1
|
Kuś J, Saramowicz K, Czerniawska M, Wiese W, Siwecka N, Rozpędek-Kamińska W, Kucharska-Lusina A, Strzelecki D, Majsterek I. Molecular Mechanisms Underlying NMDARs Dysfunction and Their Role in ADHD Pathogenesis. Int J Mol Sci 2023; 24:12983. [PMID: 37629164 PMCID: PMC10454781 DOI: 10.3390/ijms241612983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders, although the aetiology of ADHD is not yet understood. One proposed theory for developing ADHD is N-methyl-D-aspartate receptors (NMDARs) dysfunction. NMDARs are involved in regulating synaptic plasticity and memory function in the brain. Abnormal expression or polymorphism of some genes associated with ADHD results in NMDAR dysfunction. Correspondingly, NMDAR malfunction in animal models results in ADHD-like symptoms, such as impulsivity and hyperactivity. Currently, there are no drugs for ADHD that specifically target NMDARs. However, NMDAR-stabilizing drugs have shown promise in improving ADHD symptoms with fewer side effects than the currently most widely used psychostimulant in ADHD treatment, methylphenidate. In this review, we outline the molecular and genetic basis of NMDAR malfunction and how it affects the course of ADHD. We also present new therapeutic options related to treating ADHD by targeting NMDAR.
Collapse
Affiliation(s)
- Justyna Kuś
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Kamil Saramowicz
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Maria Czerniawska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Wojciech Wiese
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Wioletta Rozpędek-Kamińska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Aleksandra Kucharska-Lusina
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Czechoslowacka 8/10, 92-216 Lodz, Poland;
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| |
Collapse
|
2
|
Olivola M, Bassetti N, Parente S, Arienti V, Civardi SC, Topa PA, Brondino N. Cognitive Effects of Lurasidone and Cariprazine: A Mini Systematic Review. Curr Neuropharmacol 2023; 21:2431-2446. [PMID: 37519001 PMCID: PMC10616918 DOI: 10.2174/1570159x21666230727140843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 08/01/2023] Open
Abstract
Cognitive deficits are associated with schizophrenia and show a progressive worsening, often being unresponsive to treatment. New antipsychotic molecules acting as antagonist at the serotoninergic 5-hydroxytryptamine receptor 7 (e.g. lurasidone) or partial agonists at dopamine D3 receptor (e.g. cariprazine) could have an impact on cognition in this patient group. The aim of the systematic review is to explore the efficacy of lurasidone and cariprazine in improving cognition in both animal models and human studies. The following terms: (lurasidone AND cognit*) OR (cariprazine AND cognit*) were searched in Web of Science from inception to December 2021. We included all studies that assessed changes in cognitive function after treatment with cariprazine or lurasidone. Of 201 selected articles, 36 were included. Twenty-four articles used animal models (rats, mice and marmosets), five evaluating the effects of cariprazine and 19 the effects of lurasidone. Twelve articles were clinical studies (cariprazine n = 2; lurasidone n = 10). In both animal and human studies lurasidone showed a greater efficacy on cognitive performance compared to placebo, quetiapine, ziprasidone or treatmentas- usual. Cariprazine was superior to other antipsychotics in improving cognitive functions in both animal and human studies. The cognitive effect of lurasidone could be explained by its potent antagonism at the 5-HT7 receptors combined with partial agonism at 5-HT1A receptors. The pro-cognitive effect of cariprazine is probably explained by its very high affinity for D3 receptors. Head-to-head studies comparing lurasidone and cariprazine are needed to establish the "first-choice" treatment for cognitive dysfunction associated with schizophrenia.
Collapse
Affiliation(s)
- Miriam Olivola
- Department of Brain and Behavioral Sciences, Università di Pavia, Pavia, 27100, Italy
- Department of Mental Health and Addiction, ASST Pavia, Pavia, Italy
| | - Nicola Bassetti
- Department of Brain and Behavioral Sciences, Università di Pavia, Pavia, 27100, Italy
| | - Serena Parente
- Department of Brain and Behavioral Sciences, Università di Pavia, Pavia, 27100, Italy
| | - Vincenzo Arienti
- Department of Brain and Behavioral Sciences, Università di Pavia, Pavia, 27100, Italy
| | - Serena Chiara Civardi
- Department of Brain and Behavioral Sciences, Università di Pavia, Pavia, 27100, Italy
| | | | - Natascia Brondino
- Department of Brain and Behavioral Sciences, Università di Pavia, Pavia, 27100, Italy
- Department of Mental Health and Addiction, ASST Pavia, Pavia, Italy
| |
Collapse
|
3
|
Guidolin D, Marcoli M, Woods AS. Editorial: Reviews in receptor-receptor interactions as novel targets for drug development. Front Endocrinol (Lausanne) 2023; 14:1185190. [PMID: 37033231 PMCID: PMC10081447 DOI: 10.3389/fendo.2023.1185190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 04/11/2023] Open
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, Section of Anatomy, University of Padova, Padova, Italy
- *Correspondence: Diego Guidolin,
| | - Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy
| | - Amina S. Woods
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- National Institute on Drug Abuse Intramural Research Program (NIDA IRP), National Institute of Health (NIH), Baltimore, MD, United States
| |
Collapse
|
4
|
Adverse Drug Reactions in Relation to Clozapine Plasma Levels: A Systematic Review. Pharmaceuticals (Basel) 2022; 15:ph15070817. [PMID: 35890117 PMCID: PMC9317288 DOI: 10.3390/ph15070817] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Clozapine is the gold standard for treatment-resistant schizophrenia. Serious and even life-threatening adverse effects, mostly granulocytopenia, myocarditis, and constipation, are of great clinical concern and constitute a barrier to prescribing clozapine, thus depriving many eligible patients of a lifesaving treatment option. Interestingly, clozapine presents variable pharmacokinetics affected by numerous parameters, leading to significant inter- and intra-individual variation. Therefore, therapeutic drug monitoring of plasma clozapine levels confers a significant benefit in everyday clinical practice by increasing the confidence of the prescribing doctor to the drug and the adherence of the patient to the treatment, mainly by ensuring effective treatment and limited dose-related side effects. In the present systematic review, we aimed at identifying how a full range of adverse effects relates to plasma clozapine levels, using the Jadad grading system for assessing the quality of the available clinical evidence. Our findings indicate that EEG slowing, obsessive-compulsive symptoms, heart rate variability, hyperinsulinemia, metabolic syndrome, and constipation correlate to plasma clozapine levels, whereas QTc, myocarditis, sudden death, leucopenia, neutropenia, sialorrhea, are rather unrelated. Rapid dose escalation at the initiation of treatment might contribute to the emergence of myocarditis, or leucopenia. Strategies for managing adverse effects are different in these conditions and are discussed accordingly.
