50 mg/kg). 48 h after STZ administration, hyperglycemic rats were randomly assigned into four groups, one group of untreated hyperglycemic rats and the other three groups received daily oral doses of unloaded NVs, CHY-NVs (25 mg/kg), and CHY-NVs (50 mg/kg), respectively for 21 days. Moreover, five additional groups of healthy rats received: distilled water (control), free CHY, unloaded NVs, and CHY-NVs respectively for 21 days. CHY and CHY-NVs maintained body weight and reduced STZ-induced behavioral changes in rotarod, hind paw cold allodynia, tail cold allodynia, tail flick, and hot plate tests. CHY and CHY-NVs lowered blood glucose, glycated hemoglobin, elevated serum reduced glutathione (GSH), and reduced plasma malondialdehyde (MDA) levels. CHY-NVs elevated phosphatidylinositol 3-kinase (Pi3k), phosphorylated protein kinase B (p-AKT), and reduced nuclear factor kappa B (NF-κB), interleukin-6 (IL-6) in sciatic nerve homogenate. CHY and CHY-NVs increased nerve growth factor (NGF) and decreased glycogen synthase kinase-3β (GSK-3β) gene expressions in the sciatic nerve. In conclusion, CHY and CHY-NVs ameliorated STZ-induced DPN behavioral and histopathological changes via attenuating hyperglycemia, exerting anti-oxidant, anti-inflammatory effects, activating NGF/p-AKT/GSK-3β pathway, and its anti-apoptotic effect. The best pharmacokinetic profile and therapeutic effect was observed in rats treated with CHY-loaded NVs.
Collapse
Affiliation(s)
- Salma A El-Marasy
- Department of Pharmacology, Medical and clinical studies institute, National Research Centre, Giza, Egypt.
| | - Mona M AbouSamra
- Pharmaceutical Technology Department, Pharmaceutical drug industries research institute, National Research Centre, Giza, Egypt
| | - Aliaa E M K El-Mosallamy
- Department of Pharmacology, Medical and clinical studies institute, National Research Centre, Giza, Egypt
| | - Ahmed N Emam
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Researches research institute, National Research Centre, Giza, Egypt
| | - Hoda B Mabrok
- Nutrition and food science department, Food industries and nutrition research institute, National Research Centre, Giza, Egypt
| | - Asmaa F Galal
- Narcotics, Ergogenics and Poisons Department, Medical and clinical studies research institute, National Research Centre, Giza, Egypt
| | | | - Sahar S Abd El-Rahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Passant E Moustafa
- Department of Pharmacology, Medical and clinical studies institute, National Research Centre, Giza, Egypt
| |
Collapse
|
8
|
Abdelmonem R, Al-Samadi IEI, El Nashar RM, Jasti BR, El-Nabarawi MA. Fabrication of nanostructured lipid carriers ocugel for enhancing Loratadine used in treatment of COVID-19 related symptoms: statistical optimization, in-vitro, ex-vivo, and in-vivo studies evaluation. Drug Deliv 2022; 29:2868-2882. [PMID: 36065090 PMCID: PMC9448409 DOI: 10.1080/10717544.2022.2115164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Loratadine (LORA), is a topical antihistamine utilized in the treatment of ocular symptoms of COVID-19. The study aimed to develop a Loratadine Nanostructured Lipid Carriers Ocugel (LORA-NLCs Ocugel), enhance its solubility, trans-corneal penetrability, and bioavailability. full-factorial design was established with 24 trials to investigate the impact of several variables upon NLCs properties. LORA-NLCs were fabricated by using hot melt emulsification combined with high-speed stirring and ultrasonication methods. All obtained formulae were assessed in terms of percent of entrapment efficiency (EE%), size of the particle (PS), zeta potential (ZP), as well as in-vitro release. Via using Design Expert® software the optimum formula was selected, characterized using FTIR, Raman spectroscopy, and stability studies. Gel-based of optimized LORA-NLCs was prepared using 4% HPMC k100m which was further evaluated in terms of physicochemical properties, Ex-vivo, and In-vivo studies. The optimized LORA-NLCs, comprising Compritol 888 ATO®, Labrasol®, and Span® 60 showed EE% of 95.78 ± 0.67%, PS of 156.11 ± 0.54 nm, ZP of -40.10 ± 0.55 Mv, and Qh6% of 99.67 ± 1.09%, respectively. Additionally, it illustrated a spherical morphology and compatibility of LORA with other excipients. Consequently, gel-based on optimized LORA-NLCs showed pH (7.11 ± 0.52), drug content (98.62%± 1.31%), viscosity 2736 cp, and Q12% (90.49 ± 1.32%). LORA-NLCs and LORA-NLCs Ocugel exhibited higher ex-vivo trans-corneal penetrability compared with the aqueous drug dispersion. Confocal laser scanning showed valuable penetration of fluoro-labeled optimized formula and LORA-NLCs Ocugel through corneal. The optimized formula was subjected to an ocular irritation test (Draize Test) that showed the absence of any signs of inflammation in rabbits, and histological analysis showed no effect or damage to rabbit eyeballs. Cmax and the AUC0-24 were higher in LORA-NLCs Ocugel compared with pure Lora dispersion-loaded gel The research findings confirmed that NLCs could enhance solubility, trans-corneal penetrability, and the bioavailability of LORA.
