1
|
Liu X, Yang H, Xie S, Wang X, Tian Y, Song S. Moringa oleifera leaves protein suppresses T-lymphoblastic leukemogenesis via MAPK/AKT signaling modulation of apoptotic activation and autophagic flux regulation. Front Immunol 2025; 16:1546189. [PMID: 40236708 PMCID: PMC11996636 DOI: 10.3389/fimmu.2025.1546189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/07/2025] [Indexed: 04/17/2025] Open
Abstract
Acute lymphoblastic leukemia (T-ALL) is one of the most common hematologic malignancies in children worldwide. Despite advances in chemotherapy in recent years, more than 50% of adult T-ALL patients still experience treatment resistance and relapse/refractory disease. Moringa oleifera, a new food resource in China, has high nutritional value and various pharmacological activities. Moringa oleifera protein is one of the main active ingredients in Moringa oleifera leaves, and some studies have shown that Moringa oleifera protein has antioxidant, anti-inflammatory, antibacterial, anticancer, and other bioactivities; however, the anti-acute lymphoblastic leukemia (T-ALL) activity of the Moringa oleifera protein and its mechanism of action are still unclear. In this study, we used Moringa oleifera leaves protein as the experimental material and used the MTT assay, flow cytometry, and Western blot techniques to study the effects of Moringa oleifera leaves protein on Jurkat cell growth, apoptosis, and the cell cycle in vitro and the underlying molecular mechanism. Moringa oleifera leaves protein inhibited Jurkat cell proliferation; induced apoptosis and cycle arrest; increased autophagy; and inhibited Jurkat cell proliferation by regulating the MAPK/AKT pathway. The results of this study provide new ideas and a theoretical basis for the development of Moringa oleifera leaves protein for the prevention and treatment of leukemia.
Collapse
Affiliation(s)
- Xiaoxue Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hao Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Shanna Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xinyu Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yang Tian
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Shuang Song
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
2
|
Zhu K, Pu PM, Li G, Zhou LY, Li ZY, Shi Q, Wang YJ, Cui XJ, Yao M. Shenqisherong pill ameliorates neuronal apoptosis by inhibiting the JNK/caspase-3 signaling pathway in a rat model of cervical cord compression. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116901. [PMID: 37437792 DOI: 10.1016/j.jep.2023.116901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/01/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Shenqisherong (SQSR) pill is an empirical prescription of traditional Chinese medicine (TCM), which originated from the National Chinese Medical Science Master, Shi Qi. It has been widely used in the treatment of cervical spondylotic myelopathy (CSM) and promote the recovery of spinal cord function, but underlying molecular mechanism remains unclear. AIM OF THE STUDY The objective of this study was to confirm the neuroprotective effects of the SQSR pill. MATERIALS AND METHODS A rat model of chronic compression at double-level cervical cord was used in vivo. The protective role of SQSR pill on CSM rats was measured by Basso, Beattie, and Bresnahan (BBB) locomotor scale, inclined plane test, forelimb grip strength assessment, hindlimb pain threshold assessment, and gait analysis. The levels of reactive oxygen species (ROS) were examined by Dihydroethidium (DHE) staining and 2',7'-Dichlorofluorescein (DCF) assay, and apoptosis was detected by TdT-mediated dUTP nick-end labeling (TUNEL) assay. The expression of apoptosis proteins was evaluated by immunofluorescence staining and Western blot. RESULTS SQSR pill could facilitate locomotor function recovery in rats with chronic cervical cord compression, reduce local ROS in the spinal cord and downregulate the c-Jun-N-terminal kinase (JNK)/caspase-3 signaling pathway. In addition, the SQSR pill could protect primary rat cortical neurons from glutamate-treated toxicity in vitro by reducing the ROS and downregulating the phosphorylation of JNK and its downstream factors related to neuronal apoptosis meditated by the caspase cascade. Then, the neuroprotective effect was counteracted by a JNK activator. CONCLUSIONS Together, SQSR pill could ameliorate neuronal apoptosis by restraining ROS accumulation and inhibiting the JNK/caspase-3 signaling pathway, indicating that SQSR pill could be a candidate drug for CSM.