Collapse
|
5
|
Intrinsically disordered proteins and proteins with intrinsically disordered regions in neurodegenerative diseases. Biophys Rev 2022; 14:679-707. [DOI: 10.1007/s12551-022-00968-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/28/2022] [Indexed: 12/14/2022] Open
|
6
|
Martin CA, Radhakrishnan S, Ribelles JLG, Trentz O, Eak N, Reddy MS, Rela M, Subbaraya NK. Adipose tissue derived stromal cells in a gelatin based 3D matrix with exclusive ascorbic acid signalling emerged as a novel neural tissue engineering construct – An innovative prototype for soft tissue. Regen Biomater 2022; 9:rbac031. [PMID: 35702348 PMCID: PMC9188297 DOI: 10.1093/rb/rbac031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/30/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
The current study investigated a triad, which comprises of adipose tissue derived stem cells isolated from infrapatellar fat pad and gelatin/polyvinyl alcohol (PVA)-based matrix with exclusive ascorbic acid signalling. Though, the bio-mechanical properties of the gelatin–PVA blended scaffolds in wet condition are equivalent to the ECM of soft tissues in general, in this study, the triad was tested as a model for neural tissue engineering. Apart from being cytocompatible and biocompatible, the porosity of the scaffold has been designed in such a manner that it facilitates the cell signalling and enables the exchange of nutrients and gases. The highly proliferative stem cells from Passage 2 were characterized using both, mesenchymal and embryonic stem cell markers. As an initial exploration the mesenchymal stem cells at Passage 4 were exposed to ascorbic acid and basic fibroblast growth factor signalling for neuronal differentiation in 2D environment independently. The MSCs successfully differentiated and acquired neuron specific markers related to cytoskeleton and synapses. Subsequently, three phases of experiments have been conducted on the 3D gelatin/PVA matrix to prove their efficacy, the growth of stem cells, growth of differentiated neurons and the in situ growth and differentiation of MSCs. The scaffold was conducive and directed MSCs to neuronal lineage under specific signalling. Overall, this organotypic model triad could open a new avenue in the field of soft tissue engineering as a simple and effective tissue construct.
Collapse
Affiliation(s)
- Catherine Ann Martin
- Crystal Growth Centre, Anna University, Chennai-600025, India
- Cell Laboratory, National Foundation for Liver Research, Chrompet, Chennai-600044, India
| | - Subathra Radhakrishnan
- Cell Laboratory, National Foundation for Liver Research, Chrompet, Chennai-600044, India
| | - Jose Luis Gómez Ribelles
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n., 46022, Valencia, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Omana Trentz
- MIOT Institute of Research, MIOT Hospitals, Chennai-600089, India
| | - Nivethaa Eak
- Crystal Growth Centre, Anna University, Chennai-600025, India
| | - Mettu Srinivas Reddy
- Cell Laboratory, National Foundation for Liver Research, Chrompet, Chennai-600044, India
| | - Mohamed Rela
- Cell Laboratory, National Foundation for Liver Research, Chrompet, Chennai-600044, India
| | | |
Collapse
|
7
|
Dairaghi L, Constantin S, Oh A, Shostak D, Wray S. The Dopamine D4 Receptor Regulates Gonadotropin-Releasing Hormone Neuron Excitability in Male Mice. eNeuro 2022; 9:ENEURO.0461-21.2022. [PMID: 35165199 PMCID: PMC8896547 DOI: 10.1523/eneuro.0461-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/30/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH)-secreting neurons control fertility. The release of GnRH peptide regulates the synthesis and release of both luteinizing hormone (LH) and Follicle stimulation hormone (FSH) from the anterior pituitary. While it is known that dopamine regulates GnRH neurons, the specific dopamine receptor subtype(s) involved remain unclear. Previous studies in adult rodents have reported juxtaposition of fibers containing tyrosine hydroxylase (TH), a marker of catecholaminergic cells, onto GnRH neurons and that exogenous dopamine inhibits GnRH neurons postsynaptically through dopamine D1-like and/or D2-like receptors. Our microarray data from GnRH neurons revealed a high level of Drd4 transcripts [i.e., dopamine D4 receptor (D4R)]. Single-cell RT-PCR and immunocytochemistry confirmed GnRH cells express the Drd4 transcript and protein, respectively. Calcium imaging identified changes in GnRH neuronal activity during application of subtype-specific dopamine receptor agonists and antagonists when GABAergic and glutamatergic transmission was blocked. Dopamine, dopamine with D1/5R-specific or D2/3R-specific antagonists or D4R-specific agonists decreased the frequency of calcium oscillations. In contrast, D1/5R-specific agonists increased the frequency of calcium oscillations. The D4R-mediated inhibition was dependent on Gαi/o protein coupling, while the D1/5R-mediated excitation required Gαs protein coupling. Together, these results indicate that D4R plays an important role in the dopaminergic inhibition of GnRH neurons.