Collapse
Affiliation(s)
- Rehab Abdelmonem
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Inas Essam Ibrahim Al-Samadi
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Rasha M El Nashar
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Bhaskara R Jasti
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Healthy Science-Pacific University, Stockton, CA, USA
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University Giza, Giza, Egypt
| |
Collapse
|
9
|
PEGylated Lipid Nanocontainers Tailored with Sunseed-Oil-Based Solidified Reverse Micellar Solution for Enhanced Pharmacodynamics and Pharmacokinetics of Metformin. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09654-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Unnisa A, Chettupalli AK, Al Hagbani T, Khalid M, Jandrajupalli SB, Chandolu S, Hussain T. Development of Dapagliflozin Solid Lipid Nanoparticles as a Novel Carrier for Oral Delivery: Statistical Design, Optimization, In-Vitro and In-Vivo Characterization, and Evaluation. Pharmaceuticals (Basel) 2022; 15:ph15050568. [PMID: 35631394 PMCID: PMC9143250 DOI: 10.3390/ph15050568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Controlling hyperglycemia and avoiding glucose reabsorption are significant goals in type 2 diabetes treatments. Among the numerous modes of medication administration, the oral route is the most common. Introduction: Dapagliflozin is an oral hypoglycemic agent and a powerful, competitive, reversible, highly selective, and orally active human SGLT2 inhibitor. Dapagliflozin-loaded solid lipid nanoparticles (SLNs) are the focus of our present investigation. Controlled-release lipid nanocarriers were formulated by integrating them into lipid nanocarriers. The nanoparticle size and lipid utilized for formulation help to regulate the release of pharmaceuticals over some time. Dapagliflozin-loaded nanoparticles were formulated by hot homogenization followed by ultra-sonication. The morphology and physicochemical properties of dapagliflozin-SLNs have been characterized using various techniques. The optimized dapagliflozin-SLNs have a particle size ranging from 100.13 ± 7.2 to 399.08 ± 2.4 nm with 68.26 ± 0.2 to 94.46 ± 0.7% entrapment efficiency (%EE). Dapagliflozin-SLNs were optimized using a three-factor, three-level Box–Behnken design (BBD). Polymer concentration (X1), surfactant concentration (X2), and stirring duration (X3) were chosen as independent factors, whereas %EE, cumulative drug release (%CDR), and particle size were selected as dependent variables. Interactions between drug substances and polymers were studied using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Differential scanning calorimetry (DSC), X-ray diffraction (XRD), and atomic force microscopy (AFM) analysis indicated the crystalline change from the drug to the amorphous crystal. Electron microscope studies revealed that the SLNs’ structure is nearly perfectly round. It is evident from the findings that dapagliflozin-SLNs could lower elevated blood glucose levels to normal in STZ-induced diabetic rats, demonstrating a better hypoglycemic impact on type 2 diabetic patients. The in vivo pharmacokinetic parameters of SLNs exhibited a significant rise in Cmax (1258.37 ± 1.21 mcg/mL), AUC (5247.04 mcg/mL), and oral absorption (2-fold) of the drug compared to the marketed formulation in the Sprague Dawley rats.
Collapse
Affiliation(s)
- Aziz Unnisa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
- Correspondence: ; Tel.: +966-537860207
| | - Ananda K. Chettupalli
- Department of Pharmaceutical Sciences, School of Pharmacy, Anurag University, Hyderabad 500088, India;
| | - Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia;
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Suresh B. Jandrajupalli
- Department of Preventive Dental Sciences, College of Dentistry, University of Hail, Hail 81442, Saudi Arabia; (S.B.J.); (S.C.)
| | - Swarnalatha Chandolu
- Department of Preventive Dental Sciences, College of Dentistry, University of Hail, Hail 81442, Saudi Arabia; (S.B.J.); (S.C.)
| | - Talib Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia;
| |
Collapse
|
11
|
Kataria D, Zafar A, Ali J, Khatoon K, Khan S, Imam SS, Yasir M, Ali A. Formulation of Lipid-Based Nanocarriers of Lacidipine for Improvement of Oral Delivery: Box-Behnken Design Optimization, In Vitro, Ex Vivo, and Preclinical Assessment. Assay Drug Dev Technol 2022; 20:5-21. [DOI: 10.1089/adt.2021.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Dheeraj Kataria
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Karishma Khatoon
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Saba Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Yasir
- Department of Pharmacy, College of Health Science, Arsi University, Asella, Ethiopia
| | - Asgar Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
12
|
Moradifar N, Kiani AA, Veiskaramian A, Karami K. Role of Organic and Inorganic Nanoparticles in the Drug Delivery System for Hypertension Treatment: A Systematic Review. Curr Cardiol Rev 2022; 18:e110621194025. [PMID: 35297343 PMCID: PMC9241118 DOI: 10.2174/1573403x17666210611115823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The present investigation was designed to systematically review the antihypertensive effects of all the organic and inorganic nanoparticles in the in vitro, in vivo, and clinical trials. METHODS The current study was carried out using 06-PRISMA guideline and registered in the CAMARADES- NC3Rs Preclinical Systematic Review and Meta-analysis Facility (SyRF) database. The search was performed on five English databases, including Scopus, PubMed, Web of Science, EMBASE, and Google Scholar, without time limitation for publications worldwide related to the anti-hypertensive effects of all the organic and inorganic nanoparticles without date limitation, so as to identify all the published articles (in vitro, in vivo, clinical, and case-control). Studies in any language were entered in the search step if they had an English abstract. RESULTS Out of 3602 papers, 60 including 25 werein vitro (41.7%), 17 in vitro / in vivo (28.3%), 16 in vivo (26.7%), and 2 in vitro / ex vivo (3.3%) up to 2020 met the inclusion criteria for discussion in this systematic review. The most widely used nanoparticles were organic nanoparticles such as polylactic acid, poly lactic-co-glycolic acid (PLGA), lipid, chitosan, etc., followed by inorganic nanoparticles such as silver and palladium nanoparticles. CONCLUSION This review demonstrated the anti-hypertensive effects of some organic and inorganic nanoparticles alone or in combination with the available anti-hypertensives. We found that organic nanoparticles such as PGLA and chitosan can be considered as preferred options in nanomedicine for treating high blood pressure. The results also showed these nanoparticles displayed antihypertensive effects through some mechanisms such as sustained release forms via increasing bioavailability, increasing oral bioavailability and improving oral and non-oral absorption, counteracting excessive superoxide, decreasing blood pressure, etc. However, further investigations are required to prove these effects, particularly in clinical settings, as well as their accurate possible mechanisms and toxicity.