Collapse
Affiliation(s)
- Ke Zhu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Pei-Min Pu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Gan Li
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Long-Yun Zhou
- Rehabilitation Medicine Center, Jiangsu Provincial People's Hospital, Jiangsu, 210029, China.
| | - Zhuo-Yao Li
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Qi Shi
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Yong-Jun Wang
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Xue-Jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
3
|
Yan WT, Yang YD, Hu XM, Ning WY, Liao LS, Lu S, Zhao WJ, Zhang Q, Xiong K. Do pyroptosis, apoptosis, and necroptosis (PANoptosis) exist in cerebral ischemia? Evidence from cell and rodent studies. Neural Regen Res 2022; 17:1761-1768. [PMID: 35017436 PMCID: PMC8820688 DOI: 10.4103/1673-5374.331539] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/15/2021] [Accepted: 11/01/2021] [Indexed: 11/04/2022] Open
Abstract
Some scholars have recently developed the concept of PANoptosis in the study of infectious diseases where pyroptosis, apoptosis and necroptosis act in consort in a multimeric protein complex, PANoptosome. This allows all the components of PANoptosis to be regulated simultaneously. PANoptosis provides a new way to study the regulation of cell death, in that different types of cell death may be regulated at the same time. To test whether PANoptosis exists in diseases other than infectious diseases, we chose cerebral ischemia/reperfusion injury as the research model, collected articles researching cerebral ischemia/reperfusion from three major databases, obtained the original research data from these articles by bibliometrics, data mining and other methods, then integrated and analyzed these data. We selected papers that investigated at least two of the components of PANoptosis to check its occurrence in ischemia/reperfusion. In the cell model simulating ischemic brain injury, pyroptosis, apoptosis and necroptosis occur together and this phenomenon exists widely in different passage cell lines or primary neurons. Pyroptosis, apoptosis and necroptosis also occurred in rat and mouse models of ischemia/reperfusion injury. This confirms that PANoptosis is observed in ischemic brain injury and indicates that PANoptosis can be a target in the regulation of various central nervous system diseases.
Collapse
Affiliation(s)
- Wei-Tao Yan
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Yan-Di Yang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Wen-Ya Ning
- Department of Human Resources, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Lyu-Shuang Liao
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Shuang Lu
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Wen-Juan Zhao
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Qi Zhang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Kun Xiong
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
| |
Collapse
|
4
|
Tsai YT, Huang HC, Kao ST, Chang TT, Cheng CY. Neuroprotective Effects of Alpinia oxyphylla Miq against Mitochondria-Related Apoptosis by the Interactions between Upregulated p38 MAPK Signaling and Downregulated JNK Signaling in the Subacute Phase of Cerebral Ischemia-Reperfusion in Rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:2057-2083. [DOI: 10.1142/s0192415x22500884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Apoptosis in the penumbra region is the major cell death mechanism occurring during ischemia–reperfusion injury’s early phase. Here, we evaluated how the Alpinia oxyphylla Miq (AOM) affects mitochondria-related apoptosis 3 days after transient middle cerebral artery occlusion (MCAo) and examined the mechanisms underlying the regulation of MAPK-mediated mitochondria-related apoptotic signaling in the peri-infarct cortex in rats. The rats were administered the AOM extract intraperitoneally at doses of 0.2[Formula: see text]g/kg (AOM-0.2[Formula: see text]g), 0.4[Formula: see text]g/kg (AOM-0.4[Formula: see text]g), or 0.8[Formula: see text]g/kg (AOM-0.8[Formula: see text]g) at MCAo initiation. The AOM-0.4[Formula: see text]g and AOM-0.8[Formula: see text]g significantly ameliorated apoptotic cell death and considerably downregulated cytochrome c (cyto c) and cleaved caspase-3 immunoreactivity 3 days after reperfusion. Simultaneously, they significantly downregulated cytosolic p-JNK/JNK, cathepsin B/actin, cyto c/actin, Smac/DIABLO/actin, cleaved caspase-3/actin, and AIF/actin and mitochondrial p53/HSP60 and Bax/HSP60 fractions but upregulated cytosolic p-p38 MAPK/p38 MAPK, p-p90RSK/actin, p-Bad/Bad, p-CREB/actin, and XIAP/actin and cytosolic and mitochondrial Bcl-2/Bax and Bcl-xL/Bax fractions in the peri-infarct cortex. Pretreatment with SB203580 — a p38 MAPK inhibitor — completely abrogated the effects of AOM-0.8[Formula: see text]g on the aforementioned protein expression, whereas treatment with SP600125 — a JNK inhibitor — exerted protective effects similar to those of AOM-0.8[Formula: see text]g. Treatment with 0.4 or 0.8[Formula: see text]g/kg AOM has neuroprotective effects against mitochondria-related apoptosis by suppressing cyto c, Smac/DIABLO, and AIF release from the mitochondria to cytosol. The anti-mitochondria related apoptotic effects of the AOM extract are attributable to the interactions between upregulated p38 MAPK/p90RSK-mediated p-Bad and CREB signaling and downregulated JNK/cathepsin B-mediated Bax and p53 signaling in the peri-infarct cortex 3 days after transient MCAo.
Collapse
Affiliation(s)
- Yueh-Ting Tsai
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University Taichung 40402, Taiwan
- Department of Traditional Chinese Medicine, Kuang Tien General Hospital, Taichung, Taiwan
| | - Hui-Chi Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University Taichung 40402, Taiwan
| | - Shung-Te Kao
- School of Chinese Medicine, College of Chinese Medicine, China Medical University Taichung 40402, Taiwan
| | - Tung-Ti Chang
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University Taichung 40402, Taiwan
| | - Chin-Yi Cheng
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University Taichung 40402, Taiwan
- Department of Chinese Medicine, Hui-Sheng Hospital, Taichung 42056, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung 42056, Taiwan
| |
Collapse
|
5
|
Zhu HF, Shao Y, Qin L, Wang JH, Feng S, Jiang YB, Wan D. Catalpol Enhances Neurogenesis And Inhibits Apoptosis Of New Neurons Via BDNF, But Not The BDNF/Trkb Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4145-4157. [PMID: 31849446 PMCID: PMC6911350 DOI: 10.2147/dddt.s223322] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/08/2019] [Indexed: 01/25/2023]
Abstract
Background The role of catalpol in brain neurogenesis and newborn neuron survival has not been previously determined in permanent middle cerebral artery occlusion (pMCAO). Methods Fifty-four rats were divided into 6 groups: pMCAO (model, n=9); sham operation (NS, n=9); catalpol treatment (5 mg/kg and 10 mg/kg subgroups, n=9 each); K252a (n=9); and K252a+catalpol 5 mg/kg (n=9) with stroke. The effects of catalpol on behavior, neurogenesis surrounding the infarction ipsilateral to pMCAO, and the expression of brain-derived neurotrophic factor (BDNF) and its receptor (TrkB) were evaluated. Vehicle or, K252a (i.p.), an inhibitor of TrkB phosphorylase. Results Repeated administration of catalpol reduced neurological deficits and significantly improved neurogenesis. Catalpol increased the number of newborn immature neurons, as determined by BrdU+-Nestin+ and BrdU+-Tuj-1+ staining, and downregulated cleaved caspase 3 in Tuj-1+ cells at day 7 following stroke. Moreover, catalpol increased the protein expression of Tuj-1, MAP2, and the Bcl-2/Bax ratio, as determined using Western blot. Catalpol also significantly increased brain levels of BDNF, but not TrkB, resulting in enhanced survival of newborn neurons via inhibition of apoptosis. Conclusion Catalpol may contribute to neurogenesis in infarcted brain regions and help promote the survival of newborn neurons by activating BDNF, but not BDNF/TrkB signaling.