Collapse
Affiliation(s)
| | | | - Andrew Oh
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD 20892
| | - David Shostak
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
8
|
Bouvier ML, Fehsel K, Schmitt A, Meisenzahl-Lechner E, Gaebel W, von Wilmsdorff M. Sex-dependent alterations of dopamine receptor and glucose transporter density in rat hypothalamus under long-term clozapine and haloperidol medication. Brain Behav 2020; 10:e01694. [PMID: 32525610 PMCID: PMC7428470 DOI: 10.1002/brb3.1694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/04/2020] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Sex-dependent disturbances of peripheral glucose metabolism are known complications of antipsychotic drug treatment. The influence of long-term clozapine and haloperidol medication on hypothalamus, maintaining aspects of internal body homeostasis, has not yet been completely clarified. METHODS After puberty, male and female Sprague Dawley rats were fed orally with ground pellets containing haloperidol (1 mg/kgBW/day) or clozapine (20 mg/kgBW/day) for 12 weeks. The hypothalamic protein expression of dopamine receptors D2R and D4R, melanocortin receptor MC4R, and glucose transporters Glut1 and Glut3 was examined. Glucose, glycogen, lactate, and pyruvate levels were determined, also malondialdehyde equivalents as markers of oxidative stress. RESULTS D2R expression was increased in the male haloperidol and clozapine group but decreased in females medicated with clozapine. D4R expression was upregulated under clozapine medication. While females showed increased Glut1, Glut3 was elevated in both male and female clozapine-medicated animals. We found no changes of hypothalamic malondialdehyde, glycogen, and MC4R. Hypothalamic lactate was elevated in the female clozapine group. CONCLUSION Clozapine sex-dependently affects the expression of D2R, Glut1, and Glut3. The upregulation of the glucose transporters indicates glucose deprivation in the endothelial cells and consequently in astrocytes and neurons. Increased hypothalamic lactate in females under clozapine points to enhanced glycolysis with a higher glucose demand to produce the required energy. Haloperidol did not change the expression of the glucose transporters and upregulated D2R only in males.
Collapse
Affiliation(s)
- Marie-Luise Bouvier
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Karin Fehsel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians University Munich, München, Germany.,Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, São Paulo, Brazil
| | - Eva Meisenzahl-Lechner
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Wolfgang Gaebel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Martina von Wilmsdorff
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
9
|
Underlying Susceptibility to Eating Disorders and Drug Abuse: Genetic and Pharmacological Aspects of Dopamine D4 Receptors. Nutrients 2020; 12:nu12082288. [PMID: 32751662 PMCID: PMC7468707 DOI: 10.3390/nu12082288] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
The dopamine D4 receptor (DRD4) has a predominant expression in the prefrontal cortex (PFC), brain area strictly involved in the modulation of reward processes related to both food and drug consumption. Additionally, the human DRD4 gene is characterized by a variable number of tandem repeats (VNTR) in the exon 3 and, among the polymorphic variants, the 7-repeat (7R) allele appears as a contributing factor in the neurobiological mechanisms underlying drug abuse, aberrant eating behaviors and related comorbidities. The 7R variant encodes for a receptor with a blunted intracellular response to dopamine, and carriers of this polymorphism might be more tempted to enhance dopamine levels in the brain, through the overconsumption of drugs of abuse or palatable food, considering their reinforcing properties. Moreover, the presence of this polymorphism seems to increase the susceptibility of individuals to engage maladaptive eating patterns in response to negative environmental stimuli. This review is focused on the role of DRD4 and DRD4 genetic polymorphism in these neuropsychiatric disorders in both clinical and preclinical studies. However, further research is needed to better clarify the complex DRD4 role, by using validated preclinical models and novel compounds more selective for DRD4.