Collapse
Affiliation(s)
- Nasrollah Moradifar
- Cardiovascular Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ali Asghar Kiani
- Razi Herbal Medicine Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Atefe Veiskaramian
- Cardiovascular Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Kimia Karami
- Social Determinants of Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Nursing, School of Nursing and Midwifery, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
13
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:1027-1039. [DOI: 10.1093/jpp/rgac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/19/2022] [Indexed: 11/13/2022]
|
14
|
|
15
|
Thymoquinone loaded chitosan - Solid lipid nanoparticles: Formulation optimization to oral bioavailability study. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
16
|
Morfoisse F, De Toni F, Nigri J, Hosseini M, Zamora A, Tatin F, Pujol F, Sarry JE, Langin D, Lacazette E, Prats AC, Tomasini R, Galitzky J, Bouloumié A, Garmy-Susini B. Coordinating Effect of VEGFC and Oleic Acid Participates to Tumor Lymphangiogenesis. Cancers (Basel) 2021; 13:cancers13122851. [PMID: 34200994 PMCID: PMC8227717 DOI: 10.3390/cancers13122851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 01/22/2023] Open
Abstract
Simple Summary In cancer, the lymphatic system is hijacked by tumor cells that escape from primary tumor and metastasize to the sentinel lymph nodes. Tumor lymphangiogenesis is stimulated by the vascular endothelial growth factors-C (VEGFC) after binding to its receptor VEGFR-3. However, how VEGFC cooperates with other molecules to promote lymphatic neovessel growth has not been fully determined. Here, we showed that tumor lymphangiogenesis developed in tumoral lesions and in their surrounding adipose tissue (AT). Interestingly, lymphatic vessel density correlated with an increase in circulating free fatty acids (FFA) in the lymph from tumor-bearing mice. We showed that adipocyte-released FFA are uploaded by lymphatic endothelial cells (LEC) to stimulate their sprouting. Lipidomic analysis identified the monounsaturated oleic acid (OA) as the major circulating FFA in the lymph in a tumoral context. OA transporters FATP-3, -6 and CD36 were only upregulated on LEC in the presence of VEGFC showing a collaborative effect of these molecules. OA released from adipocytes is taken up by LECs to stimulate the fatty acid β-oxidation, leading to increased adipose tissue lymphangiogenesis. Our results provide new insights on the dialogue between tumors and adipocytes via the lymphatic system and identify a key role for adipocyte-derived FFA in the promotion of lymphangiogenesis, revealing novel therapeutic opportunities for inhibitors of lymphangiogenesis in cancer. Abstract In cancer, the lymphatic system is hijacked by tumor cells that escape from primary tumor and metastasize to the sentinel lymph nodes. Tumor lymphangiogenesis is stimulated by the vascular endothelial growth factors-C (VEGFC) after binding to its receptor VEGFR-3. However, how VEGFC cooperates with other molecules to promote lymphatics growth has not been fully determined. We showed that lymphangiogenesis developed in tumoral lesions and in surrounding adipose tissue (AT). Interestingly, lymphatic vessel density correlated with an increase in circulating free fatty acids (FFA) in the lymph from tumor-bearing mice. We showed that adipocyte-released FFA are uploaded by lymphatic endothelial cells (LEC) to stimulate their sprouting. Lipidomic analysis identified the monounsaturated oleic acid (OA) as the major circulating FFA in the lymph in a tumoral context. OA transporters FATP-3, -6 and CD36 were only upregulated on LEC in the presence of VEGFC showing a collaborative effect of these molecules. OA stimulates fatty acid β-oxidation in LECs, leading to increased AT lymphangiogenesis. Our results provide new insights on the dialogue between tumors and adipocytes via the lymphatic system and identify a key role for adipocyte-derived FFA in the promotion of lymphangiogenesis, revealing novel therapeutic opportunities for inhibitors of lymphangiogenesis in cancer.
Collapse
Affiliation(s)
- Florent Morfoisse
- I2MC, Université de Toulouse, Inserm UMR 1297, UPS, 31000 Toulouse, France; (F.M.); (F.D.T.); (A.Z.); (F.T.); (F.P.); (D.L.); (E.L.); (A.-C.P.); (J.G.); (A.B.)
| | - Fabienne De Toni
- I2MC, Université de Toulouse, Inserm UMR 1297, UPS, 31000 Toulouse, France; (F.M.); (F.D.T.); (A.Z.); (F.T.); (F.P.); (D.L.); (E.L.); (A.-C.P.); (J.G.); (A.B.)
| | - Jeremy Nigri
- CRCM, Inserm UMR 1068, 13001 Marseille, France; (J.N.); (R.T.)
| | - Mohsen Hosseini
- CRCT, Université de Toulouse, Inserm UMR 1037, UPS, 31000 Toulouse, France; (M.H.); (J.-E.S.)
| | - Audrey Zamora
- I2MC, Université de Toulouse, Inserm UMR 1297, UPS, 31000 Toulouse, France; (F.M.); (F.D.T.); (A.Z.); (F.T.); (F.P.); (D.L.); (E.L.); (A.-C.P.); (J.G.); (A.B.)
| | - Florence Tatin
- I2MC, Université de Toulouse, Inserm UMR 1297, UPS, 31000 Toulouse, France; (F.M.); (F.D.T.); (A.Z.); (F.T.); (F.P.); (D.L.); (E.L.); (A.-C.P.); (J.G.); (A.B.)
| | - Françoise Pujol
- I2MC, Université de Toulouse, Inserm UMR 1297, UPS, 31000 Toulouse, France; (F.M.); (F.D.T.); (A.Z.); (F.T.); (F.P.); (D.L.); (E.L.); (A.-C.P.); (J.G.); (A.B.)
| | - Jean-Emmanuel Sarry
- CRCT, Université de Toulouse, Inserm UMR 1037, UPS, 31000 Toulouse, France; (M.H.); (J.-E.S.)
| | - Dominique Langin
- I2MC, Université de Toulouse, Inserm UMR 1297, UPS, 31000 Toulouse, France; (F.M.); (F.D.T.); (A.Z.); (F.T.); (F.P.); (D.L.); (E.L.); (A.-C.P.); (J.G.); (A.B.)
| | - Eric Lacazette
- I2MC, Université de Toulouse, Inserm UMR 1297, UPS, 31000 Toulouse, France; (F.M.); (F.D.T.); (A.Z.); (F.T.); (F.P.); (D.L.); (E.L.); (A.-C.P.); (J.G.); (A.B.)
| | - Anne-Catherine Prats
- I2MC, Université de Toulouse, Inserm UMR 1297, UPS, 31000 Toulouse, France; (F.M.); (F.D.T.); (A.Z.); (F.T.); (F.P.); (D.L.); (E.L.); (A.-C.P.); (J.G.); (A.B.)
| | | | - Jean Galitzky
- I2MC, Université de Toulouse, Inserm UMR 1297, UPS, 31000 Toulouse, France; (F.M.); (F.D.T.); (A.Z.); (F.T.); (F.P.); (D.L.); (E.L.); (A.-C.P.); (J.G.); (A.B.)
| | - Anne Bouloumié
- I2MC, Université de Toulouse, Inserm UMR 1297, UPS, 31000 Toulouse, France; (F.M.); (F.D.T.); (A.Z.); (F.T.); (F.P.); (D.L.); (E.L.); (A.-C.P.); (J.G.); (A.B.)
| | - Barbara Garmy-Susini
- I2MC, Université de Toulouse, Inserm UMR 1297, UPS, 31000 Toulouse, France; (F.M.); (F.D.T.); (A.Z.); (F.T.); (F.P.); (D.L.); (E.L.); (A.-C.P.); (J.G.); (A.B.)