Collapse
Affiliation(s)
- Hui-Feng Zhu
- Department of Pharmacy, College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Yali Shao
- Department of Pharmacy, College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Lei Qin
- Department of Pharmacy, College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Jing-Huan Wang
- Department of Pharmacy, College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Shan Feng
- Department of Pharmacy, College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Yun-Bin Jiang
- Department of Pharmacy, College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Dong Wan
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| |
Collapse
|
6
|
Wang Q, Li Z, Wang D, Yang S, Feng Y. Myocardial protection properties of parishins from the roots of Gastrodia elata Bl. Biomed Pharmacother 2019; 121:109645. [PMID: 31739164 DOI: 10.1016/j.biopha.2019.109645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/15/2019] [Accepted: 11/01/2019] [Indexed: 01/13/2023] Open
Abstract
Parishins, important constituents of Gastrodia elata (G. elata), are known to exhibit a number of biological and pharmacological properties. However, their role and mechanisms of action in myocardial ischemia are unknown. The present study investigated the potential protective effects and mechanisms of parishins extracted from G. elata on hypoxia/reoxygenation (H/R) injury in H9c2 cardiomyocytes. The results demonstrated that parishins had significant protective effects on myocardial cells with parishins J and B providing greater cardioprotection through down-regulation of the level of cleaved-caspase-3 and cytochrome c in the cytoplasm and Bax, and up-regulation of cytochrome c in the mitochondria and Bcl-2 than induced by the positive control gastrodin. Additional study of the mechanisms of action indicated that the myocardial protection provided by parishin J was due to inhibition of JNK1 phosphorylation levels, down-regulation of c-jun and ATF-2 phosphorylation levels, a decrease in the phosphorylation of 14-3-3 and an increase in its binding to Bax. Therefore, parishin J was revealed to be a promising candidate as a novel treatment for myocardial protection.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Nanchang 330006, China
| | - Zhifeng Li
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330002, China.
| | - Dongxu Wang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330002, China
| | - Shinlin Yang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330002, China
| | - Yulin Feng
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Nanchang 330006, China.
| |
Collapse
|
7
|
Wang JC, Bindokas VP, Skinner M, Emrick T, Marks JD. Mitochondrial mechanisms of neuronal rescue by F-68, a hydrophilic Pluronic block co-polymer, following acute substrate deprivation. Neurochem Int 2017; 109:126-140. [PMID: 28433663 PMCID: PMC5641222 DOI: 10.1016/j.neuint.2017.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/29/2017] [Accepted: 04/10/2017] [Indexed: 01/09/2023]
Abstract
Global brain ischemia can lead to widespread neuronal death and poor neurologic outcomes in patients. Despite detailed understanding of the cellular and molecular mechanisms mediating neuronal death following focal and global brain hypoxia-ischemia, treatments to reduce ischemia-induced brain injury remain elusive. One pathway central to neuronal death following global brain ischemia is mitochondrial dysfunction, one consequence of which is the cascade of intracellular events leading to mitochondrial outer membrane permeabilization. A novel approach to rescuing injured neurons from death involves targeting cellular membranes using a class of synthetic molecules called Pluronics. Pluronics are triblock copolymers of hydrophilic poly[ethylene oxide] (PEO) and hydrophobic poly[propylene oxide] (PPO). Evidence is accumulating to suggest that hydrophilic Pluronics rescue injured neurons from death following substrate deprivation by preventing mitochondrial dysfunction. Here, we will review current understanding of the nature of interaction of Pluronic molecules with biological membranes and the efficacy of F-68, an 80% hydrophilic Pluronic, in rescuing neurons from injury. We will review data indicating that F-68 reduces mitochondrial dysfunction and mitochondria-dependent death pathways in a model of neuronal injury in vitro, and present new evidence that F-68 acts directly on mitochondria to inhibit mitochondrial outer membrane permeabilization. Finally, we will present results of a pilot, proof-of-principle study suggesting that F-68 is effective in reducing hippocampal injury induced by transient global ischemia in vivo. By targeting mitochondrial dysfunction, F-68 and other Pluronic molecules constitute an exciting new approach to rescuing neurons from acute injury.