Collapse
|
10
|
Guillien M, le Maire A, Mouhand A, Bernadó P, Bourguet W, Banères JL, Sibille N. IDPs and their complexes in GPCR and nuclear receptor signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:105-155. [DOI: 10.1016/bs.pmbts.2020.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Naumova D, Grizenko N, Sengupta SM, Joober R. DRD4 exon 3 genotype and ADHD: Randomised pharmacodynamic investigation of treatment response to methylphenidate. World J Biol Psychiatry 2019; 20:486-495. [PMID: 29182037 DOI: 10.1080/15622975.2017.1410221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Objectives: Dopamine plays an important role in modulating attention and motor behaviours, dimensions altered in attention deficit/hyperactivity disorder (ADHD). Numerous association studies have linked dopamine receptor 4 (DRD4) to increased risk of ADHD. This study investigated the effect of DRD4 exon 3 polymorphism on child behaviours in response to treatment with methylphenidate. Methods: A total of 374 children diagnosed with ADHD (ages 6-12 years) were evaluated under three experimental conditions: baseline, placebo and MPH (0.5 mg/kg/day). This was a 2-week prospective within-subject, placebo-controlled, crossover trial. The Conners' Global Index for parents and for teachers was used to evaluate the behaviours of the children. One-way repeated measures analysis of variance was used to test the effect of the interaction between DRD4 genotype and experimental conditions. Results: A significant interaction between DRD4 genotype and treatment was detected when the child's behaviour was evaluated by the parents (P = 0.035, effect size of 0.014), driven by a better treatment response in children homozygous for long 7-repeat allele. Conclusions: According to the parent assessment, children homozygous for the long 7-repeat allele were more responsive to experimental condition. This is the largest pharmacogenetic investigation of the effect of DRD4 exon 3 polymorphism in childhood ADHD. Trial Registration: clinicaltrials.gov, identifier NCT00483106.
Collapse
Affiliation(s)
- Darya Naumova
- Department of Human Genetics, McGill University , Montreal , QC , Canada
| | - Natalie Grizenko
- Douglas Mental Health University Institute , Verdun , QC , Canada.,Department of Psychiatry, McGill University , Montreal , QC , Canada
| | - Sarojini M Sengupta
- Douglas Mental Health University Institute , Verdun , QC , Canada.,Department of Psychiatry, McGill University , Montreal , QC , Canada
| | - Ridha Joober
- Department of Human Genetics, McGill University , Montreal , QC , Canada.,Douglas Mental Health University Institute , Verdun , QC , Canada.,Department of Psychiatry, McGill University , Montreal , QC , Canada.,Department of Neurology and Neurosurgery, McGill University , Montreal , QC , Canada
| |
Collapse
|
12
|
Muller L, Jackson SN, Woods AS. Histidine, the less interactive cousin of arginine. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2019; 25:212-218. [PMID: 31018697 PMCID: PMC8269955 DOI: 10.1177/1469066718791793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Electrostatic interactions are one of the main factors influencing biomolecular conformation. The formation of noncovalent complexes by electrostatic interactions is governed by certain amino acid residues and post-translational modifications. It has been demonstrated that adjacent arginine forms noncovalent complex with phosphate; however, histidine noncovalent complexes have rarely been investigated. In the present work, we compare the interaction between basic epitopes (NLRRITRVN, SHHGLHSTPD) and diverse acidic and aromatic-rich peptides using both MALDI and ESI Mass spectrometry. We show that adjacent histidines can also form stable noncovalent bonds and that those bonds are probably formed by a salt bridge between the phosphate or the acid residues and the histidines. However, noncovalent complexes with the arginine epitopes form more readily and are stronger than those with histidine-containing epitopes.
Collapse
Affiliation(s)
| | | | - Amina S. Woods
- corresponding author: Amina S. Woods, Ph.D., NIDA IRP, NIH, 333 Cassell Drive, Baltimore, MD 21224, Tel: 443-740-2747, Fax: 443-740-2144,
| |
Collapse
|
13
|
Gu-Cai L, Ru Z, Jiao-yun X. Synthesis and in vitro evaluation of no-carrier-added 2-(3-(4-(4-[18F]fluorobenzyl)piperazin-1-yl)propyl)benzo[d]thiazole, a potential dopamine D4 receptor radioligand. RADIOCHIM ACTA 2016. [DOI: 10.1515/ract-2016-2597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The dopamine D4 receptor has been shown to play important roles in some central nervous system pathologies. Specific radioligands for the D4 receptor may be useful to understand the function of the D4 receptor and its correlations with various disorders. 2-(3-(4-(4-[18F]Fluorobenzyl)piperazin-1-yl)propyl)benzo[d]thiazole ([18F]4) was synthesized through a one-pot two-step procedure with total yield 18.6% (decay corrected). The specific activity of the radioligand was 112 GBq/μmol and its radiochemical purity was >95.0%. Its affinity and selectivity for dopamine D2-like receptors were measured through in vitro receptor binding evaluation and the K
i value for the D4 receptor was determined to be 2.9±0.2 nM, and its selectivity for the dopamine D4 receptor is 709-fold versus D2long receptor, 823-fold versus D3 receptor. The partition coefficient (Log D) of it was determined to be 2.6±0.1 through octanol-water partition experiment. The ligand presents desirable combination of lipophilicity, affinity and selectivity for the dopamine D4 receptor. The results suggested that the radioligand shows promises for the in vivo study of the dopamine D4 receptor.