- Correspondence:
| |
Collapse
|
17
|
Naguib MJ, Elsayed I, Teaima MH. Simultaneous Optimization of Oral and Transdermal Nanovesicles for Bioavailability Enhancement of Ivabradine Hydrochloride. Int J Nanomedicine 2021; 16:2917-2931. [PMID: 33911861 PMCID: PMC8072262 DOI: 10.2147/ijn.s299326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/10/2021] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Ivabradine hydrochloride is selective pacemaker current (If) ion channel inhibitor used in case of chronic heart failure (CHF) with superior efficacy and lower side effects than most β-blockers. However, the drug suffers from low bioavailability (≈40%) due to extensive first-pass metabolism. Hence, this work aims to formulate nanovesicular platforms to enhance their bioavailability both orally and transdermally. MATERIALS AND METHODS A central composite face-centered design was employed to formulate the nanovesicles, both phosphatidylcholine: drug ratio and percentage of pluronic F68 were used as independent variables. The nine developed formulae were characterized in terms of vesicle size (nm), polydispersity index, zeta potential (mV), entrapment efficiency (%). Decreasing vesicle size, increasing negative value of the zeta potential, and increasing entrapment efficiency were the chosen constraints to optimize the engineered nanovesicles. The candidate formula was subjected to further investigation including lyophilization, loading into carbopol gel, in vitro release, imaging with a transmission electron microscope, histopathological examination, in vitro cytotoxicity study and in vivo pharmacokinetics. RESULTS The optimized nanovesicular formula was composed of lipid: drug ratio of 3.91:1 and 100% pluronic as a stabilizer. It has particle size, zeta potential and entrapment efficiency of 337.6 nm, -40.5 mV and 30.5, respectively. It was then lyophilized in the presence of 5% trehalose as a cryoprotectant, dispersed in 0.5% carbopol to develop the transdermal gel. The two different forms of the candidate formula (lyophilized and gel form) displayed sustained drug release in comparison to drug solution. The histopathological and cytotoxicity studies showed that the optimized formula was safe and highly biocompatible. The pharmacokinetics parameters measured declared a higher Cmax and half-life of both formulae in comparison to market product (Procoralan®) with a 2.54- and 1.85-folds increase in bioavailability, respectively. CONCLUSION Hence, the developed nanovesicles can be reported as the first nanoplatforms to be used for simultaneous ivabradine delivery by both oral and topical routes with enhanced oral and transdermal drug delivery. The developed nanoplatforms hence can be further used to formulate other drugs that suffer from low bioavailability due to extensive first-pass metabolism.
Collapse
Affiliation(s)
- Marianne Joseph Naguib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ibrahim Elsayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy and Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Mahmoud Hassan Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
18
|
Saghafi Z, Mohammadi M, Mahboobian MM, Derakhshandeh K. Preparation, characterization, and in vivo evaluation of perphenazine-loaded nanostructured lipid carriers for oral bioavailability improvement. Drug Dev Ind Pharm 2021; 47:509-520. [PMID: 33650445 DOI: 10.1080/03639045.2021.1892745] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The main scope of the present investigation was to improve the bioavailability of perphenazine (PPZ) by incorporating it into the nanostructured lipid carriers (NLCs). SIGNIFICANCE As a result of lipophilic nature and poor aqueous solubility, as well as extensive hepatic metabolism, PPZ has low systemic bioavailability via the oral route. NLCs have shown potentials to surmount the oral delivery drawbacks of poorly water-soluble drugs. METHODS The PPZ-NLCs were prepared by the emulsification-solvent evaporation method and subjected for particle size, zeta potential, and entrapment efficiency (EE) analysis. The optimized NLCs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and powder X-ray diffractometry (PXRD). Besides, in vitro release behavior, storage stability, and pharmacokinetic studies followed by a single-dose oral administration in rats were performed. RESULTS Optimized PPZ-NLCs showed a particle size of less than 180 nm with appropriate EE of more than 95%. Microscopic images captured with SEM and TEM exhibited that NLCs were approximately spherical in shape. DSC and PXRD analysis confirmed reduced crystallinity of PPZ after incorporation in NLCs. FTIR spectra demonstrated no chemical interactions between PPZ and NLC components. In vitro release studies confirmed the extended-release properties of NLC formulations. PPZ-NLCs exhibited good stability at 4 °C within three months. The oral bioavailability of NLC-6 and NLC-12 was enhanced about 3.12- and 2.49-fold, respectively, compared to the plain drug suspension. CONCLUSION NLC can be designated as an effective nanocarrier for oral delivery of PPZ.
Collapse
Affiliation(s)
- Zahra Saghafi
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Mehdi Mahboobian
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Katayoun Derakhshandeh
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
19
|
Zafar A, Alruwaili NK, Imam SS, Hadal Alotaibi N, Alharbi KS, Afzal M, Ali R, Alshehri S, Alzarea SI, Elmowafy M, Alhakamy NA, Ibrahim MF. Bioactive Apigenin loaded oral nano bilosomes: Formulation optimization to preclinical assessment. Saudi Pharm J 2021; 29:269-279. [PMID: 33981176 PMCID: PMC8085606 DOI: 10.1016/j.jsps.2021.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/06/2021] [Indexed: 12/16/2022] Open
Abstract
AIM Diabetic (type-2) is a metabolic disease characterized by increased blood glucose level from the normal level. In the present study, apigenin (AG) loaded lipid vesicles (bilosomes: BIL) was prepared, optimized and evaluated for the oral therapeutic efficacy. EXPERIMENTAL AG-BIL was prepared by a thin-film evaporation method using cholesterol, span 60 and sodium deoxycholate. The prepared formulation was optimized by 3-factor and 3-level Box-Behnken design using particle size, entrapment efficiency and drug release as a response. The selected formulation further evaluated for ex-vivo permeation, in vivo pharmacokinetic and pharmacodynamics study. RESULTS The optimized AG bilosomes (AG-BILopt) has shown the vesicle size 183.25 ± 2.43 nm, entrapment efficiency 81.67 ± 4.87%. TEM image showed a spherical shape vesicle with sharp boundaries. The drug release study revealed a significant enhancement in AG release (79.45 ± 4.18%) from AG-BILopt as compared to free AG-dispersion (25.47 ± 3.64%). The permeation and pharmacokinetic studies result revealed 4.49 times higher flux and 4.67 folds higher AUC0-t than free AG-dispersion. The antidiabetic activity results showed significant (P < 0.05) enhancement in therapeutic efficacy than free AG-dispersion. The results also showed marked improvement in biochemical parameters. CONCLUSION Our findings suggested, the prepared apigenin loaded bilosomes was found to be an efficient delivery in the therapeutic efficacy in diabetes.