Collapse
Affiliation(s)
- Janice C Wang
- Department of Pediatrics, University of Chicago, Chicago, IL, United States
| | - Vytautas P Bindokas
- Department of Pharmacological, Physiological Sciences, University of Chicago, IL, United States
| | - Matthew Skinner
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, United States
| | - Todd Emrick
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, United States
| | - Jeremy D Marks
- Department of Pediatrics, University of Chicago, Chicago, IL, United States; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
8
|
Sreedhar R, Arumugam S, Thandavarayan RA, Giridharan VV, Karuppagounder V, Pitchaimani V, Afrin R, Miyashita S, Nomoto M, Harima M, Gurusamy N, Suzuki K, Watanabe K. Myocardial 14-3-3η protein protects against mitochondria mediated apoptosis. Cell Signal 2015; 27:770-6. [DOI: 10.1016/j.cellsig.2014.12.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 12/01/2014] [Accepted: 12/17/2014] [Indexed: 12/30/2022]
|
9
|
Mou J, Liu X, Pei D. Overexpression of C-terminal fragment of glutamate receptor 6 prevents neuronal injury in kainate-induced seizure via disassembly of GluR6-PSD-95-MLK3 signaling module. Neural Regen Res 2015; 9:2059-65. [PMID: 25657722 PMCID: PMC4316469 DOI: 10.4103/1673-5374.147932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2014] [Indexed: 11/27/2022] Open
Abstract
Our previous study showed that when glutamate receptor (GluR)6 C terminus-containing peptide conjugated with the human immunodeficiency virus Tat protein (GluR6)-9c is delivered into hippocampal neurons in a brain ischemic model, the activation of mixed lineage kinase 3 (MLK3) and c-Jun NH2-terminal kinase (JNK) is inhibited via GluR6-postsynaptic density protein 95 (PSD95). In the present study, we investigated whether the recombinant adenovirus (Ad) carrying GluR6c could suppress the assembly of the GluR6-PSD95-MLK3 signaling module and decrease neuronal cell death induced by kainate in hippocampal CA1 subregion. A seizure model in Sprague-Dawley rats was induced by intraperitoneal injections of kainate. The effect of Ad-Glur6-9c on the phosphorylation of JNK, MLK3 and mitogen-activated kinase kinase 7 (MKK7) was observed with western immunoblots and immunohistochemistry. Our findings revealed that overexpression of GluR6c inhibited the interaction of GluR6 with PSD95 and prevented the kainate-induced activation of JNK, MLK3 and MKK7. Furthermore, kainate-mediated neuronal cell death was significantly suppressed by GluR6c. Taken together, GluR6 may play a pivotal role in neuronal cell death.
Collapse
Affiliation(s)
- Jie Mou
- Jiangsu Key Laboratory of Targeted Drug and Clinical Application, Xuzhou Medical College, Xuzhou, Jiangsu Province, China
| | - Xiaomei Liu
- School of Basic Medical Science, Xuzhou Medical College, Xuzhou, Jiangsu Province, China
| | - Dongsheng Pei
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu Province, China
| |
Collapse
|
10
|
Yuan Y, Peng C, Li K, Hussain M, Sikharam C, Guthikonda M, Ding Y. Ethanol reduces expression of apoptotic proteins after hypoxia/reoxygenation in a brain slice model. Neurol Res 2013; 34:373-8. [DOI: 10.1179/1743132812y.0000000030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Yu Yuan
- Department of Neurological SurgeryWayne State University School of Medicine, Detroit, MI, USA
| | - Changya Peng
- Department of Neurological SurgeryWayne State University School of Medicine, Detroit, MI, USA
| | - Kevin Li
- University of Michigan, Ann Arbor, USA
| | - Mohammed Hussain
- Department of Neurological SurgeryWayne State University School of Medicine, Detroit, MI, USA
| | - Chaitanya Sikharam
- Department of Neurological SurgeryWayne State University School of Medicine, Detroit, MI, USA
| | - Murali Guthikonda
- Department of Neurological SurgeryWayne State University School of Medicine, Detroit, MI, USA
| | - Yuchuan Ding
- Department of Neurological SurgeryWayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|