Collapse
Affiliation(s)
- Li Gu-Cai
- College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Hunan Xiangtan, 411104, China
| | - Zhang Ru
- College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Hunan Xiangtan, 411104, China
| | - Xia Jiao-yun
- School of Chemistry and Biology Engineering, Changsha University of Science and Technology, 410114, China
| |
Collapse
|
14
|
Pappa I, Mileva-Seitz VR, Bakermans-Kranenburg MJ, Tiemeier H, van IJzendoorn MH. The magnificent seven: A quantitative review of dopamine receptor d4 and its association with child behavior. Neurosci Biobehav Rev 2015; 57:175-86. [DOI: 10.1016/j.neubiorev.2015.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/16/2015] [Accepted: 08/16/2015] [Indexed: 11/25/2022]
|
15
|
Yang L, Zheng J, Xiong Y, Meng R, Ma Q, Liu H, Shen H, Zheng S, Wang S, He J. Regulation of β2-adrenergic receptor cell surface expression by interaction with cystic fibrosis transmembrane conductance regulator-associated ligand (CAL). Amino Acids 2015; 47:1455-64. [PMID: 25876703 DOI: 10.1007/s00726-015-1965-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 03/13/2015] [Indexed: 10/23/2022]
Abstract
The beta-2 adrenergic receptor (β2AR), a member of GPCR, can activate multiple signaling pathways and is an important treatment target for cardiac failure. However, the molecular mechanism about β2AR signaling regulation is not fully understood. In this study, we found that cystic fibrosis transmembrane conductance regulator-associated ligand (CAL) overexpression reduced β2AR-mediated extracellular signal-regulated kinase-1/2 (ERK1/2) activation. Further study identified CAL as a novel binding partner of β2AR. CAL is associated with β2AR mainly via the third intracellular loop (ICL3) of receptor and the coiled-coil domains of CAL, which is distinct from CAL/β1AR interaction mediated by the carboxyl terminal (CT) of β1AR and PDZ domain of CAL. CAL overexpression retarded β2AR expression in Golgi apparatus and reduced the receptor expression in plasma membrane.
Collapse
Affiliation(s)
- Longyan Yang
- Department of Biochemistry and Molecular Biology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
A critical evaluation of in silico methods for detection of membrane protein intrinsic disorder. Biophys J 2014; 106:1638-49. [PMID: 24739163 DOI: 10.1016/j.bpj.2014.02.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 02/03/2014] [Accepted: 02/25/2014] [Indexed: 11/23/2022] Open
Abstract
Intrinsically disordered regions in proteins possess important biological roles including transcriptional regulation, molecular recognition, and provision of sites for posttranslational modification. In three-dimensional crystallization of both soluble and membrane proteins, identification and removal of disordered regions is often necessary for obtaining crystals possessing sufficient long-range order for structure determination. Disordered regions can be identified experimentally, with techniques such as limited proteolysis coupled with mass spectrometry, or computationally, by using disorder prediction programs, of which many are available. Although these programs use various methods to predict disorder from a protein's primary sequence, they all were developed using information derived from soluble protein structures. Therefore, their performance and accuracy when applied to integral membrane proteins remained an open question. We evaluated the performance of 13 disorder prediction programs on a dataset containing 343 membrane proteins, and upon subdatasets containing only α-helical or β-barrel proteins. These programs were ranked using multiple metrics, including metrics specifically created for membrane proteins. Analysis of these data shows a clear distinction between programs that accurately predict disordered regions in membrane proteins and programs which perform poorly, and allows for the robust integration of in silico disorder prediction into our PSI:Biology membrane protein structural genomics pipeline.
Collapse
|
17
|
Structured and disordered facets of the GPCR fold. Curr Opin Struct Biol 2014; 27:129-37. [PMID: 25198166 DOI: 10.1016/j.sbi.2014.08.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 07/28/2014] [Accepted: 08/05/2014] [Indexed: 01/14/2023]
Abstract
The seven-transmembrane (7TM) helix fold of G-protein coupled receptors (GPCRs) has been adapted for a wide variety of physiologically important signaling functions. Here, we discuss the diversity in the structured and disordered regions of GPCRs based on the recently published crystal structures and sequence analysis of all human GPCRs. A comparison of the structures of rhodopsin-like receptors (class A), secretin-like receptors (class B), metabotropic receptors (class C) and frizzled receptors (class F) shows that the relative arrangement of the transmembrane helices is conserved across all four GPCR classes although individual receptors can be activated by ligand binding at varying positions within and around the transmembrane helical bundle. A systematic analysis of GPCR sequences reveals the presence of disordered segments in the cytoplasmic side, abundant post-translational modification sites, evidence for alternative splicing and several putative linear peptide motifs that have the potential to mediate interactions with cytosolic proteins. While the structured regions permit the receptor to bind diverse ligands, the disordered regions appear to have an underappreciated role in modulating downstream signaling in response to the cellular state. An integrated paradigm combining the knowledge of structured and disordered regions is imperative for gaining a holistic understanding of the GPCR (un)structure-function relationship.