Collapse
Affiliation(s)
- Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Nabil K. Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nasser Hadal Alotaibi
- Department of clinical pharmacy, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72341, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72341, Saudi Arabia
| | - Raisuddin Ali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Central Lab, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Pharmaceutical Sciences, College of Pharmacy, Almaarefa University, Riyadh 11597, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72341, Saudi Arabia
| | - Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
- Department of Pharmaceutics and Ind. Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed F. Ibrahim
- Department of Pharmaceutics and Ind. Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
20
|
Allam A, Elsabahy M, El Badry M, Eleraky NE. Betaxolol-loaded niosomes integrated within pH-sensitive in situ forming gel for management of glaucoma. Int J Pharm 2021; 598:120380. [PMID: 33609725 DOI: 10.1016/j.ijpharm.2021.120380] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 01/20/2023]
Abstract
Blindness and impaired vision are considered as the most troublesome health conditions leading to significant socioeconomic strains. The current study focuses on development of nanoparticulate systems (i.e., niosomes) as drug vehicles to enhance the ocular availability of betaxolol hydrochloride for management of glaucoma. Betaxolol-loaded niosomes were further laden into pH-responsive in situ forming gels to further extend precorneal retention of the drug. The niosomes were evaluated in terms of vesicle size, morphology, size distribution, surface charge and encapsulation efficiency. The optimized niosomes, comprised of Span® 40 and cholesterol at a molar ratio of 4:1, displayed particle size of 332 ± 7 nm, zeta potential of -46 ± 1 mV, and encapsulation efficiency of 69 ± 5%. The optimal nanodispersion was then incorporated into a pH-triggered in situ forming gel comprised of Carbopol® 934P and hydroxyethyl cellulose. The formed gels were translucent, pseudoplastic, mucoadhesive, and displayed a sustained in vitro drug release pattern. Upon instillation of the betaxolol-loaded niosomal gel into rabbits' eyes, a prolonged intraocular pressure reduction and significant enhancement in the relative bioavailability of betaxolol (280 and 254.7%) in normal and glaucomatous rabbits, were attained compared to the marketed eye drops, respectively. Hence, the developed pH-triggered nanoparticulate gelling system might provide a promising carrier for ophthalmic drug delivery and for improved augmentation of glaucoma.
Collapse
Affiliation(s)
- Ayat Allam
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt
| | - Mahmoud Elsabahy
- Science Academy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Misr University for Science and Technology, 6th of October City 12566, Egypt.
| | - Mahmoud El Badry
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt
| | - Nermin E Eleraky
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
21
|
Effect of Chitosan Coating on PLGA Nanoparticles for Oral Delivery of Thymoquinone: In Vitro, Ex Vivo, and Cancer Cell Line Assessments. COATINGS 2020. [DOI: 10.3390/coatings11010006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the present study, thymoquinone (TQ)-encapsulated chitosan- (CS)-coated poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) were formulated using the emulsion evaporation method. NPs were optimized by using 33-QbD approach for improved efficacy against breast cancer. The optimized thymoquinone loaded chitosan coated Poly (d,l-lactide-co-glycolide) nanoparticles (TQ-CS-PLGA-NPs) were successfully characterized by different in vitro and ex vivo experiments as well as evaluated for cytotoxicity in MDA-MB-231 and MCF-7 cell lines. The surface coating of PLGA-NPs was completed by CS coating and there were no significant changes in particle size and entrapment efficiency (EE) observed. The developed TQ-CS-PLGA-NPs showed particle size, polydispersibility index (PDI), and %EE in the range between 126.03–196.71 nm, 0.118–0.205, and 62.75%–92.17%. The high and prolonged TQ release rate was achieved from TQ-PLGA-NPs and TQ-CS-PLGA-NPs. The optimized TQ-CS-PLGA-NPs showed significantly higher mucoadhesion and intestinal permeation compared to uncoated TQ-PLGA-NPs and TQ suspension. Furthermore, TQ-CS-PLGA-NPs showed statistically enhanced antioxidant potential and cytotoxicity against MDA-MB-231 and MCF-7 cells compared to uncoated TQ-PLGA-NPs and pure TQ. On the basis of the above findings, it may be stated that chitosan-coated TQ-PLGA-NPs represent a great potential for breast cancer management.
Collapse
|
22
|
Akpa PA, Ugwuoke JA, Attama AA, Ugwu CN, Ezeibe EN, Momoh MA, Echezona AC, Kenechukwu FC. Improved antimalarial activity of caprol-based nanostructured lipid carriers encapsulating artemether-lumefantrine for oral administration. Afr Health Sci 2020; 20:1679-1697. [PMID: 34394228 PMCID: PMC8351851 DOI: 10.4314/ahs.v20i4.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Artemether and lumefantrine display low aqueous solubility leading to poor release profile; hence the need for the use of lipid-based systems to improve their oral bioavailability so as to improve their therapeutic efficacy. AIM AND OBJECTIVE The objective of this work was to utilize potentials of nanostructured lipid carriers (NLCs) for improvement of the oral bioavailability of artemether and lumefantrine combination and to evaluate its efficacy in the treatment of malaria. This study reports a method of formulation, characterization and evaluation of the therapeutic efficacies of caprol-based NLC delivery systems with artemether and lumefantrine. METHOD The artemether-lumefantrine co-loaded NLCs were prepared using the lipid matrix (5% w/w) (containing beeswax and Phospholipon® 90H and Caprol-PGE 860), artemether (0.1%w/w) and lumefantrine (0.6%w/w), sorbitol (4%w/w), Tween® 80(2%w/w as surfactant) and distilled water (q.s to 100%) by high shear homogenization and evaluated for physicochemical performance. The in vivo antimalarial activities of the NLC were tested in chloroquine-sensitive strains of Plasmodium berghei (NK-65) using Peter´s 4-day suppressive protocol in mice and compared with controls. Histopathological studies were also carried out on major organs implicated in malaria. RESULTS The NLC showed fairly polydispersed nano-sized formulation (z-average:188.6 nm; polydispersity index, PDI=0.462) with no major interaction occurring between the components while the in vivo study showed a gradual but sustained drug release from the NLC compared with that seen with chloroquine sulphate and Coartem®. Results of histopathological investigations also revealed more organ damage with the untreated groups than groups treated with the formulations. CONCLUSION This study has shown the potential of caprol-based NLCs for significant improvement in oral bioavailability and hence antimalarial activity of poorly soluble artemether and lumefantrine. Importantly, this would improve patient compliance due to decrease in dosing frequency as a sustained release formulation.
Collapse
Affiliation(s)
| | | | | | - Chinenye Nnenna Ugwu
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka
| | | | | | | | | |
Collapse
|
23
|
Fahmy UA, Ahmed OAA, Badr-Eldin SM, Aldawsari HM, Okbazghi SZ, Awan ZA, Bakhrebah MA, Alomary MN, Abdulaal WH, Medina C, Alhakamy NA. Optimized Nanostructured Lipid Carriers Integrated into In Situ Nasal Gel for Enhancing Brain Delivery of Flibanserin. Int J Nanomedicine 2020; 15:5253-5264. [PMID: 32801690 PMCID: PMC7386805 DOI: 10.2147/ijn.s258791] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022] Open
Abstract
Background and Aim Flibanserin (FLB) is a multifunctional serotonergic agent used for treating hypoactive sexual desire disorder in premenopausal women via oral administration. FLB has a reported limited oral bioavailability of 33% that could be attributed to the drug’s first-pass metabolism. In addition, FLB has a pH-dependent solubility that could be a challenging factor for drug dissolution in the body neutral fluid, and consequently, absorption via mucosal barriers. Thus, this work aims at investigating the potential of utilizing nanostructured lipid carriers (NLCs) to overcome the aforementioned drawbacks and to enhance nose-to-brain drug delivery. Methods Box-Behnken design was applied to explore the impact of solid lipid % (SL%, X1), liquid lipid % (LL%, X2), and sonication time (ST, X3) on particle size. The optimized NLC formulation was characterized and incorporated into gellan gum in situ gel. The prepared gel was subjected to in vitro drug release, in vivo pharmacokinetic performance, and histopathological assessment in rats. Results Statistical analysis revealed a significant negative effect for both SL% and ST on NLCs size. In contrast, a significant positive effect was observed for the LL%. The optimized formulation showed spherical shape with vesicular size of 114.63 nm. The optimized FLB-NLC in situ gel exhibited adequate stability and enhanced in vitro release compared to raw FLB control gel. The plasma and brain concentrations of the drug after nasal administration in rats increased by more than 3–6-fold, respectively, compared to raw FLB in situ gel. In addition, the histopathological studies revealed the absence of any pathological signs. Conclusion The aforementioned results highlight the safety of FLB-NLC in situ nasal gel and its potential to improve the drug bioavailability and brain delivery.
Collapse
Affiliation(s)
- Usama A Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama A A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shaimaa M Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hibah M Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Solomon Z Okbazghi
- Global Analytical and Pharmaceutical Development, Alexion Pharmaceuticals, New Haven, Connecticut, NE 06510, USA
| | - Zuhier A Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammed A Bakhrebah
- Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Kingdom of Saudi Arabia
| | - Mohammad N Alomary
- Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Kingdom of Saudi Arabia
| | - Wesam H Abdulaal
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Carlos Medina
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin Ireland
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
24
|
Shaveta S, Singh J, Afzal M, Kaur R, Imam SS, Alruwaili NK, Alharbi KS, Alotaibi NH, Alshammari MS, Kazmi I, Yasir M, Goyel A, Ameeduzzafar. Development of solid lipid nanoparticle as carrier of pioglitazone for amplification of oral efficacy: Formulation design optimization, in-vitro characterization and in-vivo biological evaluation. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101674] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
E. Eleraky N, M. Omar M, A. Mahmoud H, A. Abou-Taleb H. Nanostructured Lipid Carriers to Mediate Brain Delivery of Temazepam: Design and In Vivo Study. Pharmaceutics 2020; 12:pharmaceutics12050451. [PMID: 32422903 PMCID: PMC7284889 DOI: 10.3390/pharmaceutics12050451] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/23/2022] Open
Abstract
The opposing effect of the blood–brain barrier against the delivery of most drugs warrants the need for an efficient brain targeted drug delivery system for the successful management of neurological disorders. Temazepam-loaded nanostructured lipid carriers (NLCs) have shown possibilities for enhancing bioavailability and brain targeting affinity after oral administration. This study aimed to investigate these properties for insomnia treatment. Temazepam-NLCs were prepared by the solvent injection method and optimized using a 42 full factorial design. The optimum formulation (NLC-1) consisted of; Compritol® 888 ATO (75 mg), oleic acid (25 mg), and Poloxamer® 407 (0.3 g), with an entrapment efficiency of 75.2 ± 0.1%. The average size, zeta potential, and polydispersity index were determined to be 306.6 ± 49.6 nm, −10.2 ± 0.3 mV, and 0.09 ± 0.10, respectively. Moreover, an in vitro release study showed that the optimized temazepam NLC-1 formulation had a sustained release profile. Scintigraphy images showed evident improvement in brain uptake for the oral 99mTc-temazepam NLC-1 formulation versus the 99mTc-temazepam suspension. Pharmacokinetic data revealed a significant increase in the relative bioavailability of 99mTc-temazepam NLC-1 formulation (292.7%), compared to that of oral 99mTc-temazepam suspension. Besides, the NLC formulation exhibited a distinct targeting affinity to rat brain. In conclusion, our results indicate that the developed temazepam NLC formulation can be considered as a potential nanocarrier for brain-mediated drug delivery in the out-patient management of insomnia.