Collapse
|
18
|
Tovo-Rodrigues L, Roux A, Hutz MH, Rohde LA, Woods AS. Functional characterization of G-protein-coupled receptors: a bioinformatics approach. Neuroscience 2014; 277:764-79. [PMID: 24997265 DOI: 10.1016/j.neuroscience.2014.06.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/22/2014] [Accepted: 06/18/2014] [Indexed: 12/18/2022]
Abstract
Complex molecular and cellular mechanisms regulate G protein-coupled receptors (GPCRs). It is suggested that proteins intrinsically disordered regions (IDRs) are to play a role in GPCR's intra and extracellular regions plasticity, due to their potential for post-translational modification and interaction with other proteins. These regions are defined as lacking a stable three-dimensional (3D) structure. They are rich in hydrophilic and charged, amino acids and are capable to assume different conformations which allow them to interact with multiple partners. In this study we analyzed 75 GPCR involved in synaptic transmission using computational tools for sequence-based prediction of IDRs within a protein. We also evaluated putative ligand-binding motifs using receptor sequences. The disorder analysis indicated that neurotransmitter GPCRs have a significant amount of disorder in their N-terminus, third intracellular loop (3IL) and C-terminus. About 31%, 39% and 53% of human GPCR involved in synaptic transmission are disordered in these regions. Thirty-three percent of receptors show at least one predicted PEST motif, this being statistically greater than the estimate for the rest of human GPCRs. About 90% of the receptors had at least one putative site for dimerization in their 3IL or C-terminus. ELM instances sampled in these domains were 14-3-3, SH3, SH2 and PDZ motifs. In conclusion, the increased flexibility observed in GPCRs, added to the enrichment of linear motifs, PEST and heteromerization sites, may be critical for the nervous system's functional plasticity.
Collapse
Affiliation(s)
- L Tovo-Rodrigues
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Structural Biology Unit, Integrative Neuroscience Branch, NIDA IRP, NIH, MD, United States
| | - A Roux
- Structural Biology Unit, Integrative Neuroscience Branch, NIDA IRP, NIH, MD, United States
| | - M H Hutz
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - L A Rohde
- Child and Adolescent Psychiatric Division, Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A S Woods
- Structural Biology Unit, Integrative Neuroscience Branch, NIDA IRP, NIH, MD, United States.
| |
Collapse
|
19
|
Tovo-Rodrigues L, Rohde LA, Menezes AMB, Polanczyk GV, Kieling C, Genro JP, Anselmi L, Hutz MH. DRD4 rare variants in Attention-Deficit/Hyperactivity Disorder (ADHD): further evidence from a birth cohort study. PLoS One 2013; 8:e85164. [PMID: 24391992 PMCID: PMC3877354 DOI: 10.1371/journal.pone.0085164] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 11/24/2013] [Indexed: 01/02/2023] Open
Abstract
The dopamine receptor D4 (DRD4) is one of the most studied candidate genes for Attention-Deficit/Hyperactivity Disorder (ADHD). An excess of rare variants and non-synonymous mutations in the VNTR region of 7R allele in ADHD subjects was observed in previous studies with clinical samples. We hypothesize that genetic heterogeneity in the VNTR is an important factor in the pathophysiology of ADHD. The subjects included in the present study are members of the 1993 Pelotas Birth Cohort Study (N=5,249). We conducted an association study with the 4,101 subjects who had DNA samples collected. The hyperactivity-inattention scores were assessed through the parent version of the Strengths and Difficulties Questionnaire at 11 and 15 years of age. The contribution of allele’s length and rare variants to high hyperactivity/inattention scores predisposition was evaluated by multivariate logistic regression. No effect of allele length was observed on high scores of hyperactivity-inattention. By contrast, when resequencing/haplotyping was conducted in a subsample, all 7R rare variants as well as non-synonymous 7R rare variants were associated with high hyperactivity/inattention scores (OR=2.561; P=0.024 and OR=3.216; P=0.008 respectively). A trend for association was observed with 4R rare variants. New coding mutations covered 10 novel motifs and many of them are previously unreported deletions leading to different stop codons. Our findings suggest a contribution of DRD4 7R rare variants to high hyperactivity-inattention scores in a population-based sample from a large birth cohort. These findings provide further evidence for an effect of DRD4 7R rare variants and allelic heterogeneity in ADHD genetic susceptibility.
Collapse
Affiliation(s)
- Luciana Tovo-Rodrigues
- Genetics Department, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luis A. Rohde
- Child and Adolescent Psychiatric Division, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), Brazil
| | - Ana M. B. Menezes
- Graduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Guilherme V. Polanczyk
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), Brazil
- Department of Psychiatry, Medical School and Research Support Center on Neurodevelopment and Mental Health, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Christian Kieling
- Child and Adolescent Psychiatric Division, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Julia P. Genro
- Genetics Department, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luciana Anselmi
- Child and Adolescent Psychiatric Division, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), Brazil
| | - Mara H. Hutz
- Genetics Department, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| |
Collapse
|
20
|
Jackson SN, Woods AS. Imaging of noncovalent complexes by MALDI-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1950-6. [PMID: 24092630 PMCID: PMC8725603 DOI: 10.1007/s13361-013-0745-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/12/2013] [Accepted: 08/29/2013] [Indexed: 05/25/2023]
Abstract
Noncovalent interactions govern how molecules communicate. Mass spectrometry is an important and versatile tool for the analysis of noncovalent complexes (NCX). Electrospray mass spectrometry (ESI-MS) is the most widely used MS technique for the study of NCXs because of its softer ionization and easy compatibility with the solution phase of NCX mixtures. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has also been used to study NCXs. However, successful analysis depends upon several experimental factors, such as matrix selection, solution pH, and instrumental parameters. In this study, we employ MALDI imaging mass spectrometry to investigate the location and formation of NCXs, involving both peptides and proteins, in a MALDI sample spot.
Collapse
Affiliation(s)
| | - Amina S. Woods
- corresponding author: Amina S. Woods, NIDA IRP, NIH, 333 Cassell Drive, Room 1119, Baltimore, MD 21224, Tel: 443-740-2749, Fax: 443-740-2144,
| |
Collapse
|
21
|
Woods AS, Jackson SN, Egan T, Lewis EK, Tabet JC, Schultz JA. MALDI/post ionization-ion mobility mass spectrometry of noncovalent complexes of dopamine receptors' epitopes. J Proteome Res 2013; 12:1668-77. [PMID: 23469763 PMCID: PMC4144030 DOI: 10.1021/pr301004w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Protein domains involved in receptor heteromer formation are disordered and rich in the amino acids necessary for the formation of noncovalent complexes (NCX). We present mass spectral NCX data from proteins and protein receptors' epitopes obtained by combining ion mobility (IM) and MALDI. We focus on NCX involved in heteromer formation occurring between epitopes of the Dopamine D2 (D2R) and Adenosine A2A receptors (A2AR) as well as D2R and the α2 nicotinic (NR) receptor's subunit. The IM data yield information on the gas phase conformation of the singly charged NCX which are observed either directly from MALDI or as codesorbed neutrals that are subsequently postionized by a time-delayed excimer laser pulse directed onto a portion of the neutral plume created by the MALDI desorption laser. Imaging mass spectrometry of the matrix/epitope dried droplet surface shows that the acidic and basic epitopes and their NCX are found to be spatially collocated within regions as small as 25 × 50 μm(2). Subtle differences in the relative abundance of protonated and cationized NCX and epitopes are measured in spatial regions near the sodium-rich outer border of the droplet.
Collapse
MESH Headings
- Calmodulin/chemistry
- Epitopes/analysis
- Epitopes/chemistry
- Image Processing, Computer-Assisted
- Mass Spectrometry/methods
- Peptides/analysis
- Peptides/chemistry
- Receptor, Adenosine A2A/chemistry
- Receptor, Adenosine A2A/immunology
- Receptor, Adenosine A2A/metabolism
- Receptors, Dopamine/chemistry
- Receptors, Dopamine/immunology
- Receptors, Dopamine D2/chemistry
- Receptors, Dopamine D2/immunology
- Receptors, Dopamine D2/physiology
- Receptors, Nicotinic/chemistry
- Receptors, Nicotinic/immunology
- Receptors, Nicotinic/metabolism
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
Collapse
|
22
|
Woods AS, Jackson SN. How adenylate cyclase choreographs the pas de deux of the receptors heteromerization dance. Neuroscience 2013; 238:335-44. [PMID: 23434492 DOI: 10.1016/j.neuroscience.2013.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/02/2013] [Accepted: 02/05/2013] [Indexed: 12/19/2022]
Abstract
Our work suggests that heteromer formation, mainly involves linear motifs (LMs) found in disordered regions of proteins. Local disorder imparts plasticity to LMs. Most molecular recognition of proteins occurs between short linear segments, known as LMs. Interaction of short continuous epitopes is not constrained by sequence and has the advantage of resulting in interactions with micromolar affinities which suit transient, reversible complexes such as receptor heteromers. Electrostatic interactions between epitopes of the G-protein coupled receptors (GPCR) involved, are the key step in driving heteromer formation forward. The first step in heteromerization, involves phosphorylating Ser/Thr in an epitope containing a casein kinase 1/2-consensus site. Our data suggest that dopaminergic neurotransmission, through cAMP-dependent protein kinase A (PKA) slows down heteromerization. The negative charge, acquired by the phosphorylation of a Ser/Thr in a PKA consensus site in the Arg-rich epitope, affects the activity of the receptors involved in heteromerization by causing allosteric conformational changes, due to the repulsive effect generated by the negatively charged phosphate. In addition to modulating heteromerization, it affects the stability of the heteromers' interactions and their binding affinity. So here we have an instance where phosphorylation is not just an on/off switch, instead by weakening the noncovalent bond, heteromerization acts like a rheostat that controls the stability of the heteromer through activation or inhibition of adenylate cyclase by the neurotransmitter Dopamine depending on which Dopamine receptor it docks at.