Collapse
Affiliation(s)
- Nermin E. Eleraky
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Correspondence: or
| | - Mahmoud M. Omar
- Department of Pharmaceutics and Industrial Pharmacy, Deraya University, Minia 61768, Egypt;
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Hemat A. Mahmoud
- Department of Clinical Oncology and Nuclear Medicine, Assiut University, Assiut 71526, Egypt;
| | - Heba A. Abou-Taleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef 62511, Egypt;
| |
Collapse
|
26
|
Zafar A. Development of Oral Lipid Based Nano-formulation of Dapagliflozin: Optimization, in vitro Characterization and ex vivo Intestinal Permeation Study. J Oleo Sci 2020; 69:1389-1401. [DOI: 10.5650/jos.ess20162] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
In vitro-in vivo correlation (IVIVC) of solid lipid nanoparticles loaded with poorly water-soluble drug lovastatin. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
28
|
Chen J, Pan H, Duan H, Deng W, Zhang F, Yang X, Pan W. Self-assembled liposome from core-sheath chitosan-based fibres for buccal delivery of carvedilol: formulation, characterization and in vitro and ex vivo buccal absorption. ACTA ACUST UNITED AC 2019; 72:343-355. [PMID: 31863466 DOI: 10.1111/jphp.13210] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 11/16/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVES A novel drug delivery system based on self-assembled liposome from core-sheath nanofibres for buccal delivery of Carvedilol (Car) was explored. METHODS The Car-loaded PVP/PC (phospholipids) layer was coated with chitosan-PVA (CS-PVA) or CS-PVP to increase retention period in the mouth. SEM, confocal laser scanning microscopy (CLSM), XRD and Fourier transform infrared spectroscopy were applied to characterize fibre diameter and drug state. Appearance, particle size and encapsulation efficiency of self-assembled liposome were investigated by transmission electron microscopy (TEM) and Zeta-sizer Nano. The dissolution test and permeation tests across porcine buccal mucosa and TR146 cell model also were run. KEY FINDINGS Confocal laser scanning microscopy and XRD confirmed the core-sheath structure of coaxial fibre and non-crystalline form of Car, separately. TEM demonstrated the sphere morphology of self-assembled liposome from spun fibres after contacting water. The dissolution test implied the ratio of PC to Car had a huge impact on drug release. The permeation tests across porcine buccal mucosa and TR146 cell model showed similar result, namely our formulation having a better permeation performance than Car suspension. The indirect toxicity against TR146 cells presented 5 mg/ml (or lower) of fibre extraction was safe for cells. CONCLUSIONS These researches exhibited this drug delivery system was promising and advantageous for Car buccal delivery.
Collapse
Affiliation(s)
- Jianting Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Hao Pan
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Hongliang Duan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenbin Deng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Fei Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xinggang Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
29
|
Ameeduzzafar, El-Bagory I, Alruwaili NK, Elkomy MH, Ahmad J, Afzal M, Ahmad N, Elmowafy M, Alharbi KS, Md Shoaib Alam. Development of novel dapagliflozin loaded solid self-nanoemulsifying oral delivery system: Physiochemical characterization and in vivo antidiabetic activity. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
30
|
Managuli RS, Wang JT, Faruqu FN, Kushwah V, Raut SY, Shreya AB, Al-Jamal KT, Jain S, Mutalik S. Asenapine maleate-loaded nanostructured lipid carriers: optimization and in vitro, ex vivo and in vivo evaluations. Nanomedicine (Lond) 2019; 14:889-910. [PMID: 30874464 DOI: 10.2217/nnm-2018-0289] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 12/21/2018] [Indexed: 12/30/2022] Open
Abstract
AIM To prepare nanostructured lipid carriers (NLCs) loaded with asenapine maleate (ASPM) to increase its oral bioavailability by intestinal lymphatic uptake. MATERIALS & METHODS ASPM-NLCs were prepared by ultrasound dispersion technique, by adopting Design of Experiment approach, and characterized. RESULTS The optimized formulation exhibited good physicochemical parameters. Differential scanning calorimetry and x-ray diffraction studies indicated the amorphized nature of ASPM in lipid matrix. In vitro drug release study indicated the sustained release of drug from NLCs. ASPM-NLCs showed greater permeability across Caco2 cells and everted rat ileum. ASPM-NLCs showed greater cellular uptake, superior preclinical oral bioavailability and higher efficacy in reducing the L-DOPA-carbidopa-induced locomotor count compared with plain drug. CONCLUSION ASPM-NLCs were successfully developed that showed enhanced performance both in vitro and in vivo.
Collapse
Affiliation(s)
- Renuka S Managuli
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Julie T Wang
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| | - Farid N Faruqu
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| | - Varun Kushwah
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research, Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Sushil Y Raut
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ajjappla B Shreya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Khuloud T Al-Jamal
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| | - Sanyog Jain
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research, Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| |
Collapse
|
31
|
Harshita, Barkat MA, Rizwanullah M, Beg S, Pottoo FH, Siddiqui S, Ahmad FJ. Paclitaxel-loaded Nanolipidic Carriers with Improved Oral Bioavailability and Anticancer Activity against Human Liver Carcinoma. AAPS PharmSciTech 2019; 20:87. [PMID: 30675689 DOI: 10.1208/s12249-019-1304-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/04/2019] [Indexed: 01/16/2023] Open
Abstract
The poorly water-soluble chemotherapeutic agents, paclitaxel (PTX), exhibit serious clinical side effects upon oral administration due to poor aqueous solubility and a high degree of toxic effects due to non-specific distribution to healthy tissues. In our efforts, we formulated biocompatible dietary lipid-based nanostructured lipidic carriers (NLCs) to enhance the oral bioavailability of PTX for treatment of the liver cancer. A three-factor, three-level Box-Behnken design was employed for formulation and optimization of PTX-loaded NLC formulations. PTX-loaded NLC formulation prepared by melt-emulsification in which glyceryl monostearate (GMS) was used as solid lipid and soybean oil as liquid lipid, while poloxamer 188 and Tween 80 (1:1) incorporated as a surfactant. In vitro drug release investigation was executed by dialysis bag approach, which indicated initial burst effect with > 60% drug release within a 4-h time period. Moreover, PTX-NLCs indicated high entrapment (86.48%) and drug loading efficiency (16.54%). In vitro cytotoxicity study of PTX-NLCs performed on HepG2 cell line by MTT assay indicated that PTX-NLCs exhibited comparatively higher cytotoxicity than commercial formulation (Intaxel®). IC50 values of PTX-NLCs and Intaxel® after 24-h exposure were found to be 4.19 μM and 11.2 μM. In vivo pharmacokinetic study in Wistar rats also indicated nearly 6.8-fold improvement in AUC and Cmax of the drug from the PTX-NLCs over the PTX suspension. In a nutshell, the observed results construed significant enhancement in the biopharmaceutical attributes of PTX-NLCs as a potential therapy for the management of human liver carcinoma.
Collapse
|
32
|
Vishwakarma N, Jain A, Sharma R, Mody N, Vyas S, Vyas SP. Lipid-Based Nanocarriers for Lymphatic Transportation. AAPS PharmSciTech 2019; 20:83. [PMID: 30673895 DOI: 10.1208/s12249-019-1293-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/26/2018] [Indexed: 11/30/2022] Open
Abstract
The effectiveness of any drug is dependent on to various factors like drug solubility, bioavailability, selection of appropriate delivery system, and proper route of administration. The oral route for the delivery of drugs is undoubtedly the most convenient, safest and has been widely used from past few decades for the effective delivery of drugs. However, despite of the numerous advantages that oral route offers, it often suffers certain limitations like low bioavailability due to poor water solubility as well as poor permeability of drugs, degradation of the drug in the physiological pH of the stomach, hepatic first-pass metabolism, etc. The researchers have been continuously working extensively to surmount and address appropriately the inherent drawbacks of the oral drug delivery. The constant and continuous efforts have led to the development of lipid-based nano drug delivery system to overcome the aforesaid associated challenges of the oral delivery through lymphatic transportation. The use of lymphatic route has demonstrated its critical and crucial role in overcoming the problem associated and related to low bioavailability of poorly water-soluble and poorly permeable drugs by bypassing intestinal absorption and possible first-pass metabolism. The current review summarizes the bonafide perks of using the lipid-based nanocarriers for the delivery of drugs using the lymphatic route. The lipid-based nanocarriers seem to be a promising delivery system which can be optimized and further explored as an alternative to the conventional dosage forms for the enhancement of oral bioavailability of drugs, with better patient compliance, minimum side effect, and improved the overall quality of life.
Collapse
|
33
|
Hatem S, Nasr M, Moftah NH, Ragai MH, Geneidi AS, Elkheshen SA. Clinical cosmeceutical repurposing of melatonin in androgenic alopecia using nanostructured lipid carriers prepared with antioxidant oils. Expert Opin Drug Deliv 2018; 15:927-935. [PMID: 30169980 DOI: 10.1080/17425247.2018.1517740] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND The present work aims to formulate nanostructured lipid carriers (NLCs) exhibiting high skin deposition and high inherent antioxidant potential to repurpose the use of melatonin hormone and some antioxidant oils in the treatment of androgenic alopecia (AGA). RESEARCH DESIGN AND METHODS NLCs were characterized for their size, charge, drug entrapment, anti-oxidant potential, physical stability, in vitro release, surface morphology, and ex-vivo skin deposition. Their merits were clinically tested on patients suffering from AGA by calculating the degree of improvement, conduction of hair pull test, histometric assessment, and dermoscopic evaluation. RESULTS Results revealed that melatonin NLCs showed nanometer size, negatively charged surface, high entrapment efficiency, and high anti-oxidant potential, in addition to sustained release for 6 h. Furthermore, NLCs displayed good storage stability and they were able to increase the skin deposition of melatonin 4.5-folds in stratum corneum, 7-folds in epidermis, and 6.8-folds in the dermis compared to melatonin solution. Melatonin NLCs displayed more clinically desirable results compared to the melatonin solution in AGA patients, manifested by increased hair density and thickness and decreased hair loss. CONCLUSIONS The aforementioned system was shown to be a very promising treatment modality for AGA, which is worthy of futuristic experimentation.
Collapse
Affiliation(s)
- Shymaa Hatem
- a Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries , Future University in Egypt , Cairo , Egypt
| | - Maha Nasr
- b Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Ain Shams University , Cairo , Egypt.,c Department of Pharmaceutics and Pharmaceutical Technology , College of Pharmacy, Mutah University , Mutah , Jordan
| | - Noha H Moftah
- d Department of Dermatology, STD's and Andrology, Faculty of Medicine , Minia University , Al Minya , Egypt
| | - Maha H Ragai
- d Department of Dermatology, STD's and Andrology, Faculty of Medicine , Minia University , Al Minya , Egypt
| | - Ahmed S Geneidi
- b Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Ain Shams University , Cairo , Egypt
| | - Seham A Elkheshen
- a Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries , Future University in Egypt , Cairo , Egypt
| |
Collapse
|
34
|
Chen J, Pan H, Yang Y, Xiong S, Duan H, Yang X, Pan W. Self-assembled liposome from multi-layered fibrous mucoadhesive membrane for buccal delivery of drugs having high first-pass metabolism. Int J Pharm 2018; 547:303-314. [DOI: 10.1016/j.ijpharm.2018.05.062] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/13/2018] [Accepted: 05/24/2018] [Indexed: 11/16/2022]
|
35
|
Application of Lipid Blend-Based Nanoparticulate Scaffold for Oral Delivery of Antihypertensive Drug: Implication on Process Variables and In Vivo Absorption Assessment. J Pharm Innov 2018. [DOI: 10.1007/s12247-018-9329-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Soni K, Rizwanullah M, Kohli K. Development and optimization of sulforaphane-loaded nanostructured lipid carriers by the Box-Behnken design for improved oral efficacy against cancer: in vitro, ex vivo and in vivo assessments. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:15-31. [DOI: 10.1080/21691401.2017.1408124] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kriti Soni
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Md. Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
37
|
Qumbar M, Ameeduzzafar, Imam SS, Ali J, Ahmad J, Ali A. Formulation and optimization of lacidipine loaded niosomal gel for transdermal delivery: In-vitro characterization and in-vivo activity. Biomed Pharmacother 2017; 93:255-266. [DOI: 10.1016/j.biopha.2017.06.043] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/29/2017] [Accepted: 06/13/2017] [Indexed: 01/22/2023] Open
|