Collapse
Affiliation(s)
- A S Woods
- Structural Biology Unit, Integrative Neuroscience Branch, NIDA IRP, NIH, MD, United States.
| | | |
Collapse
|
23
|
Li H, Zhang Z, Blackburn MR, Wang SW, Ribelayga CP, O'Brien J. Adenosine and dopamine receptors coregulate photoreceptor coupling via gap junction phosphorylation in mouse retina. J Neurosci 2013; 33:3135-50. [PMID: 23407968 PMCID: PMC3711184 DOI: 10.1523/jneurosci.2807-12.2013] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 12/20/2012] [Accepted: 12/24/2012] [Indexed: 11/21/2022] Open
Abstract
Gap junctions in retinal photoreceptors suppress voltage noise and facilitate input of rod signals into the cone pathway during mesopic vision. These synapses are highly plastic and regulated by light and circadian clocks. Recent studies have revealed an important role for connexin36 (Cx36) phosphorylation by protein kinase A (PKA) in regulating cell-cell coupling. Dopamine is a light-adaptive signal in the retina, causing uncoupling of photoreceptors via D4 receptors (D4R), which inhibit adenylyl cyclase (AC) and reduce PKA activity. We hypothesized that adenosine, with its extracellular levels increasing in darkness, may serve as a dark signal to coregulate photoreceptor coupling through modulation of gap junction phosphorylation. Both D4R and A2a receptor (A2aR) mRNAs were present in photoreceptors, inner nuclear layer neurons, and ganglion cells in C57BL/6 mouse retina, and showed cyclic expression with partially overlapping rhythms. Pharmacologically activating A2aR or inhibiting D4R in light-adapted daytime retina increased photoreceptor coupling. Cx36 among photoreceptor terminals, representing predominantly rod-cone gap junctions but possibly including some rod-rod and cone-cone gap junctions, was phosphorylated in a PKA-dependent manner by the same treatments. Conversely, inhibiting A2aR or activating D4R in daytime dark-adapted retina decreased Cx36 phosphorylation with similar PKA dependence. A2a-deficient mouse retina showed defective regulation of photoreceptor gap junction phosphorylation, fairly regular dopamine release, and moderately downregulated expression of D4R and AC type 1 mRNA. We conclude that adenosine and dopamine coregulate photoreceptor coupling through opposite action on the PKA pathway and Cx36 phosphorylation. In addition, loss of the A2aR hampered D4R gene expression and function.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Animals
- Chromatography, High Pressure Liquid
- Connexins/metabolism
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Dark Adaptation/physiology
- Gap Junctions/metabolism
- Gap Junctions/physiology
- Gene Expression/physiology
- Image Processing, Computer-Assisted
- Immunohistochemistry
- In Situ Hybridization
- In Vitro Techniques
- Mice
- Mice, Inbred C57BL
- Phosphorylation
- Real-Time Polymerase Chain Reaction
- Receptors, Adenosine A2/genetics
- Receptors, Adenosine A2/physiology
- Receptors, Dopamine/genetics
- Receptors, Dopamine/physiology
- Receptors, Dopamine D4/biosynthesis
- Receptors, Dopamine D4/genetics
- Receptors, Purinergic P1/genetics
- Receptors, Purinergic P1/physiology
- Retinal Cone Photoreceptor Cells/physiology
- Retinal Rod Photoreceptor Cells/physiology
- Gap Junction delta-2 Protein
Collapse
Affiliation(s)
- Hongyan Li
- Richard S. Ruiz, MD, Department of Ophthalmology and Visual Science, The University of Texas Medical School and
| | - Zhijing Zhang
- Richard S. Ruiz, MD, Department of Ophthalmology and Visual Science, The University of Texas Medical School and
| | - Michael R. Blackburn
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, Texas 77030; and
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Steven W. Wang
- Richard S. Ruiz, MD, Department of Ophthalmology and Visual Science, The University of Texas Medical School and
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Christophe P. Ribelayga
- Richard S. Ruiz, MD, Department of Ophthalmology and Visual Science, The University of Texas Medical School and
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - John O'Brien
- Richard S. Ruiz, MD, Department of Ophthalmology and Visual Science, The University of Texas Medical School and
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030
| |
Collapse
|
24
|
Hwang R, Tiwari AK, Zai CC, Felsky D, Remington E, Wallace T, Tong RP, Souza RP, Oh G, Potkin SG, Lieberman JA, Meltzer HY, Kennedy JL. Dopamine D4 and D5 receptor gene variant effects on clozapine response in schizophrenia: replication and exploration. Prog Neuropsychopharmacol Biol Psychiatry 2012; 37:62-75. [PMID: 22203087 DOI: 10.1016/j.pnpbp.2011.11.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 11/02/2011] [Accepted: 11/29/2011] [Indexed: 11/16/2022]
Abstract
OBJECTIVES This study aimed to: 1) replicate previously reported associations between dopamine D4 receptor gene (DRD4) polymorphisms and antipsychotic (AP) response in a clozapine (CLZ) response sample; and 2) explore possible associations of polymorphisms across dopamine D5 receptor gene (DRD5) as well as other DRD4 regions. METHODS DRD4 exon III 48-bp, intron I (G)(n), and 120-bp repeat polymorphisms, and three DRD4 single nucleotide polymorphisms (SNPs); and DRD5 (CA/CT/GT)(n) microsatellite and four DRD5 SNPs were assessed using standard genotyping and statistical procedures. RESULTS We report evidence, which does not survive correction for multiple testing, supporting previous DRD4 findings. Findings of interest include the 120-bp 1-copy allele, intron I (G)(n) 142-bp/140-bp genotype, and exon III 4R allele with CLZ response. All DRD5 tests were negative. CONCLUSIONS Overall, these results suggest a possible minor contribution of DRD4 variants, but not DRD5 variants, towards the AP/CLZ response phenotype.
Collapse
Affiliation(s)
- Rudi Hwang
- Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|